
CS4XX INTRODUTION TO COMPILER THEORY

WEEK 10

Reading:

Chapter 7 and Chapter 8 from Principles of Compiler Design, Alfred V. Aho & Jeffrey D. Ullman

Objectives:

1. To understand the concepts of Run-Time environments(Finish the previous part)
2. To learn the concepts of Intermediate Code Generations
3. To use the concepts learned in Syntax-directed translations

Concepts:

1.Language facilities for dynamic storage allocation--1/2 hr
2. Dynamic storage allocation techniques---1/2 hr
3. Intermediate languages--1 hr
4. Declarations---1 hr

Outlines:

1. Language facilities for dynamic storage allocation
a. Explicit and Implicit allocation of memory
b. Garbage Collection

2. Dynamic Storage allocation Techniques
3. Intermediate language

a. Graphical representations - Syntax Trees & DAG
b. Postfix notation
c. Three Address Code

4. Declarations
a. Translation scheme for declarations in a procedure
b. Keeping track of scope
c. Operations supporting nested STs
d. Translation scheme for nested procedures
e. Adding ST lookups to assignments

CS 4xx - Week 10 – Page 1

CS 4xx: Week 10 – Lecture Notes

1. Language Facilities for dynamic storage allocation
● Explicit and Implicit allocation of memory to variables

○ Most languages support dynamic allocation of memory.
○ Pascal supports new(p) and dispose(p) for pointer types.
○ C provides malloc() and free() in the standard library.
○ C++ provides the new and free operators.
○ These are all examples of EXPLICIT allocation.
○ Other languages like Python and Lisp have IMPLICIT allocation.

● Garbage – Finding variables that are not referred by the program any more
○ In languages with explicit deallocation, the programmer must be careful to free every dynamically

allocated variable, or GARBAGE will accumulate.
○ Garbage is dynamically allocated memory that is no longer accessible because no pointers are

pointing to it.
○ In some languages with implicit deallocation, GARBAGE COLLECTION is occasionally necessary.
○ Other languages with implicit deallocation carefully track references to allocated memory and

automatically free memory when nobody refers to it any longer

2. Dynamic storage allocation techniques
● Explicit allocation of fixed sized blocks of memory with contiguous block of memory available for usage

by the program
● Explicit allocation of variable sized blocks of memory where the storage can be fragmented
● Implicit deallocation of blocks of memory that are not used any more by using reference counts and

marking techniques
● We assume the heap is an initially empty block of memory.
● As memory is allocated and deallocated, fragmentation occurs.
● For allocation, we must find a HOLE large enough to hold the requested memory.
● For deallocation, we must merge adjacent holes to prevent further fragmentation.

3. Intermediate Language
- Intermediate codes are machine independent codes, but they are close to machine instructions.
- Example assignment statement a: = b * -c + b * -c

● Syntax trees
○ A syntax tree depicts the natural hierarchical structure of a source program. A DAG (Directed Acyclic

Graph) gives the same information but in a more compact way because common sub-expressions
are identified.

○ assign

 a +

* *

 b uminus b uminus

 c c

CS 4xx – Week 10 – page 2

● Postfix notation
○ Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the in which

a node appears immediately after its children.
○ a b c uminus * b c uminus * + assign
○ postfix is convenient because it can run on an abstract STACK MACHINE

● Three Address Code
○ A more common representation is THREE-ADDRESS CODE (3AC)
○ 3AC is close to assembly language, making machine code generation easier.
○ 3AC has statements of the form

x := y op z
○ To get an expression like x + y * z, we introduce TEMPORARIES:

t1 := y * z
t2 := x + t1

○ 3AC is easy to generate from syntax trees. We associate a temporary with each interior tree node.
○ Types of 3AC statements

■ Assignment statements of the form x := y op, where op is a binary arithmetic or logical
operation.

■ Assignment statements of the form x := op Y, where op is a unary operator, such as unary
minus, logical negation

■ Copy statements of the form x := y, which assigns the value of y to x.
■ Unconditional statements goto L, which means the statement with label L is the next to be

executed.
■ Conditional jumps, such as if x relop y goto L, where relop is a relational operator (<, =, >=, etc)

and L is a label. (If the condition x relop y is true, the statement with label L will be executed
next.)

■ Statements param x and call p, n for procedure calls, and return y, where y represents the
(optional) returned value. The typical usage:

param x1
param x2
 …
param xn
call p, n

■ Index assignments of the form x := y[i] and x[i] := y. The first sets x to the value in the location i
memory units beyond location y. The second sets the content of the location i unit beyond x to
the value of y.

4. Declarations
● When we encounter declarations, we need to lay out storage for the declared variables.
● For every local name in a procedure, we create a ST entry containing:

– The type of the name
– How much storage the name requires
– A relative offset from the beginning of the static data area or beginning of the activation record.

● For intermediate code generation, we try not to worry about machine-specific issues like word
alignment.

● To keep track of the current offset into the static data area or the AR, the compiler maintains a global
variable, OFFSET.

● OFFSET is initialized to 0 when we begin compiling.
● After each declaration, OFFSET is incremented by the size of the declared variable.

CS 4xx – Week 10 – page 3

● Translation scheme for declarations in a procedure
P -> { offset := 0 }

D
D -> D ; D
D -> id : T { enter(id.name, T.type, offset);

 offset := offset + T.width }
T -> integer { T.type := integer; T.width := 4 }
T -> real { T.type := real; T.width := 8 }
T -> array [num] of T1 { T.type := array(num.val, T1.type);

 T.width := num.val * T1.width }
T -> ^ T1 { T.type := pointer(T1.type);

 T.width := 4 }

● Keeping track of scope
○ When nested procedures or blocks are entered, we need to suspend processing declarations in the

enclosing scope.
○ Let’s change the grammar:

P -> D
D -> D ; D | id : T | proc id ; D ; S

○ Suppose we have a separate ST for each procedure.
○ When we enter a procedure declaration, we create a new ST.
○ The new ST points back to the ST of the enclosing procedure.
○ The name of the procedure is a local for the enclosing procedure.
○ Example: Fig. 8.12 in the text

● Operations supporting nested STs
○ mktable(previous) creates a new symbol table pointing to previous, and returns a pointer to the

new table.
enter(table,name,type,offset) creates a new entry for name in symbol table table with the given
type and offset.
addwidth(table,width) records the width of ALL the entries in table.
enterproc(table,name,newtable) creates a new entry for procedure name in ST table, and links it
to newtable.

● Translation scheme for nested procedures
○ P -> M D { addwidth(top(tblptr), top(offset));

 pop(tblptr); pop(offset) }
M -> є { t := mktable(nil);

 push(t,tblptr); push(0,offset); }
D -> D1 ; D2
D -> proc id ; N D1 ; S { t := top(tblptr);

 addwidth(t,top(offset));
 pop(tblptr); pop(offset);
 enterproc(top(tblptr),id.name,t) }

D -> id : T { enter(top(tblptr),id.name,T.type,top(offset));
 top(offset) := top(offset)+T.width }

N -> є { t := mktable(top(tblptr));
 push(t,tblptr); push(0,offset) }

CS 4xx – Week 10 – page 4

● Adding ST lookups to assignments
○ Let’s attach our assignment grammar to the procedure declarations grammar.

S -> id := E { p := lookup(id.name);
if p != nil then emit(p ‘:=‘ E.place) else error }

E -> E1 + E2 { E.place := newtemp();
emit(E.place ‘:=‘ E1.place ‘+’ E2.place) }

E -> E1 * E2 { E.place := newtemp();
emit(E.place ‘:=‘ E1.place ‘*’ E2.place) }

E -> - E1 { E.place := newtemp();
emit(E.place ‘:=‘ ‘uminus’ E1.place) }

E -> (E1) { E.place := E1.place }
E -> id { p := lookup(id.name);

if p != nil then E.place := p else error }

(Continue next week on Intermediate Code Generation)

CS 4xx – Week 10 – page 5

	CS4XX INTRODUTION TO COMPILER THEORY

