CS4XX INTRODUTION TO COMPILER THEORY
WEEK 10
Reading:
Chapter 7 and Chapter 8 from Principles of Compiler Design, Alfred V. Aho & Jeffrey D. Ullman
Objectives:

1. To understand the concepts of Run-Time environments(Finish the previous part)
2. To learn the concepts of Intermediate Code Generations
3. To use the concepts learned in Syntax-directed translations

Concepts:
1.Language facilities for dynamic storage allocation 1/2 hr
2. Dynamic storage allocation techniques 1/2 hr
3. Intermediate languages 1hr
4. Declarations 1hr
Outlines:

1. Language facilities for dynamic storage allocation
a. Explicit and Implicit allocation of memory
b. Garbage Collection
2. Dynamic Storage allocation Techniques
3. Intermediate language
a. Graphical representations - Syntax Trees & DAG
b. Postfix notation
c. Three Address Code
4. Declarations
a. Translation scheme for declarations in a procedure
b. Keeping track of scope
c. Operations supporting nested STs
d. Translation scheme for nested procedures
e. Adding ST lookups to assignments

CS 4xx - Week 10-Page 1

CS 4xx: Week 10 — Lecture Notes

1. Language Facilities for dynamic storage allocation

Explicit and Implicit allocation of memory to variables

Most languages support dynamic allocation of memory.

Pascal supports new(p) and dispose(p) for pointer types.

C provides malloc() and free() in the standard library.

C++ provides the new and free operators.

These are all examples of EXPLICIT allocation.

Other languages like Python and Lisp have IMPLICIT allocation.

Garbage - Finding variables that are not referred by the program any more

o Inlanguages with explicit deallocation, the programmer must be careful to free every dynamically
allocated variable, or GARBAGE will accumulate.

o Garbage is dynamically allocated memory that is no longer accessible because no pointers are
pointing to it.

o In some languages with implicit deallocation, GARBAGE COLLECTION is occasionally necessary.

o Other languages with implicit deallocation carefully track references to allocated memory and
automatically free memory when nobody refers to it any longer

O O O O O O

2. Dynamic storage allocation techniques

Explicit allocation of fixed sized blocks of memory with contiguous block of memory available for usage
by the program

Explicit allocation of variable sized blocks of memory where the storage can be fragmented

Implicit deallocation of blocks of memory that are not used any more by using reference counts and
marking techniques

We assume the heap is an initially empty block of memory.

As memory is allocated and deallocated, fragmentation occurs.

For allocation, we must find a HOLE large enough to hold the requested memory.

For deallocation, we must merge adjacent holes to prevent further fragmentation.

3. Intermediate Language

- Intermediate codes are machine independent codes, but they are close to machine instructions.

- Example assighnment statementa:=b *-c+b * -c

Syntax trees

o A syntax tree depicts the natural hierarchical structure of a source program. A DAG (Directed Acyclic
Graph) gives the same information but in a more compact way because common sub-expressions
are identified.

o) assign

a/\+
N
SN

uminus b uminus

CS 4xx — Week 10 — page 2

Postfix notation

o Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of the in which
a node appears immediately after its children.

o0 abcuminus * b cuminus * + assign

o postfix is convenient because it can run on an abstract STACK MACHINE

Three Address Code

o A more common representation is THREE-ADDRESS CODE (3AC)

o 3ACis close to assembly language, making machine code generation easier.

0 3AC has statements of the form

X:=yopz
o To get an expression like x + y * z, we introduce TEMPORARIES:
tli=y*z
2. =x+1tl

o 3ACis easy to generate from syntax trees. We associate a temporary with each interior tree node.
o Types of 3AC statements

B Assignment statements of the form x := y op, where op is a binary arithmetic or logical
operation.

B Assignment statements of the form x := op Y, where op is a unary operator, such as unary
minus, logical negation

m Copy statements of the form x := y, which assigns the value of y to x.

® Unconditional statements goto L, which means the statement with label L is the next to be
executed.

m Conditional jumps, such as if x relop y goto L, where relop is a relational operator (<, =, >=, etc)
and L is a label. (If the condition x relop y is true, the statement with label L will be executed
next.)

m Statements param x and call p, n for procedure calls, and return y, where y represents the
(optional) returned value. The typical usage:

param x1
param x2

param xn
callp,n
® Index assignments of the form x := y[i] and x[i] :=y. The first sets x to the value in the location i
memory units beyond location y. The second sets the content of the location i unit beyond x to
the value of y.

4. Declarations

When we encounter declarations, we need to lay out storage for the declared variables.

For every local name in a procedure, we create a ST entry containing:

— The type of the name

— How much storage the name requires

— A relative offset from the beginning of the static data area or beginning of the activation record.
For intermediate code generation, we try not to worry about machine-specific issues like word
alignment.

To keep track of the current offset into the static data area or the AR, the compiler maintains a global
variable, OFFSET.

OFFSET is initialized to 0 when we begin compiling.

After each declaration, OFFSET is incremented by the size of the declared variable.

CS 4xx — Week 10 — page 3

e Translation scheme for declarations in a procedure

P-> { offset:=0}
D

D> D;D

D->id: T { enter(id.name, T.type, offset);
offset := offset + T.width }

T -> integer { T.type := integer; Twidth :=4}

T -> real { T.type :=real; T.width :=8}

T->array [num] of T1 { T.type := array(num.val, Tl.type);
Twidth := num.val * T1.width }

T->/~T1 { T.type := pointer(T1.type);
Twidth :=4}

e Keeping track of scope

O

O

O O O O O

When nested procedures or blocks are entered, we need to suspend processing declarations in the
enclosing scope.
Let’s change the grammar:
P->D
D->D;D|id:T|procid;D;S
Suppose we have a separate ST for each procedure.
When we enter a procedure declaration, we create a new ST.
The new ST points back to the ST of the enclosing procedure.
The name of the procedure is a local for the enclosing procedure.
Example: Fig. 8.12 in the text

e Operations supporting nested STs

O

mktable(previous) creates a new symbol table pointing to previous, and returns a pointer to the
new table.

enter(table,name,type,offset) creates a new entry for name in symbol table table with the given
type and offset.

addwidth(table,width) records the width of ALL the entries in table.
enterproc(table,name,newtable) creates a new entry for procedure name in ST table, and links it
to newtable.

e Translation scheme for nested procedures

O

P->MD { addwidth(top(tblptr), top(offset));
pop(tblptr); pop(offset) }
M ->¢€ {t := mktable(nil);
push(t,tblptr); push(0,offset); }
D->D1; D2
D->procid;ND1;S { t:=top(tblptr);
addwidth(t,top(offset));
pop(tblptr); pop(offset);
enterproc(top(tblptr),id.name,t) }
D->id:T { enter(top(tblptr),id.name,T.type,top(offset));
top(offset) := top(offset)+T.width }
N->¢€ { t := mktable(top(tblptr));

push(t,tblptr); push(0,offset) }

CS 4xx — Week 10 — page 4

e Adding ST lookups to assignments
O Let’s attach our assignment grammar to the procedure declarations grammar.

S->id:=E
E->E1+E2
E->E1*E2
E->-E1

E->(E1)
E->id

{p :=lookup(id.name);

if p = nil then emit(p .=’ E.place) else error }
{ E.place := newtemp();

emit(E.place “:=* El.place ‘+’ E2.place) }
{ E.place := newtemp();

emit(E.place “:=* El.place ‘*’ E2.place) }
{ E.place := newtemp();

emit(E.place “:=* ‘uminus’ El.place)}
{ E.place := El.place }
{p :=lookup(id.name);

if p I=nil then E.place := p else error }

(Continue next week on Intermediate Code Generation)

CS 4xx — Week 10 — page 5

	CS4XX INTRODUTION TO COMPILER THEORY

