
CS 536: Science of Programming Wed 2023-04-26, 12:50 Practice 27

  Await and Deadlocks
  CS 536: Science of Programming, Spring 2023

A. Why
• It’s common for one thread to wait for another thread to reach a desired state.

B. Objectives
At the end of this practice assignment you should be able to

• Describe informally what deadlock is and recognize runtime configurations that are deadlocked.

• If a program fails one or more of its deadlock-freedom tests, what can happen at runtime?

• Draw an evaluation diagram for a parallel program that uses await and recognize any deadlocked
configurations.

• List the potential deadlock predicates for a parallel program that uses await.

C. Questions
The final exam will only include questions based on the problems below.

1. Informally, what is deadlock and when does it occur? Say ⟨  [S₁; … || S₂ || E], σ ⟩ is deadlocked,
and S₁ ≡ await B then S end. What property does σ have? What kind of statement can S₂ be?
Can S₂ ≡ E here?

2. Let's investigate the difference between wait and await. Consider the following configurations

C₁ = ⟨ [wait x ≥ 0 ; y : = sqrt(x) || x := x – 1] , σ [x ↦ 0] ⟩

C₂ = ⟨ [await x ≥ 0 then y : = sqrt(x) || x := x – 1] , σ [x ↦ 0] ⟩

 Let's write →₁ and →₂ to mean we evaluate the first and second thread respectively.

a. C₁ →₂ ??? Can we continue this execution path? If so, how?

b. C₂ →₂ ??? Can we continue this execution path? If so, how?

c. C₁ →₁ ??? →₂ ??? Can we continue this execution path? If so, how?

d. C₂ →₁ ??? →₂ ??? Can we continue this execution path? If so, how?

e. Why is C₂ → ⟨ [y := sqrt(x) || x := x-1]  ⟩ incorrect?

3. Let S be a parallel program and suppose {p} S* {q} fails one of its deadlock tests.

a. What do we know about the behavior of S if we run it in a σ ⊨ p ?

b. Is it impossible to get a proof of correctness for the program?

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20231

CS 536: Science of Programming Wed 2023-04-26, 12:50 Practice 27

4. The following program is a variant of one from the notes.

a. Draw an evaluation diagram for this program, starting in the empty state.

{ T } x := 1 ; { x = 1 } y := 1 ; { (y = 0  ∨ y = 1) ∧ (x = 0  ∨ x = 1) } 
[{ y = 0 ∨ y = 1} await y = 1 then { y = 1} x := 0 end { x = 0 } 
|| { x = 0 ∨ x = 1 } await x = 1 then { x = 1} y := 0 end { y = 0 } 
] { x = 0 ∧ y = 0 }

b. Does the program deadlock always, sometimes, or never?

c. What are the deadlock conditions for this program? Which (if any) are contradictory? Can
all these conditions actually occur at runtime?

5. Give the set of deadlock conditions for the proof outline below. (Assume that S₁, … U₁ do not
include await statements.)

[{ p₁} S₁; {p₂} await B₁ then S₂ end { p₃ } 
|| { q₁} await C₁ then T₁ end; {q₂} await C₂ then T₂ end { q₃ } 
|| { r₁ } U₁ { r₂ }]

Solution to Practice 27 (Synchronization: Await)
1. Informally, deadlock is the inability for execution of a parallel program to continue because of

waiting. It occurs when at least one thread is waiting at an await statement and the other
threads have either finished execution or are waiting at await statements themselves. In the
sample, the await statement can't continue because σ(B) = F. S₂ can be an await statement that
is similarly unable to continue (S₂ ≡ await B′ then S′ end where σ(B′) = F). S₂ can't be any other
kind of statement because then thread 2 would not be waiting. We can have S₂ ≡ E, which
means S₂ has finished execution.

2. (wait vs await)

a. C₁ = ⟨ [wait x ≥ 0 ; y := sqrt (x) || x := x – 1] , σ [x ↦ 0] ⟩  
→ ₂ ⟨ [wait x ≥ 0 ; y := sqrt (x) || E] , σ [x ↦ – 1] ⟩ 
and execution is deadlocked because x ≥ 0 is not satisfied by σ[x ↦ –1].

b. Similarly, C₂ = ⟨ [await x ≥ 0 then y := sqrt (x) end || x := x – 1] , σ [x ↦ 0] ⟩ 
→₂ ⟨ [await x ≥ 0 then y := sqrt (x) end || E] , σ [x ↦ – 1] ⟩ 
and execution is deadlocked for the same reason.

c. C₁ = ⟨ [wait x ≥ 0 ; y := sqrt (x) || x : = x – 1] , σ [x ↦ 0] ⟩ 
 →₁ ⟨ [y : = sqrt (x) || x := x – 1] , σ [x ↦ 0] ⟩ 
 →₂ ⟨ [y := sqrt (x) || E] , σ [x ↦ – 1] ⟩  
which generates a runtime error, i.e., →₁ ⟨ [E || E], ⊥e ⟩. 
(The first transition doesn't execute y := sqrt(x) because wait x ≥ 0 means await x ≥ 0 then skip
end, so execution of wait x ≥ 0 is complete once x ≥ 0.

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20232

CS 536: Science of Programming Wed 2023-04-26, 12:50 Practice 27

d. C₂ = ⟨ [await x ≥ 0 then y := sqrt(x) end || x := x–1], σ[x ↦ 0] ⟩ 
 →₁ C₂ = ⟨ [E || x := x – 1] , σ [x ↦ 0] [y ↦ 0] ⟩ 
 →₂ ⟨ [E || E], σ[y ↦ 0] [x ↦ –1] ⟩. 
(Note the first transition goes from await … directly to E.)

e. It's wrong to say C₂→ ⟨ [y := sqrt (x) || x := x - 1] ⟩ because await immediately and atomically
executes its body after the test succeeds.

3. (Parallel program fails a deadlock check.)

a. Passing all the deadlock-freedom tests is sufficient to guarantee deadlock freedom, but
passing all tests is not a necessary condition. A failed deadlock test says nothing about
whether the program can ever actually achieve the deadlocking configuration, so if we run
the program in a state that satisfies the precondition, we might get deadlock or we might
not. We might deadlock along every execution path or along only one possible execution
path or along no execution paths.

b. It may or may not be possible to prove deadlock freedom. It’s possible that if the proof out-
line’s internal conditions are modified, we’d be able to prove deadlock freedom. (See Exam-
ple 11.) Or it might not be possible to prove deadlock freedom because the program really
can deadlock. In that case we might be able to get deadlock freedom if we modify the initial
precondition. Or we might have to actually change the program.

4. Let S₀ ≡ [await y = 1 then x := 0 end || await x = 1 then y := 0 end ]

a. The evaluation graph for ⟨ S₀, ∅ ⟩ is

b. There are two execution paths; both deadlock.

c. Let D₁ = {(y = 0 ∨ y = 1) ∧ y ≠ 1, x = 0} Thread 1 is blocked or done 
Let D₂ = {(x = 0 ∨ x = 1) ∧ x ≠ 1, y = 0} Thread 2 is blocked or done 

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20233

⟨x := 1; y := 1; S₀, ∅⟩

⟨[E || await x = 1 then y := 0 end], 
{x = 0, y = 1}⟩ (Blocked)

⟨y := 1; S₀, {x = 1}⟩

⟨S₀, {x = 1, y = 1}⟩

⟨[await y = 1 then x := 0 end || E], 
{x = 1, y = 0}⟩ (Blocked)

CS 536: Science of Programming Wed 2023-04-26, 12:50 Practice 27

 We form the deadlock conditions by taking joining one predicate each from D₁ and D₂, with
the exception that x = 0 ∧ y = 0 is not a deadlock condition because it means execution has
completed. There are three potential deadlock conditions; none are contradictions.

• Thread 1 blocked:

• ((y = 0 ∨ y = 1) ∧ y ≠ 1) ∧ (y = 0) ⇔ y = 0, which is satisfiable

• Thread 2 blocked:

• (x = 0) ∧ ((x = 0 ∨ x = 1) ∧ x ≠ 1) ⇔ x = 0, which is satisfiable.

• Both threads blocked:

 ((y = 0 ∨ y = 1) ∧ y ≠ 1) ∧ ((x = 0 ∨ x = 1) ∧ x ≠ 1) ⇔ y = 0 ∧ x = 0, which is satisfiable.

(Note y = 0 ∧ x = 0 doesn't actually occur during execution.)

5. First, let's look at the sets of conditions to choose from:

• D₁ = { p₂ ∧ ¬B₁, p₃ } — Thread 1: Blocked at its await, done

• D₂ = { q₁ ∧ ¬C₁, q₂ ∧ ¬C₂, q₃ } — Thread 2: Blocked at 1st await, 2nd await, or done

• D₃ = { r₂ } — Thread 3: Done

 We form each deadlock condition as the conjunction of three predicates, one from each set.
There are five deadlock conditions, since p₃ ∧ q₃ ∧ r₂ is not a deadlock condition.

 (Add “and thread 3 complete” to all 5 lines below.)

• (p₂ ∧ ¬B₁) ∧ (q₁ ∧ ¬C₁) ∧ (r₂) — Thread 1 blocked, thread 2 blocked at 1st await

• (p₂ ∧ ¬B₁) ∧ (q₂ ∧ ¬C₂) ∧ (r₂) — Thread 1 blocked, thread 2 blocked at 2nd await

• (p₂ ∧ ¬B₁) ∧ (q₃) ∧ (r₂) — Thread 1 blocked, thread 2 complete

• (p₃) ∧ (q₁ ∧ ¬C₁) ∧ (r₂) — Thread 1 complete, thread 2 blocked at 1st await

• (p₃) ∧ (q₂ ∧ ¬C₂) ∧ (r₂) — Thread 1 complete, thread 2 blocked at 2nd await

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20234

