
CS 536: Science of Programming Mon 2023-04-24, 19:28 Practice 25

  Shared Variables and Interference-Freedom
  CS 536: Science of Programming, Spring 2023
Solved

A. Why
• Parallel programs can coordinate their work using shared variables, but it’s important for threads

to not interfere (to not invalidate conditions that the other thread relies on).

B. Objectives
At the end of these practice questions you should be able to

• Check for interference between the correctness proofs of the sequential threads of a shared
memory parallel program.

C. Problems
1. Say we have a parallel program that fails one of its interference checks.

a. What does that tell us about how the program will behave at runtime? (Assume we start it
in a state satisfying the precondition.)

b. Is it impossible to get a proof of correctness for the program?

2. List the interference freedom checks for the following two standard proof outlines. Remember,
you only need to see if atomic statements cause interference. 1

• {p₁} if B₁ then {p₂} < S₁ > else {p₃} skip fi {p₄}

• {q₁} <T₁>; { inv q₂} while C₁ do {q₃} <T₂> od {q₄}

For each of the following sets of threads, (a) List the triples to check for interference freedom,
(b) Say whether each of the interference triples is true or false, and (c) Say whether the threads in-
terfere or not.

3. {even(x)} x:= x+1 {odd(x)} and {x ≥ 0} x:= x+2 {x ≥ 0}

4. {T} x:= 0 {x = 0} and {x = 0} x:= x+2 {x = 2}

5. {T} x:= 0 {x = 0} and {x = 0} x:= x+2 {x = 0 ∨ x = 2}

6. {x ≥ 0} x:= x+1 {x ≥ 1}; x := x*2 {x ≥ 2} and {x ≥ 0} x:= x+2 {x ≥ 2}; x := x*3 {x ≥ 6}

 Interference-freedom checks will appear on the Final Exam. Question 1 is important too.1

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20231

CS 536: Science of Programming Mon 2023-04-24, 19:28 Practice 25

Solution to Practice 25 (Shared Variables and Interference-Freedom)
1. (Parallel program fails an interference check.)

a. Failing an interference check only tells us that if we execute the failed triple, interference is
not impossible. It doesn’t guarantee that interference will occur at runtime; it just says its
possible.

b. It may or may not be possible to prove correctness. It’s possible that if the proof outline’s
conditions are modified, we’d be able to prove interference freedom. It’s also possible that
proof outline can’t be modified to prove interference freedom without modifying the given
final postcondition. E.g., in Example 1, if we start with x = 10 and insist on showing that
x = 25 when the program finishes, then no proof of correctness is possible because we
might end with x = 28.

2. (Interference checks)

 For thread 1 vs thread 2:

• {p₂ ∧ q} S₁ {q} where q = q₁, q₃, q₄. (Since q₂ is not in front of an atomic statement, in-
cluding q = q₂ is not necessary, but including it is relatively harmless.)

• Technically, we also need {p₃ ∧ q} skip {q} for the same q, but they're trivially valid.

 For thread 2 vs thread 1:

• {q₁ ∧ p} T₁ {p} where p = p₁, p₂, p₃, p₄.

• {q₃ ∧ p} T₂ {p} for the same p.

3. All the triples to check are valid, so there's no interference:

• {even(x) ∧ x ≥ 0} x:= x+1 {x ≥ 0} // the precondition of x := x+2 
• {even(x) ∧ x ≥ 0} x:= x+1 {x ≥ 0} // the postcondition of x := x+2 
• {x ≥ 0 ∧ even(x)} x:= x+2 {even(x)} 
• {x ≥ 0 ∧ odd(x)} x:= x+2 {odd(x)}

4. The 2nd and 4th triples are invalid, so the threads interfere

• {T ∧ x = 0} x := 0 {x = 0} 
• {T ∧ x = 2} x := 0 {x = 2} // fails 
• {x = 0 ∧ T} x := x+2 {T} 
• {x = 0 ∧ x = 0} x := x+2 {x = 0} // fails

5. The last triple is invalid, so the threads interfere

• {T ∧ x = 0} x := 0 {x = 0} 
• {T ∧ (x = 0 ∨ x = 2) 0} x := 0 {x = 0 ∨ x = 2} 
• {x = 0 ∧ T} x := x+2 {T} 
• {x = 0 ∧ x = 0} x := x+2 {x = 0} // fails

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20232

CS 536: Science of Programming Mon 2023-04-24, 19:28 Practice 25

6. There are 9 triples to check, and all of them are valid, so there's no interference

• {x ≥ 0 ∧ x ≥ 0} x:= x+1 {x ≥ 0}

• {x ≥ 0 ∧ x ≥ 2} x:= x+1 {x ≥ 2}

• {x ≥ 0 ∧ x ≥ 6} x:= x+1 {x ≥ 6}

• {x ≥ 1 ∧ x ≥ 0} x := x*2 {x ≥ 0}

• {x ≥ 1 ∧ x ≥ 2} x := x*2 {x ≥ 2}

• {x ≥ 1 ∧ x ≥ 6} x := x*2 {x ≥ 6}

• {x ≥ 0 ∧ x ≥ 0} x:= x+2 {x ≥ 0}

• {x ≥ 0 ∧ x ≥ 1} x:= x+2 {x ≥ 1}

• {x ≥ 0 ∧ x ≥ 2} x:= x+2 {x ≥ 2}

• {x ≥ 2 ∧ x ≥ 0} x:= x*3 {x ≥ 0}

• {x ≥ 2 ∧ x ≥ 1} x:= x*3 {x ≥ 1}

• {x ≥ 2 ∧ x ≥ 2} x:= x*3 {x ≥ 2}

•

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20233

CS 536: Science of Programming Mon 2023-04-24, 19:28 Practice 25

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20234

