
CS 536: Science of Programming Wed 2023-04-19, 15:15 Practice 23

  Disjoint Programs
  CS 536: Science of Programming, Spring 2023
Solved

A. Why
• Parallel programs are harder to reason about because parts of a parallel program can interfere

with other parts.

• Reducing the amount of interference between threads lets us reason about parallel programs by
combining the proofs of the individual threads.

• Disjoint parallel programs ensure that no thread can interfere with the execution of another
thread.

• The sequentialization rule (though imperfect) gives us a way to prove the correctness of disjoint
parallel programs.

B. Objectives
At the end of this work you should be able to

• Draw evaluation graphs for parallel programs.

• Recognize disjoint parallel programs and correctness triples

• Use the rule for sequentialization of parallel programs

C. Questions
1. What are vars(S), change(S), and how are they used in the definition of "a pair of disjoint

programs"?

2. What is a disjoint parallel program? What kind of parallel computation does it model?

3. What are the diamond and confluence/Church-Rosser properties and what do they imply about
the evaluation graph for a disjoint parallel program?

4. What is the sequentialization proof rule for disjoint parallel programs?

5. Consider the two programs below:

• if x then a := y+1 else b := y*2 fi

• if ¬x then a := y² else b := y² fi

a. Using the syntactic test with change(…) and vars(…), are the two programs disjoint?

 

j k Change j Vars k j Disjoint With k

1 2

2 1

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20231

CS 536: Science of Programming Wed 2023-04-19, 15:15 Practice 23

b. Now, studying the programs from a semantic standpoint, can the two programs interfere if
they're run in parallel? (Here that would mean both programs change a or change b.)

c. What would happen if we change the tests from x and ¬x to (x ∨ z) and (¬x ∨ z)? Would we
ever get interference at runtime?

 if z is false, we don't get interference; if z is true, both threads change a, so we do get
interference.

6. If we run ⟨ [S₁  || S₂] ,  σ⟩ where thread 1 interferes with (i.e., is not disjoint with) thread 2, what is
the inevitability of semantic interference? Is it guaranteed to occur for any σ? Some σ? Some
execution path? Every execution path?

7. Consider the three threads below:

• a := y+1; b := y*2; y := d; d := d-1

• x := 5; y := d

• c := z; z := z+1

a. Using the syntactic test with change(…) and vars(…), are the programs disjoint? (I added a
column for the intersection of the change and var sets.)

b. Threads 1 and 2 both set y := d. Does this mean that they don't interfere?

 

j k Change j Vars k Intersection j Disjoint With k ?

1 2

1 3

2 1

2 3

3 1

3 2

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20232

CS 536: Science of Programming Wed 2023-04-19, 15:15 Practice 23

  Solution to Practice 23

Class 23: Disjoint Parallel Programs
1. vars(S) and change(S) = are the sets of variables that appear in S or in (left-hand sides of)

assignments in S respectively. Threads S and S′ are disjoint if neither can change the variables
used by the other: change(S) ∩ vars(S′) = change(S′) ∩ vars(S) = ∅.

2. A disjoint parallel program has pairwise disjoint threads. It models computations on n different
processors that can share readable memory but not writeable memory.

3. The diamond property says that if ⟨S, σ⟩ → both ⟨T₁ , σ₁⟩ and ⟨T₂ , σ₂⟩, then ⟨T₁ , σ₁⟩ and ⟨T₂, σ₂⟩
both → some ⟨T, τ⟩. Confluence/Church-Rosser replaces → by →*. Disjoint parallel programs
have the diamond property (so are confluent) and have a unique result state; the evaluation
graph has a unique sink node.

4. The Sequentialization rule says that if S₁ , …, S n are pairwise disjoint, then the truth of
{p} S₁ ; …; S n {q} implies the truth of {p} [S₁ || … || S n] {q}. (“Truth” here means satisfaction or
validity under partial or total correctness.)

5. (Possibly disjoint programs)

• if x then a := y+1 else b := y*2 fi

• if ¬x then a := y² else b := y² fi

a. No, the programs are not disjoint: Both have change sets with a, and b and variables used
sets with a, b, and y.

 
b. From a semantic standpoint, the programs don't interfere. If x is true, thread 1 sets a and

thread 2 sets b; if x is false, thread 1 sets b and thread 2 sets a.

c. if z is false, we don't get interference; if z is true, both threads change a, so we do get
interference.

6. If all we know about two programs is that they aren't parallel disjoint, we can't say very much
about whether or not interference will occur at runtime. It's not hard to create examples that

j k Change j Vars k Disjoint Pgm: j vs k

1 2 a b a b x y No

2 1 a b a b x y No

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20233

CS 536: Science of Programming Wed 2023-04-19, 15:15 Practice 23

never interfere (like the one in problem 5) or always interfere or only sometimes interfere
(depending on the start state).

7. (Disjointedness of three threads)

• a := y+1; b := y*2; y := d; d := d-1

• x := 5; y := d

• c := z; z := z+1

a. Using the syntactic test with change(…) and vars(…), are the two programs disjoint?

b. (Threads 1 and 2 both set y := d. Does this mean that they don't interfere?)
No, because if thread 1 finishes first, then thread 2 sees a smaller value for d.

j k Change j Vars k Intersection j Disjoint With k

1 2 a, b, d, y d, x, y d, y no

1 3 a, b, d, y c, z ∅ ∅ yes

2 1 x, y a, b, d, y y no

2 3 x, y c, z ∅ yes

3 1 c, z a, b, d, y ∅ yes

3 2 c, z d, x, y ∅ yes

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20234

