Basics of Parallel Programs

CS 536: Science of Programming, Spring 2023
Solved

A. Why

- Parallel programs are more flexible than sequential programs but their execution is more complicated.
- Parallel programs are harder to reason about because parts of a parallel program can interfere with other parts.

B. Objectives

At the end of this work you should be able to

- Draw evaluation graphs for parallel programs.

C. Problems

In general, for the problems below, if it helps you with the writing, feel free to define other symbols. ("Let S = some program," for example.)

1. What is the sequential nondeterministic program that corresponds to the program from Example 4, $[x:=v| | y:=v+2| | z:=v * 2]$.
2. Let configuration $C_{2} \equiv\left\langle S_{2}, \sigma\right\rangle$ where $S_{2} \equiv[x:=1| | x:=-1]$.
a. What is the sequential nondeterministic program that corresponds to S_{1} ?
b. Draw an evaluation graph for C_{2}.
3. Repeat Problem 2 on $C_{3} \equiv\left\langle S_{3}, \sigma[v \mapsto 0]\right\rangle$ where $S_{3} \equiv[x:=v+3 ; v:=v * 4 \| v:=v+2]$. Note that in the first thread, the two assignments must be done with x first, then v. Because adding 3 and adding 2 are commutative, two of the (normally-different) nodes will merge.
4. Repeat Problem 2 on $C_{4} \equiv\left\langle S_{5}, \sigma[v \mapsto \delta]\right\rangle$ where $S_{4} \equiv\left[v:=v^{*} y ; v:=v+\beta \| v:=v+\alpha\right]$. This problem is similar to Problem 3 but is symbolic, and the commutative plus operator has been moved, so the shape of the graph will be different from Problem 3.
5. Let $C_{5} \equiv\langle W, \sigma\rangle$ where $W \equiv$ while $x \leq n$ do $[x:=x+1 \| y:=y * 2]$ od and let σ of x, y, and z be 0,1 , and 2 respectively. Note the parallel construct is in the body of the loop.
a. Draw an evaluation graph for C_{5}. (Feel free to to say something like "Let $T \equiv \ldots$... for the loop body, to cut down on the writing.
b. Draw another evaluation graph for C_{5}, but this time, use the \rightarrow^{3} notation to get a straight line graph. Concentrate on the configurations of the form $\langle W, \ldots\rangle$.
6. In $\left[S_{1}\left\|S_{2}\right\| \ldots \| S_{n}\right]$ can any of the threads $S_{1}, S_{2}, \ldots, S_{n}$ contain parallel statements? Can parallel statements be embedded within loops or conditionals?
7. Say we know $\left\{p_{1}\right\} S_{1}\left\{q_{1}\right\}$ and $\left\{p_{2}\right\} S_{2}\left\{q_{2}\right\}$ under partial or total correctness.
a. In general, do we know how $\left\{p_{1} \wedge p_{2}\right\}\left[S_{1}| | S_{2}\right]\left\{q_{1} \wedge q_{2}\right\}$ will execute? Explain briefly.
b. What if $p_{1} \equiv p_{2}$? I.e., if we know $\{p\} S_{1}\left\{q_{1}\right\}$ and $\{p\} S_{2}\left\{q_{2}\right\}$, then do we know how $\{p\}\left[S_{1} \| S_{2}\right]\left\{q_{1} \wedge q_{2}\right\}$ will work?
c. What if in addition, $q_{1} \equiv q_{2}$? I.e., If we know $\{p\} S_{1}\{q\}$ and $\{p\} S_{2}\{q\}$, do we know how $\{p\}\left[S_{1}| | S_{2}\right]\{q\}$ will work? (This problem is harder)
d. For parts $(\mathrm{a})-(\mathrm{c})$, does it make a difference if we use \vee instead of \wedge ?
8. What is a race condition? If a parallel program can produce different possible results, is this necessarily a race condition?

Solution to Practice 22

Class 22: Basics of Parallel Programs

1. Sequential nondeterministic equivalent of $[x:=v\|y:=v+2\| z:=v * 2]$:
if $\mathrm{T} \rightarrow \mathrm{x}:=\mathrm{v}$; $\mathrm{y}:=\mathrm{v}+2 ; \mathrm{z}:=\mathrm{v} * 2$
$\square \mathrm{T} \rightarrow \mathrm{x}:=\mathrm{v} ; \mathrm{z}:=\mathrm{v}$ *2; $\mathrm{y}:=\mathrm{v}+2$
$\square \mathrm{T} \rightarrow \mathrm{y}:=\mathrm{v}+2 ; \mathrm{x}:=\mathrm{v} ; \mathrm{z}:=\mathrm{v} * 2$
$\square \mathrm{T} \rightarrow \mathrm{y}:=\mathrm{v}+2 ; \mathrm{z}:=\mathrm{v}$ *2; $\mathrm{x}:=\mathrm{v}$
$\square \mathrm{T} \rightarrow \mathrm{z}:=\mathrm{v} * 2 ; \mathrm{x}:=\mathrm{v} ; \mathrm{y}:=\mathrm{v}+2$
$\square \mathrm{T} \rightarrow \mathrm{z}:=\mathrm{v} * 2 ; \mathrm{y}:=\mathrm{v}+2 ; \mathrm{x}:=\mathrm{v}$
fi
This also works:
```
if \(\mathrm{T} \rightarrow \mathrm{x}:=\mathrm{v}\); if \(\mathrm{T} \rightarrow \mathrm{y}:=\mathrm{v}+2 ; \mathrm{z}:=\mathrm{v} * 2 \square \mathrm{~T} \rightarrow \mathrm{z}:=\mathrm{v}\) *2; \(\mathrm{y}:=\mathrm{v}+2 \boldsymbol{f i} \boldsymbol{f i}\)
\(\square \mathrm{T} \rightarrow \mathrm{y}:=\mathrm{v}+2\); if \(\mathrm{T} \rightarrow \mathrm{x}:=\mathrm{v}\); \(\mathrm{z}:=\mathrm{v}^{*} 2 \square \mathrm{~T} \rightarrow \mathrm{z}:=\mathrm{v}\) *2; \(\mathrm{x}:=\mathrm{v}\) fifi
\(\square \mathrm{T} \rightarrow \mathrm{z}:=\mathrm{v} * 2\); if \(\mathrm{T} \rightarrow \mathrm{x}:=\mathrm{v}\); \(\mathrm{y}:=\mathrm{v}+2 \square \mathrm{~T} \rightarrow \mathrm{y}:=\mathrm{v}+2\); \(\mathrm{x}:=\mathrm{v}\) fifi
fi
```

2. (Program $[x:=1 \| x:=-1] ; y:=y+x])$
a. Equivalent sequential nondeterministic program

$$
\text { if }\rceil \rightarrow x:=1 ; x:=-1 \square \top \rightarrow x:=-1 ; x:=1 \mathrm{fi}
$$

b. Evaluation graph for $\langle[x:=1 \| x:=-1] ; y:=y+x, \sigma\rangle$

3. (Program $[v:=v+3 ; v:=v * 4 \| v:=v+2])$
a. Equivalent sequential nondeterministic program

$$
\begin{aligned}
& \text { if } \top \rightarrow v:=v+3 ; \text { if } T \rightarrow v:=v * 4 ; v:=v+2 \square \mathrm{~T} \rightarrow \mathrm{v}:=\mathrm{v}+2 ; \mathrm{v}:=\mathrm{v} * 4 \mathrm{fi} \\
& \square \mathrm{~T} \rightarrow \mathrm{v}:=\mathrm{v}+2 ; \mathrm{v}:=\mathrm{v}+3 ; \mathrm{v}:=\mathrm{v} \text { * } \\
& \text { fi }
\end{aligned}
$$

b. Evaluation graph for $\left\langle\left[v:=v+3 ; v:=v^{*} 4 \| v:=v+2\right], \sigma[v \mapsto 0]\right\rangle$. Note that two of the execution paths happen to merge, so there are only two final states instead of three.

4. (Program $\left.\left[v:=v^{*} y ; v:=v+\beta \| v:=v+\alpha\right]\right)$.
a. Equivalent sequential nondeterministic program
if $T \rightarrow v:=v^{*} y$; if $T \rightarrow v:=v+\beta$; $v:=v+\alpha \square T \rightarrow v:=v+\alpha ; v:=v+\beta$ fi
$\square \mathrm{T} \rightarrow \mathrm{v}:=\mathrm{v}+\mathrm{a} ; \mathrm{v}:=\mathrm{v}^{*} \mathrm{y} ; \mathrm{v}:=\mathrm{v}+\beta$
fi
b. Evaluation graph for $\left\langle\left[\mathrm{v}:=\mathrm{v}^{*} \mathrm{y} ; \mathrm{v}:=\mathrm{v}+\beta \| \mathrm{v}:=\mathrm{v}+2\right], \sigma[\mathrm{v} \mapsto \delta]\right\rangle$

$\langle[E \| v:=v+\alpha], \sigma[v \mapsto \delta y+\beta]\rangle$

$\langle[E \| E], \sigma[v \mapsto \delta y+\beta+\alpha]\rangle$
5. (while $x \leq n$ do $[x:=x+1 \| y:=y * 2]$ od, if $\sigma(x)=0, \sigma(y)=1$, and $\sigma(n)=2$.) Below, let $T \equiv[x:=x+1 \|$ $y:=y * 2]$ (just to cut down on the writing).
a. A full evaluation graph. Just to be explicit, I wrote $\sigma[x \mapsto 0][y \mapsto 1]$ below but just σ is fine.

b. Evaluation graph abbreviated using \rightarrow^{3} notation. This one is nice and linear:

$$
\begin{aligned}
& \langle\mathrm{W}, \sigma[\mathrm{x} \mapsto 0][\mathrm{y} \mapsto 1]\rangle \\
& \rightarrow^{3}\langle\mathrm{~W}, \sigma[\mathrm{x} \mapsto 1][\mathrm{y} \mapsto 2]\rangle \\
& \rightarrow^{3}\langle\mathrm{~W}, \sigma[\mathrm{x} \mapsto 2][\mathrm{y} \mapsto 4]\rangle \\
& \rightarrow^{3}\langle\mathrm{~W}, \sigma[\mathrm{x} \mapsto 3][\mathrm{y} \mapsto 8]\rangle \\
& \rightarrow\langle E, \sigma[\mathrm{x} \mapsto 3][\mathrm{y} \mapsto 8]\rangle
\end{aligned}
$$

6. No, in $\left[S_{1}| | S_{2}| | \ldots| | S_{n}\right]$ the threads cannot contain parallel statements, but yes, parallel statements can be embedded within loops and conditionals.
7. In general, even if $\left\{p_{1}\right\} S_{1}\left\{q_{1}\right\}$ and $\left\{p_{2}\right\} S_{2}\left\{q_{2}\right\}$ are both valid sequentially, we can't compose them in parallel, even if $p_{1} \equiv p_{2}$ and $q_{1} \equiv q_{2}$. An example is how $\{x>0\} x:=x-1\{x \geq 0\}$ is valid but $\{x>0\}[x:=x-1| | x:=x-1]\{x \geq 0\}$ is not. The first $x:=x-1$ to execute ends with $x \geq 0$, which is too weak for the second $x:=x-1$ to work correctly.
8. In a race condition, the correctness of a parallel program depends on the relative speeds of the processors involved (i.e., their interleaving at execution time). Simply producing different results doesn't necessarily indicate a race condition: If all results meet the specification, then no race condition has occurred.
