Finding Invariants

Part 2: Deleting Conjuncts; Adding Disjuncts
 CS 536: Science of Programming, Spring 2023

(solved)

A. Why

- It is easier to write good programs and check them for defects than to write bad programs and then debug them.
- The hardest part of programming is finding good loop invariants.
- There are heuristics for finding them but no algorithms that work in all cases.

B. Objectives

At the end of this activity assignment you should

- Know how to generate possible invariants using the techniques "Drop a conjunct" and "Add a disjunct".

C. Problems

1. Consider the postcondition $x^{2} \leq n<(x+1)^{2}$, which is short for $x^{2} \leq n \wedge n<(x+1)^{2}$. List the possible invariant/loop test combinations you can get for this postcondition using the technique "Drop a conjunct."
2. Why is the technique "Drop a conjunct" a special case of "Add a disjunct"?
3. One way to view a search is as follows:
```
{inv found v not found}
while not found
do
    Remove something or somethings from the things to look at
od
```

For this problem, try to recast (a) linear search and (b) binary search of an array using this framework: What parts of that program correspond to "we have found it ", "we haven't found it", and "Remove something..."?
4. In Example 7 (integer square root), in the false branch of the if-else statement, can we replace the assignment $y:=y-y \div 2$ with $y:=y \div 2$? If not, why not?
5. Complete the annotation of Binary Search version 1 (Example 2).
6. Complete the annotation of Binary Search version 2 (Example 3).

Solution to Activity 20 (Finding Invariants; Examples)

1. $\left\{\right.$ inv $\left.n<(x+1)^{2}\right\}$ while $x^{2}>n$...
$\left\{\operatorname{inv} x^{2} \leq n\right\}$ while $n \geq(x+1)^{2} \ldots$
2. Dropping a conjunct is like adding the difference between the dropped conjunct and the rest of the predicate. E.g., dropping p_{1} from $p_{1} \wedge p_{2} \wedge p_{3}$ is like adding $\left(\neg p_{1} \wedge p_{2} \wedge p_{3}\right)$ to $\left(p_{1} \wedge p_{2} \wedge p_{3}\right)$.
3. (Rephrasing searches)
a. We can rephrase linear search through an array with

We have found it: $k<n \wedge b[k]=x$
We haven't found it: $k<n \wedge b[k] \neq x$
Remove what we're looking at from the things to look at: $k:=k+1$
b. We can rephrase binary search through an array with

We have found it: $R=L+1$
We haven't found it: $R>L+1$
Remove the left or right half from the things to look at: Either $L:=m$ or $R:=m$
4. We can't replace $y:=y-y \div 2$ by $y:=y \div 2$ because for y odd, $y \div 2=y-y \div 2-1$, which is not strong enough to re-establish $n<(x+y)^{2}$.
5. (Binary search, version 1) [Not included: The intermediate conditions within loop initialization]

$$
\begin{aligned}
& \left\{q_{0} \equiv \operatorname{Sorted}(b, n) \wedge n \geq 1 \wedge b[0] \leq x<b[n]\right\} \\
& L:=0 \text {; } R:=n \text {; found }:=F \text {; } \\
& \{\text { Sorted }(b, n) \wedge n \geq 1 \wedge b[0] \leq x<b[n] \wedge L=0 \wedge R=n \wedge \neg \text { found\} } \\
& \{\text { inv } p \equiv 0 \leq L<R \leq n \wedge b[L] \leq x<b[R] \wedge \text { (found } \rightarrow x=b[L])\}\{\text { bd } R-L\} \\
& \text { while } \neg \text { found } \wedge R \neq L+1 \text { do } \\
& \left\{p \wedge \neg \text { found } \wedge R \neq L+1 \wedge R-L=t_{0}\right\} \\
& m:=(L+R) / 2 \text {; } \\
& \left\{p_{1} \equiv p \wedge \neg \text { found } \wedge R \neq L+1 \wedge R-L=t_{0} \wedge m=(L+R) / 2\right\} \\
& \text { if } b[m]=x \text { then } \\
& \left\{p_{1} \wedge b[m]=x\right. \\
& \equiv 0 \leq L<R \leq n \wedge b[L] \leq x<b[R] \wedge(\text { found } \rightarrow x=b[L]) \\
& \left.\wedge \neg f o u n d \wedge R \neq L+1 \wedge R-L=t_{0} \wedge m=(L+R) / 2 \wedge b[m]=x\right\} \\
& \text { \{p[T/found][m/L] } \wedge R-m<t_{0} \\
& \left.\equiv 0 \leq m<R \leq n \wedge b[m] \leq x<b[R] \wedge(T \rightarrow x=b[m]) \wedge R-m<t_{0}\right\} \\
& \text { found :=T; } L:=m \\
& \left\{p \wedge R-L<t_{0}\right\} \\
& \text { else if } b[m]<x \text { then }
\end{aligned}
$$

```
    \(\left\{p_{1} \wedge b[m]<x / /\right.\) technically, should include \(b[m] \neq x\)
        \(\equiv 0 \leq L<R \leq n \wedge b[L] \leq x<b[R] \wedge\) (found \(\rightarrow x<b[L]\) )
            \(\wedge \neg\) found \(\left.\wedge R \neq L+1 \wedge R-L=t_{0} \wedge m=(L+R) / 2 \wedge b[m]<x\right\}\)
        \(\left\{p[m / L] \wedge R-m<t_{0}\right.\)
            \(\left.\equiv 0 \leq m<R \leq n \wedge b[m] \leq x<b[R] \wedge(f o u n d \rightarrow x=b[m]) \wedge R-m<t_{0}\right\}\)
        \(L:=m\)
    \(\left\{p \wedge R-L<t_{0}\right\}\)
    else // \(b[m]>x\)
    \(\left\{p_{1} \wedge b[m]>x / /\right.\) technically, should include \(b[m] \neq x \wedge b[m] * x\)
        \(\equiv 0 \leq L<R \leq n \wedge b[L] \leq x<b[R] \wedge\) (found \(\rightarrow x<b[L])\)
            \(\wedge \neg\) found \(\left.\wedge R \neq L+1 \wedge R-L=t_{0} \wedge m=(L+R) / 2 \wedge b[m]>x\right\}\)
    \(\left\{p[m / R] \wedge m-L<t_{0}\right.\)
        \(\left.\equiv 0 \leq L<m \leq n \wedge b[L] \leq x<b[m] \wedge(f o u n d \rightarrow x=b[L]) \wedge m-L<t_{0}\right\}\)
    \(R:=m\)
    \(\left\{p \wedge R-L<t_{0}\right\}\)
    fi fi
    \(\left\{p \wedge R-L<t_{0}\right\}\)
od
\(\{p \wedge(\) found \(\vee R=L+1)\}\)
\(\{0 \leq L<n \wedge(\) found \(\leftrightarrow x=b[L])\}\)
```

6. (Binary search, version 2) [Not included: The intermediate conditions within loop initialization]
```
{n>0^\operatorname{Sorted}(b,n)^b[0]\leqx<b[n-1]}
L := 0; R := n-1; found := F;
{n>0^\operatorname{Sorted}(b,n)^b[0]\leqx<b[n-1]^L=0^R=n-1^\negfound}
{inv q\equiv-1 \leqL-1 \leqR<n^(found ->b[L] = x) ^(x\inb[0..n-1]\leftrightarrowx\inb[L..R])}
{bd R-L+1+|\negfound |}
while \negfound }\wedgeL\leqR\mathrm{ do
    {q\wedge\negfound }\wedgeL\leqR\wedgeR-L+1+|\negfound | = to
    m := (L+R)/2;
    {q}\equivq\wedge\negfound \wedgeL\leqR\wedgeR-L+1+|\negfound | = to ^ m=(L+R)/2
    if b[m] = x then
        {q}~\mp@code{|[m] = x
            \equiv-1\leqL-1\leqR<n\wedge(found }->b[L]=x)\wedge(x\inb[0..n-1]\leftrightarrowx\inb[L..R]
```



```
        {q[T/found][m/L]^R-(m+1)+1+|\negT|< <to
        \equiv-1\leqm-1\leqR<n\wedge(T->b[m]=x)
            \wedge(x\inb[0..n-1] ↔x\inb[m..R])\wedgeR-m+1+|\negT|< <to}
        found := T; L:= m
        {q\wedgeR-L+1+|\negfound | < to}
```

```
    else if \(b[m]<x\) then
    \(\left\{q_{1} \wedge b[m]<x / /\right.\) technically, should include \(b[m] \neq x\)
    \(\equiv-1 \leq L-1 \leq R<n \wedge(\) found \(\rightarrow b[L]=x) \wedge(x \in b[0 . . n-1] \leftrightarrow x \in b[L . . R])\)
    \(\wedge \neg f o u n d \wedge L \leq R \wedge R-L+1+\mid \neg\) found \(\left.\mid=t_{0} \wedge m=(L+R) / 2 \wedge b[m]<x\right\}\)
    \(\left\{q[m+1 / L] \wedge R-(m+1)+1+\mid \neg\right.\) found \(\mid<t_{0}\)
    \(\equiv-1 \leq(m+1)-1 \leq R<n \wedge(\) found \(\rightarrow b[m+1]=x)\)
        \(\left.\wedge(x \in b[0 . . n-1] \leftrightarrow x \in b[m+1 . . R]) \wedge R-(m+1)+1+|\neg f o u n d|<t_{0}\right\}\)
    \(L:=m+1\)
    \(\left\{q \wedge R-L+1+\mid \neg\right.\) found \(\left.\mid<t_{0}\right\}\)
else // \(b[m]>x / /\) technically, should include \(b[m] \neq x \wedge b[m] * x\)
    \(\left\{q_{1} \wedge b[m]>x\right.\)
        \(\equiv-1 \leq L-1 \leq R<n \wedge(\) found \(\rightarrow b[L]=x) \wedge(x \in b[0 . . n-1] \leftrightarrow x \in b[L . . R])\)
    \(\wedge \neg\) found \(\wedge L \leq R \wedge R-L+1+\mid \neg\) found \(\left.\mid=t_{0} \wedge m=(L+R) / 2 \wedge b[m]>x\right\}\)
    \(\left\{q[m-1 / R] \wedge(m-1)-L+1+|\neg f o u n d|<t_{0}\right\}\)
    \(R:=m-1\)
    \(\left\{q \wedge R-L+1+\mid \neg\right.\) found \(\left.\mid<t_{0}\right\}\)
    fi fi \(\left\{q \wedge R-L+1+|\neg f o u n d|<t_{0}\right\}\)
od
\(\{q \wedge(\) found \(\vee L>R)\)
    \(\equiv-1 \leq L-1 \leq R<n \wedge(\) found \(\rightarrow b[L]=x) \wedge(x\) in \(b[0 . . n-1] \leftrightarrow x\) in \(b[L . . R])\)
        \(\wedge(\) found \(\vee L>R)\}\)
\(\{-1 \leq L-1 \leq R<n \wedge(\) found \(\rightarrow b[L]=x) \wedge(\neg f o u n d \rightarrow x \notin b[0 . . n-1])\}\)
```

