
 CS 536: Science of Programming	 Wed 2023-04-05, 18:40	 Practice 20

  Finding Invariants

  Part 2: Deleting Conjuncts; Adding Disjuncts

  CS 536: Science of Programming, Spring 2023

(solved)

A. Why

• It is easier to write good programs and check them for defects than to write bad programs and

then debug them.

• The hardest part of programming is finding good loop invariants.

• There are heuristics for finding them but no algorithms that work in all cases.

B. Objectives

At the end of this activity assignment you should

• Know how to generate possible invariants using the techniques “Drop a conjunct” and “Add a
disjunct”.

C. Problems

1.	 Consider the postcondition x² ≤ n < (x+1)², which is short for x² ≤ n ∧ n < (x+1)² . List the

possible invariant/loop test combinations you can get for this postcondition using the
technique “Drop a conjunct.”

2.	 Why is the technique “Drop a conjunct” a special case of “Add a disjunct”?

3.	 One way to view a search is as follows:

{inv found ∨ not found} 
while not found 
do 
	 Remove something or somethings from the things to look at 
od

	 For this problem, try to recast (a) linear search and (b) binary search of an array using this
framework: What parts of that program correspond to “we have found it”, “we haven’t found it”,
and “Remove something…”?

4.	 In Example 7 (integer square root), in the false branch of the if-else statement, can we replace
the assignment y := y - y÷2 with y := y÷2 ? If not, why not?

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20231

 CS 536: Science of Programming	 Wed 2023-04-05, 18:40	 Practice 20

5.	 Complete the annotation of Binary Search version 1 (Example 2).

6.	 Complete the annotation of Binary Search version 2 (Example 3). 

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20232

CS 536: Science of Programming	 	 Practice 20

Solution to Activity 20 (Finding Invariants; Examples)

1.	 {inv n < (x+1)²} while x² > n …

	 {inv x² ≤ n} while n ≥ (x+1)² …

2.	 Dropping a conjunct is like adding the difference between the dropped conjunct and the rest of
the predicate. E.g., dropping p₁ from p₁ ∧ p₂ ∧ p₃ is like adding (¬p₁ ∧ p₂ ∧ p₃) to (p₁ ∧ p₂ ∧ p₃) .

3.	 (Rephrasing searches)

a.	 We can rephrase linear search through an array with 
We have found it:	 k < n ∧ b[k]  = x 
We haven’t found it: k < n ∧ b[k]  ≠ x 
Remove what we’re looking at from the things to look at: k := k+1

b.	 We can rephrase binary search through an array with 
We have found it:	 R = L+1 
We haven’t found it: R > L+1 
Remove the left or right half from the things to look at: Either L := m or R := m  

4.	 We can't replace y := y - y÷2 by y := y÷2 because for y odd, y÷2 = y - y÷2 - 1, which is not strong
enough to re-establish n < (x+y)².

5.	 (Binary search, version 1) [Not included: The intermediate conditions within loop initialization]

{q₀ ≡ Sorted(b, n) ∧ n ≥ 1 ∧ b[0] ≤ x < b[n]} 
L := 0 ; R := n ; found := F ; 
{Sorted(b, n) ∧ n ≥ 1 ∧ b[0] ≤ x < b[n] ∧ L = 0 ∧ R = n ∧ ¬ found} 
{inv p ≡ 0 ≤ L < R ≤ n ∧ b[L] ≤ x < b[R] ∧ (found → x = b[L])} {bd R–L} 
while ¬ found ∧ R ≠ L+1 do 
	 {p ∧ ¬ found ∧ R ≠ L+1 ∧ R–L = t₀} 
	 m := (L+R)/2 ;  
	 {p₁ ≡ p ∧ ¬ found ∧ R ≠ L+1 ∧ R–L = t₀ ∧ m = (L+R)/2} 
	 if b[m] = x then 
	 	 {p₁ ∧ b[m] = x 
	 	 	 ≡ 0 ≤ L < R ≤ n ∧ b[L] ≤ x < b[R] ∧ (found → x = b[L]) 
	 	 	 	 ∧ ¬ found ∧ R ≠ L+1 ∧ R–L = t₀ ∧ m = (L+R)/2 ∧ b[m] = x} 
	 	 {p[T⧸found][m⧸L] ∧ R–m < t₀ 
	 	 	 ≡ 0 ≤ m < R ≤ n ∧ b[m] ≤ x < b[R] ∧ (T → x = b[m]) ∧ R–m < t₀} 
	 	 found := T ; L := m  
	 	 {p ∧ R–L < t₀} 
	 else if b[m] < x then  

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20203

CS 536: Science of Programming	 	 Practice 20

	 	 {p₁ ∧ b[m] < x	 // technically, should include b[m] ≠ x 
	 	 	 ≡ 0 ≤ L < R ≤ n ∧ b[L] ≤ x < b[R] ∧ (found → x < b[L]) 
	 	 	 	 ∧ ¬ found ∧ R ≠ L+1 ∧ R–L = t₀ ∧ m = (L+R)/2 ∧ b[m] < x} 
	 	 {p[m⧸L] ∧ R–m < t₀ 
	 	 	 ≡ 0 ≤ m < R ≤ n ∧ b[m] ≤ x < b[R] ∧ (found → x = b[m]) ∧ R–m < t₀} 
	 	 L := m 
	 	 {p ∧ R–L < t₀} 
	 else // b[m] > x  
	 	 {p₁ ∧ b[m] > x	 // technically, should include b[m] ≠ x ∧ b[m] ≮ x 
	 	 	 ≡ 0 ≤ L < R ≤ n ∧ b[L] ≤ x < b[R] ∧ (found → x < b[L]) 
	 	 	 	 ∧ ¬ found ∧ R ≠ L+1 ∧ R–L = t₀ ∧ m = (L+R)/2 ∧ b[m] > x} 
	 	 {p[m⧸R] ∧ m–L < t₀ 
	 	 	 ≡ 0 ≤ L < m ≤ n ∧ b[L] ≤ x < b[m] ∧ (found → x = b[L]) ∧ m–L < t₀} 
	 	 R := m 
	 	 {p ∧ R–L < t₀} 
	 fi fi  
	 {p ∧ R–L < t₀} 
od 
{p ∧ (found ∨ R = L+1)} 
{0 ≤ L < n ∧ (found ↔ x = b[L])}

6.	 (Binary search, version 2) [Not included: The intermediate conditions within loop initialization]

{n > 0 ∧ Sorted(b, n) ∧ b[0] ≤ x < b[n–1]} 
L := 0; R := n–1; found := F;  
{n > 0 ∧ Sorted(b, n) ∧ b[0] ≤ x < b[n–1] ∧ L = 0 ∧ R = n–1 ∧ ¬ found} 
{inv q ≡ –1 ≤ L–1 ≤ R < n ∧ (found → b[L] = x) ∧ (x ∈ b[0..n–1] ↔ x ∈ b[L..R])} 
{bd R–L+1+|¬ found|} 
while ¬ found ∧ L ≤ R do  
	 {q ∧ ¬ found ∧ L ≤ R ∧ R–L+1+|¬ found| = t₀} 
	 m := (L+R)/2; 
	 {q₁ ≡ q ∧ ¬ found ∧ L ≤ R ∧ R–L+1+|¬ found| = t₀ ∧ m = (L+R)/2} 
	 if b[m] = x then 
	 	 {q₁ ∧ b[m] = x 
	 	 	 ≡ –1 ≤ L–1 ≤ R < n ∧ (found → b[L] = x) ∧ (x ∈ b[0..n–1] ↔ x ∈ b[L..R]) 
	 	 ∧ ¬ found ∧ L ≤ R ∧ R–L+1+|¬ found| = t₀ ∧ m = (L+R)/2 ∧ b[m] = x} 
	 	 {q[T⧸found] [m⧸L] ∧ R–(m+1)+1+|¬T| < t₀ 
	 	 ≡ –1 ≤ m–1 ≤ R < n ∧ (T → b[m] = x) 
	 	 	 ∧ (x ∈ b[0..n–1] ↔ x ∈ b[m..R]) ∧ R–m+1+|¬T| < t₀} 
	 	 found := T ; L := m 
	 	 {q ∧ R–L+1+|¬ found| < t₀} 

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20204

CS 536: Science of Programming	 	 Practice 20

	 else if b[m] < x then 
	 	 {q₁ ∧ b[m] < x	 // technically, should include b[m] ≠ x 
	 	 ≡ –1 ≤ L–1 ≤ R < n ∧ (found → b[L] = x) ∧ (x ∈ b[0..n–1] ↔ x ∈ b[L..R]) 
	 	 ∧ ¬ found ∧ L ≤ R ∧ R–L+1+|¬ found| = t₀ ∧ m = (L+R)/2 ∧ b[m] < x} 
	 	 {q[m+1⧸L] ∧ R–(m+1)+1+|¬ found| < t₀ 
	 	 ≡ –1 ≤ (m+1)–1 ≤ R < n ∧ (found → b[m+1] = x) 
	 	 	 ∧ (x ∈ b[0..n–1] ↔ x ∈ b[m+1..R]) ∧ R–(m+1) +1+|¬ found| < t₀} 
 
	 	 L := m+1 
	 	 {q ∧ R–L+1+|¬ found| < t₀} 
	 else // b[m] > x	// technically, should include b[m] ≠ x ∧ b[m] ≮ x 
	 	 {q₁ ∧ b[m] > x 
	 	 ≡ –1 ≤ L–1 ≤ R < n ∧ (found → b[L] = x) ∧ (x ∈ b[0..n–1] ↔ x ∈ b[L..R]) 
	 	 ∧ ¬ found ∧ L ≤ R ∧ R–L+1+|¬ found| = t₀ ∧ m = (L+R)/2 ∧ b[m] > x} 
	 	 {q[m–1⧸R] ∧ (m–1)–L+1+|¬ found| < t₀} 
	 	 R := m–1 
	 	 {q ∧ R–L+1+|¬ found| < t₀} 
	 fi fi {q ∧ R–L+1+|¬ found| < t₀} 
od 
{q ∧ (found ∨ L > R)  
	 ≡ –1 ≤ L–1 ≤ R < n ∧ (found → b[L] = x) ∧ (x in b[0..n–1] ↔ x in b[L..R]) 
	 	 ∧ (found ∨ L > R) } 
{–1 ≤ L–1 ≤ R < n ∧ (found → b[L] = x) ∧ (¬ found → x ∉ b[0..n–1])}

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20205

