CS 536: Science of Programming Sat 2023-04-29, 14:00 Practice 19

Finding Invariants

Part 1: Adding Parameters by Replacing Constants by Variables

CS 536: Science of Programming, Spring 2023
Solved; 2023-04-29 p.2

A. Why

« Itis easier to write good programs and check them for defects than to write bad programs and
then debug them.

« The hardest part of programming is finding good loop invariants.

« There are heuristics for finding them but no algorithms that work in all cases.

B. Objectives

At the end of this activity assignment you should

« Be able to how to generate possible invariants using “replace a constant by a variable” or more
generally “add a parameter”.

C. Problems

1. What are the constants in the postcondition x = max(b[0], b[1], ..., b[n-1]1)? Using the
technique “replace a constant by a variable,” list the possible invariants for this postcondition.
Also, what would the loop tests be? (Assume n-1 is a constant.) Hint: Think of rewriting by
some function maxVal(b,0,n-1) or a predicate isMaxVal(b,0,n-1,x).

isMaxVal(b,m,n,x)=(vk.m<k<n—=x>b[k])a(Zk.-m<k<n A x=b[k])

2. Repeat, on the postcondition x = n!, where n! is short for a function call product(1, n).
3. Repeat, on the postcondition Vi.0<i<n — b[i] =3.

4. Repeat, on the postcondition Vi.Vj.0<i<m am<j<n — b[i] <b[j], which says that every
value in b[0...m-1]is < every value in bfm..n-11.

CS Dept., Illinois Institute of Technology -1- © J. Sasaki 2023

CS 536: Science of Programming Sat 2023-04-29, 14:00 Practice 19

Solution to Practice 19 (Finding Invariants; Examples)

1. Certainly 0 is a constant; if we replace it by a variable i, we get

{inv x =max(b[i], b[N-1]) A0 <i<n-1} whilei=0do ...

As a constant, n-1 seems better than just n or 1 by themselves:
{inv x = max(b[0], ..., b[j1) A0 <j<n-1} while j = n-1 do ...

If you want to treat just n as a constant and replace it by a variable j, we get
{inv x = max(b[0], ..., b[j-1]) A 1 <j<n} whilej=n do ..

Similarly, if you want replace just the 1 in n-1 by with j, we get
{inv x = max(b[0], ..., b[n-]) A1 <j<n} whilej=1 do ..

2. We can replace n by a variable and get
invx=ilal<i<n}whilei=ndo ..
We can replace 1 and get
{invx =j*(j+1)*.*nAa1<j<n}whilej=1 do ..

3. ForVi.0<i<n — Db[i] =3 as the postcondition, we can replace 0 or n or 3.
Replace 0 by k:
{invO0<k<n-1AaVi.k<i<n—Dbl[i]=3} while k=0 do ...
Replace n by k
{inv0<k<naVi.0<i<k—= Db[i]=3}while k=n do ...
Replace 3 by k (this doesn't look useful)
{invVi.0<i<n—= Db[i]=k} whilek =3 do ..

4, ForVi.Vj.0<i<mam<j<n — bl[i] <b[j], we have constants 0, n, the two occurrences of m.
Replace O by k:
{invO<k<maVi.Vj.k<i<mam<j<n—=Db[i]<b[j]}
while k = 0
Replace left m by k:
{inv 0=k =m [2023-04-29] AVi.Vj.0<i<kAam<j<n— bl[i]<b[j]}
while k = m
Replace right m by k:
{inv 0=k =m [2023-04-29] AVi.Vj.0<i<mak<j<n—b[i]<b[j]}
while k = m
Replace n by k:
{invm<k<naVi.Vj.0<i<mam<j<k— b[i]<b[j]}
while k = n
You could argue that the ranges for k could be 0 <k <n, 0<k<n,0<k<n,and0<k < n for
the four cases above; it depends on knowing more about the context of the problem.

CS Dept., Illinois Institute of Technology -2- © J. Sasaki 2023

