
CS 536: Science of Programming	 Thu 2023-04-06, 17:00	 Practice 18

  Total Correctness: Errors and Convergence

  CS 536: Science of Programming, Spring 2023

(solved) 2023-04-06: p.2, 3

A. Why

• Runtime errors make our programs not work, so we want to avoid them.

• Diverging programs aren’t useful, so it’s useful to know how to show that loops terminate.

B. Objectives

At the end of this activity you should be able to

• Generate possible loop bounds for a given loop.

• State the extra obligations required to prove that a partially correct program is totally correct.

C. Questions

Total Correctness

1.	 Complete the outline below to get a full outline for total correctness. Simplify p if it's helpful.

	 {p} if x ≥ 0 then x := sqrt(x) else x:= y/b[k] fi {0 ≤ x < y}

	 Hint: Use wlp to get an outline for partial correctness, then add conditions to ensure safety,
then simplify.

Convergence

1.	 Consider the triple {inv p} {bd e} while k < n do … k := k+1 od {p ∧ k ≥ n}. Assume p → n ≥ k. To

show that this loop terminates, we need a bound function t such that

(1)	 p → n – k ≥ 0 (which holds by assumption) and

(2)	 {p ∧ k < n ∧ t = t₀} k := k+1 {t < t₀}. (Assume loop code before k := k+1 doesn't affect k.)

a.	 Can we use t ≡ n  –  k as a bound expression?

b.	 Can we use t ≡ n  –  k+1 as a bound expression?

c.	 Can we use t ≡ 2n  –  k as a bound expression?

2.	 Use the same program as in Question 3 but assume p → n ≥ k – 3, not n ≥ k.

a.	 Why does n  –  k now fail as a bound expression?

b.	 Give an example of a bound expression that does work.

3.	 Consider the loop below. (Assume n is a constant and the omitted code does not change k.)

a.	 Why does using just k as the bound function fail?

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20231

CS 536: Science of Programming	 Thu 2023-04-06, 17:00	 Practice 18

b.	 Find an expression that involves k and prove that it's a loop bound. (You'll need to
augment p.)

{n ≥ –1 ∧ c ≥ 0} 
k := n + c; 
{inv p ∧ _____ } {bd _____ } 
while k ≥ –1 
do … k := k–1 … od

4.	 What is the minimum expression (i.e., closest to zero) that can be used as a loop bound for

	 	 {inv n ≤ x+y} {bd …} while x+y > n do … y := y – 1 od ?

(Assume x and n are constant.)

5.	 Consider the loop {n > 0} k := n; {inv ???} while k > 1 do … k := k / 2 od {…}

a.	 Argue that ceiling(log₂ k) is a loop bound. (Augment the invariant as necessary.)

b.	 Argue that k is a loop bound.

c.	 Argue that ceiling(log₂ n) is not a loop bound. (Trick question.)

6.	 Let's look at the general problem of convergence of {inv p} while B do S od {q}. For each prop-
erty below, briefly discuss whether it is (1) required, (2) allowable but not required, or (3) incom-
patible with the requirements. [2023-04-06] Note we're not worrying about partial correctness
here, just termination.

a.	 p → t ≥ 0

b.	 t < 0 → ¬p

c.	 {p ∧ B ∧ t = t₀} S {t = t₀ – 1}

d.	 p ∧ t ≥ 0 → B

e.	 ¬B → t = 0

f.	 {p ∧ B ∧ t = t₀} S {t < t₀}

7.	 Prove the claim that if s and t are loop bounds for W then s+t is also a bound function.

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20232

CS 536: Science of Programming	 Thu 2023-04-06, 17:00	 Practice 18

Solution to Practice 18 (Loop Termination)

Total Correctness

1.	 First, let's use wlp to expand the outline for partial correctness. The result is

{p} if x ≥ 0 then {0 ≤ sqrt(x) < y} x := sqrt(x) {0 ≤ x < y} 
else {0 ≤ y/b[k] < y} x := y/b[k] {0 ≤ x < y}  
fi {0 ≤ x < y} 
where p≡(x ≥ 0→sqrt(x) < y) ∧ (x < 0→0 ≤ y/b[k] < y).

	 Next let's ensure that all the conditions are safe. This entails adding x ≥ 0 for D(sqrt(x)),
[2023-04-06] 0 ≤ k <|b| ∧ b[k] ≠ 0 for D(0 ≤ y/b[k] < y). The result is

	 {p} if x ≥ 0 then 
	 {x ≥ 0 ∧ sqrt(x) < y} x := sqrt(x) {x < y} 
else 
	 {0≤ k≤|b|∧ b[k]≠ 0 ∧ 0 ≤ y/b[k] < y} x := y/b[k] {0 ≤ x < y} 
fi {x < y}

where p is now (x ≥ 0 → x ≥ 0 ∧ sqrt(x) < y)∧ (x < 0 → 0≤ k≤|b|∧ b[k]≠ 0 ∧ 0 ≤ y/b[k] < y).

We can simplify this to (0≤ k≤|b|∧b[k] > 1).

Convergence

1.	 (Termination of {inv p} {bd n-k} while k < n do … k := k+1 od)

a.	 Yes: {p ∧ k < n ∧ n – k = t₀} … {n – (k+1) < t₀} k := k+1 {n – k < t₀} requires n – (k+1) < n – k, which is
true.

b.	 Yes: Decrementing k certainly decreases n – k+1, and n – k+1 > n – k ≥ 0, which is the other
requirement.

c.	 Yes, but only if n ≥ 0: We know n-k ≥ 0, so 2n – k ≥ n, which is ≥ 0 if n ≥ 0. (If n < 0 then 2n –
 k might be negative.)

2.	 If n ≥ k – 3, then we only know n – k ≥ -3. (Note n – k+3 works as a bound, however.)

3.	 (Decreasing loop variable)

a.	 We can't just k as the bound expression because we don't know k ≥ 0. In fact, the loop ter-
minates with k = –2.

b.	 Since k is initialized to n+c, and c ≥ 0, we can add –2 ≤ k ≤ n+c to the invariant and use k+2
as the bound expression. To show it's a bound, we need (1) p → k+2 ≥ 0, which we can get
if p → n ≥ -1 ∧ c ≥ 0 ∧ k ≥ -2 and (2) that the loop body decreases k+2, which it does by
decrementing k.

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20233

CS 536: Science of Programming	 Thu 2023-04-06, 17:00	 Practice 18

4.	 The smallest loop bound is x + y – n. We know it's ≥ 0 because n ≤ x + y, and we know it decreas-
es by 1 each iteration, so at loop termination, x+y – n = 0, which implies that nothing less
than x+y – n can work as a bound.

5.	 (Θ(log n) loop)

a.	 Add 0 ≤ k ≤ n ∧ n > 0 to the invariant. Since k > 1, we know ceiling(log₂ k) > 0, and
halving k decreases ceiling(log₂ k) by one and ceiling(log₂ k) – 1 ≥ 0. Thus ceiling(log₂ k)
works as a loop bound.

b.	 Since k > 1, halving k decreases it but leaves it ≥ 0.

c.	 ceiling(log₂ n) doesn't decrease because n is a constant. (Constants make terrible bounds :-)

6.	 (Loop convergence) Required are (a) p → t ≥ 0, (b) t < 0 → ¬p [i.e., the contrapositive of (a)],
and (f) {p ∧ B ∧ t = t₀} S {t < t₀}. Property (c) {p ∧ B ∧ t = t₀} S {t = t₀-1} is allowable but not re-
quired: It implies (f) but is stronger than we need. Property (e) ¬B → t = 0 is allowable but not
required. Property (d) p ∧ t ≥ 0 → B is incompatible with the requirements (it would cause an
infinite loop).

7.	 Sum of two loop bounds. Say s = s₀ and t = t₀ at the beginning of the loop body and that s₀–∆s
and t₀–∆t are the values of s and t at the end of the loop body. If s and t are loop bounds, then
s > ∆s > 0 and t > ∆t > 0.	 For s+t to be a loop bound, we need 0 ≤ (s₀–∆s) + (t₀–∆t) < s₀+t₀.

	 Expanding, (s₀–∆s) + (t₀–∆t) = s₀+t₀ - ∆s+∆t < s₀+t₀ because ∆s and ∆t are positive, and (s₀–
∆s) + (t₀–∆t) ≥ 0 because ∆s < s₀ and ∆t < t₀. So s+t is a bound function.

	 An interesting question you might think about: is s*t a bound function?

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20234

