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  Total Correctness: Errors and Convergence 
  CS 536: Science of Programming, Spring 2023 
(solved) 2023-04-06: p.2, 3 

A. Why 
• Runtime errors make our programs not work, so we want to avoid them. 

• Diverging programs aren’t useful, so it’s useful to know how to show that loops terminate. 

B. Objectives 
At the end of this activity you should be able to  

• Generate possible loop bounds for a given loop. 

• State the extra obligations required to prove that a partially correct program is totally correct. 

C. Questions 

Total Correctness 
1. Complete the outline below to get a full outline for total correctness.  Simplify p if it's helpful. 

 {p} if x ≥ 0 then x := sqrt(x) else x:= y/b[k] fi {0 ≤ x < y} 

 Hint: Use wlp to get an outline for partial correctness, then add conditions to ensure safety, 
then simplify. 

Convergence 
1. Consider the triple {inv p} {bd e} while k < n do … k := k+1 od {p ∧ k ≥ n}.  Assume p  → n ≥ k.  To 

show that this loop terminates, we need a bound function t such that 

(1) p  →  n  –  k ≥ 0 (which holds by assumption) and 

(2) {p ∧ k < n ∧ t = t₀} k := k+1 {t < t₀}.  (Assume loop code before k := k+1 doesn't affect k.) 

a. Can we use t ≡ n  –  k as a bound expression? 

b. Can we use t ≡ n  –  k+1 as a bound expression? 

c. Can we use t ≡ 2n  –  k as a bound expression? 

2. Use the same program as in Question 3 but assume p  → n ≥ k  –  3, not n ≥ k. 

a. Why does n  –  k now fail as a bound expression? 

b. Give an example of a bound expression that does work. 

3. Consider the loop below. (Assume n is a constant and the omitted code does not change k.) 

a. Why does using just k as the bound function fail? 
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b. Find an expression that involves k and prove that it's a loop bound.  (You'll need to 
augment p.) 

{n ≥ –1 ∧ c ≥ 0} 
k := n + c; 
{inv p ∧ _____ } {bd _____ } 
while k ≥ –1 
do … k := k–1 … od 

4. What is the minimum expression (i.e., closest to zero) that can be used as a loop bound for 

  {inv n ≤ x+y} {bd …} while x+y > n do … y := y  –  1 od ? 

(Assume x and n are constant.) 

5. Consider the loop {n > 0} k := n; {inv ???} while k > 1 do … k := k  /  2 od {…} 

a. Argue that ceiling(log₂ k) is a loop bound.  (Augment the invariant as necessary.) 

b. Argue that k is a loop bound. 

c. Argue that ceiling(log₂ n) is not a loop bound.  (Trick question.) 

6. Let's look at the general problem of convergence of {inv p} while B do S od {q}.  For each prop-
erty below, briefly discuss whether it is (1) required, (2) allowable but not required, or (3) incom-
patible with the requirements.  [2023-04-06] Note we're not worrying about partial correctness 
here, just termination. 

a. p  →  t ≥ 0 

b. t < 0  →  ¬p 

c. {p ∧ B ∧ t = t₀} S {t = t₀  –  1} 

d. p ∧ t ≥ 0  →  B  

e. ¬B  →  t = 0 

f. {p ∧ B ∧ t = t₀} S {t < t₀} 

7. Prove the claim that if s and t are loop bounds for W then s+t is also a bound function. 
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Solution to Practice 18 (Loop Termination) 

Total Correctness 
1. First, let's use wlp to expand the outline for partial correctness.  The result is 

{p} if x ≥ 0 then {0 ≤ sqrt(x) < y} x := sqrt(x) {0 ≤ x < y} 
else {0 ≤ y/b[k] < y} x := y/b[k] {0 ≤ x < y}  
fi {0 ≤ x < y} 
where p≡(x ≥ 0→sqrt(x) < y) ∧ (x < 0→0 ≤ y/b[k] < y). 

 Next let's ensure that all the conditions are safe.  This entails adding x ≥ 0 for D(sqrt(x)), 
[2023-04-06] 0 ≤ k <|b| ∧ b[k] ≠ 0 for D(0 ≤ y/b[k] < y).  The result is  

 {p} if x ≥ 0 then 
 {x ≥ 0 ∧ sqrt(x) < y} x := sqrt(x) {x < y} 
else 
 {0≤ k≤|b|∧ b[k]≠ 0 ∧ 0 ≤ y/b[k] < y} x := y/b[k] {0 ≤ x < y} 
fi {x < y} 

where p is now (x ≥ 0 → x ≥ 0 ∧ sqrt(x) < y )∧ (x < 0 → 0≤ k≤|b|∧ b[k]≠ 0 ∧ 0 ≤ y/b[k] < y). 

We can simplify this to (0≤ k≤|b|∧b[k] > 1). 

Convergence 
1. (Termination of {inv p} {bd n-k} while k < n do … k := k+1 od) 

a. Yes: {p ∧ k < n ∧ n  –  k = t₀} … {n  –  (k+1) < t₀} k := k+1 {n  –  k < t₀} requires n  –  (k+1) < n  –  k, which is 
true. 

b. Yes: Decrementing k certainly decreases n  –  k+1, and n  –  k+1 > n  –  k ≥ 0, which is the other 
requirement. 

c. Yes, but only if n ≥ 0: We know n-k ≥ 0, so 2n  –  k ≥ n, which is ≥ 0 if n ≥ 0.  (If n < 0 then 2n  –
 k might be negative.) 

2. If n ≥ k  –  3, then we only know n  –  k ≥ -3.  (Note n  –  k+3 works as a bound, however.) 

3. (Decreasing loop variable) 

a. We can't just k as the bound expression because we don't know k ≥ 0.  In fact, the loop ter-
minates with k = –2. 

b. Since k is initialized to n+c, and c ≥ 0, we can add –2 ≤ k ≤ n+c to the invariant and use k+2 
as the bound expression.  To show it's a bound, we need (1) p → k+2 ≥ 0, which we can get 
if p → n ≥ -1 ∧ c ≥ 0 ∧ k ≥ -2 and (2) that the loop body decreases k+2, which it does by 
decrementing k. 
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4. The smallest loop bound is x  +  y  –  n.  We know it's ≥ 0 because n ≤ x  +  y, and we know it decreas-
es by 1 each iteration, so at loop termination, x+y  –  n = 0, which implies that nothing less 
than x+y  –  n can work as a bound. 

5. (Θ(log n) loop) 

a. Add 0 ≤ k ≤ n ∧ n > 0 to the invariant.  Since k > 1, we know ceiling(log₂ k) > 0, and 
halving k decreases ceiling(log₂ k) by one and ceiling(log₂ k)  –  1 ≥ 0.  Thus ceiling(log₂ k) 
works as a loop bound. 

b. Since k > 1, halving k decreases it but leaves it ≥ 0. 

c. ceiling(log₂ n) doesn't decrease because n is a constant.  (Constants make terrible bounds :-) 

6. (Loop convergence)  Required are (a) p → t ≥ 0, (b) t < 0 → ¬p [i.e., the contrapositive of (a)], 
and (f) {p ∧ B ∧ t = t₀} S {t < t₀}.  Property (c) {p ∧ B ∧ t = t₀} S {t = t₀-1} is allowable but not re-
quired: It implies (f) but is stronger than we need.  Property (e) ¬B  →  t = 0 is allowable but not 
required.  Property (d) p ∧ t ≥ 0  →  B is incompatible with the requirements (it would cause an 
infinite loop). 

7. Sum of two loop bounds.  Say s = s₀ and t = t₀ at the beginning of the loop body and that s₀–∆s 
and t₀–∆t are the values of s and t at the end of the loop body.  If s and t are loop bounds, then 
s > ∆s > 0 and t > ∆t > 0. For s+t to be a loop bound, we need 0 ≤ (s₀–∆s)  + (t₀–∆t) < s₀+t₀. 

 Expanding, (s₀–∆s)  + (t₀–∆t) = s₀+t₀ - ∆s+∆t < s₀+t₀ because ∆s and ∆t are positive, and (s₀–
∆s)  + (t₀–∆t) ≥ 0 because ∆s < s₀ and ∆t < t₀.  So s+t is a bound function. 

 An interesting question you might think about: is s*t a bound function? 
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