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  Total Correctness: Errors and Convergence

  CS 536: Science of Programming, Spring 2023

(solved) 2023-04-06: p.2, 3


A. Why

• Runtime errors make our programs not work, so we want to avoid them.


• Diverging programs aren’t useful, so it’s useful to know how to show that loops terminate.


B. Objectives

At the end of this activity you should be able to 


• Generate possible loop bounds for a given loop.


• State the extra obligations required to prove that a partially correct program is totally correct.


C. Questions


Total Correctness

1.	 Complete the outline below to get a full outline for total correctness.  Simplify p if it's helpful.


	 {p} if x ≥ 0 then x := sqrt(x) else x:= y/b[k] fi {0 ≤ x < y}


	 Hint: Use wlp to get an outline for partial correctness, then add conditions to ensure safety, 
then simplify.


Convergence

1.	 Consider the triple {inv p} {bd e} while k < n do … k := k+1 od {p ∧ k ≥ n}.  Assume p  → n ≥ k.  To 

show that this loop terminates, we need a bound function t such that


(1)	 p  →  n  –  k ≥ 0 (which holds by assumption) and


(2)	 {p ∧ k < n ∧ t = t₀} k := k+1 {t < t₀}.  (Assume loop code before k := k+1 doesn't affect k.)


a.	 Can we use t ≡ n  –  k as a bound expression?


b.	 Can we use t ≡ n  –  k+1 as a bound expression?


c.	 Can we use t ≡ 2n  –  k as a bound expression?


2.	 Use the same program as in Question 3 but assume p  → n ≥ k  –  3, not n ≥ k.


a.	 Why does n  –  k now fail as a bound expression?


b.	 Give an example of a bound expression that does work.


3.	 Consider the loop below. (Assume n is a constant and the omitted code does not change k.)


a.	 Why does using just k as the bound function fail?
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b.	 Find an expression that involves k and prove that it's a loop bound.  (You'll need to 
augment p.)


{n ≥ –1 ∧ c ≥ 0} 
k := n + c; 
{inv p ∧ _____ } {bd _____ } 
while k ≥ –1 
do … k := k–1 … od


4.	 What is the minimum expression (i.e., closest to zero) that can be used as a loop bound for


	 	 {inv n ≤ x+y} {bd …} while x+y > n do … y := y  –  1 od ?


(Assume x and n are constant.)


5.	 Consider the loop {n > 0} k := n; {inv ???} while k > 1 do … k := k  /  2 od {…}


a.	 Argue that ceiling(log₂ k) is a loop bound.  (Augment the invariant as necessary.)


b.	 Argue that k is a loop bound.


c.	 Argue that ceiling(log₂ n) is not a loop bound.  (Trick question.)


6.	 Let's look at the general problem of convergence of {inv p} while B do S od {q}.  For each prop-
erty below, briefly discuss whether it is (1) required, (2) allowable but not required, or (3) incom-
patible with the requirements.  [2023-04-06] Note we're not worrying about partial correctness 
here, just termination.


a.	 p  →  t ≥ 0


b.	 t < 0  →  ¬p


c.	 {p ∧ B ∧ t = t₀} S {t = t₀  –  1}


d.	 p ∧ t ≥ 0  →  B 


e.	 ¬B  →  t = 0


f.	 {p ∧ B ∧ t = t₀} S {t < t₀}


7.	 Prove the claim that if s and t are loop bounds for W then s+t is also a bound function.
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Solution to Practice 18 (Loop Termination)


Total Correctness

1.	 First, let's use wlp to expand the outline for partial correctness.  The result is


{p} if x ≥ 0 then {0 ≤ sqrt(x) < y} x := sqrt(x) {0 ≤ x < y} 
else {0 ≤ y/b[k] < y} x := y/b[k] {0 ≤ x < y}  
fi {0 ≤ x < y} 
where p≡(x ≥ 0→sqrt(x) < y) ∧ (x < 0→0 ≤ y/b[k] < y).


	 Next let's ensure that all the conditions are safe.  This entails adding x ≥ 0 for D(sqrt(x)), 
[2023-04-06] 0 ≤ k <|b| ∧ b[k] ≠ 0 for D(0 ≤ y/b[k] < y).  The result is 


	 {p} if x ≥ 0 then 
	 {x ≥ 0 ∧ sqrt(x) < y} x := sqrt(x) {x < y} 
else 
	 {0≤ k≤|b|∧ b[k]≠ 0 ∧ 0 ≤ y/b[k] < y} x := y/b[k] {0 ≤ x < y} 
fi {x < y}


where p is now (x ≥ 0 → x ≥ 0 ∧ sqrt(x) < y )∧ (x < 0 → 0≤ k≤|b|∧ b[k]≠ 0 ∧ 0 ≤ y/b[k] < y).


We can simplify this to (0≤ k≤|b|∧b[k] > 1).


Convergence

1.	 (Termination of {inv p} {bd n-k} while k < n do … k := k+1 od)


a.	 Yes: {p ∧ k < n ∧ n  –  k = t₀} … {n  –  (k+1) < t₀} k := k+1 {n  –  k < t₀} requires n  –  (k+1) < n  –  k, which is 
true.


b.	 Yes: Decrementing k certainly decreases n  –  k+1, and n  –  k+1 > n  –  k ≥ 0, which is the other 
requirement.


c.	 Yes, but only if n ≥ 0: We know n-k ≥ 0, so 2n  –  k ≥ n, which is ≥ 0 if n ≥ 0.  (If n < 0 then 2n  –
 k might be negative.)


2.	 If n ≥ k  –  3, then we only know n  –  k ≥ -3.  (Note n  –  k+3 works as a bound, however.)


3.	 (Decreasing loop variable)


a.	 We can't just k as the bound expression because we don't know k ≥ 0.  In fact, the loop ter-
minates with k = –2.


b.	 Since k is initialized to n+c, and c ≥ 0, we can add –2 ≤ k ≤ n+c to the invariant and use k+2 
as the bound expression.  To show it's a bound, we need (1) p → k+2 ≥ 0, which we can get 
if p → n ≥ -1 ∧ c ≥ 0 ∧ k ≥ -2 and (2) that the loop body decreases k+2, which it does by 
decrementing k.
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4.	 The smallest loop bound is x  +  y  –  n.  We know it's ≥ 0 because n ≤ x  +  y, and we know it decreas-
es by 1 each iteration, so at loop termination, x+y  –  n = 0, which implies that nothing less 
than x+y  –  n can work as a bound.


5.	 (Θ(log n) loop)


a.	 Add 0 ≤ k ≤ n ∧ n > 0 to the invariant.  Since k > 1, we know ceiling(log₂ k) > 0, and 
halving k decreases ceiling(log₂ k) by one and ceiling(log₂ k)  –  1 ≥ 0.  Thus ceiling(log₂ k) 
works as a loop bound.


b.	 Since k > 1, halving k decreases it but leaves it ≥ 0.


c.	 ceiling(log₂ n) doesn't decrease because n is a constant.  (Constants make terrible bounds :-)


6.	 (Loop convergence)  Required are (a) p → t ≥ 0, (b) t < 0 → ¬p [i.e., the contrapositive of (a)], 
and (f) {p ∧ B ∧ t = t₀} S {t < t₀}.  Property (c) {p ∧ B ∧ t = t₀} S {t = t₀-1} is allowable but not re-
quired: It implies (f) but is stronger than we need.  Property (e) ¬B  →  t = 0 is allowable but not 
required.  Property (d) p ∧ t ≥ 0  →  B is incompatible with the requirements (it would cause an 
infinite loop).


7.	 Sum of two loop bounds.  Say s = s₀ and t = t₀ at the beginning of the loop body and that s₀–∆s 
and t₀–∆t are the values of s and t at the end of the loop body.  If s and t are loop bounds, then 
s > ∆s > 0 and t > ∆t > 0.	 For s+t to be a loop bound, we need 0 ≤ (s₀–∆s)  + (t₀–∆t) < s₀+t₀.


	 Expanding, (s₀–∆s)  + (t₀–∆t) = s₀+t₀ - ∆s+∆t < s₀+t₀ because ∆s and ∆t are positive, and (s₀–
∆s)  + (t₀–∆t) ≥ 0 because ∆s < s₀ and ∆t < t₀.  So s+t is a bound function.


	 An interesting question you might think about: is s*t a bound function?
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