Total Correctness: Errors and Convergence

CS 536: Science of Programming, Spring 2023

(solved) 2023-04-06: p.2, 3

A. Why

- Runtime errors make our programs not work, so we want to avoid them.
- Diverging programs aren't useful, so it's useful to know how to show that loops terminate.

B. Objectives

At the end of this activity you should be able to

- Generate possible loop bounds for a given loop.
- State the extra obligations required to prove that a partially correct program is totally correct.

C. Questions

Total Correctness

1. Complete the outline below to get a full outline for total correctness. Simplify p if it's helpful. {p} if $x \ge 0$ then x := sqrt(x) else x := y/b[k] fi { $0 \le x \le y$ } Hint: Use wlp to get an outline for partial correctness, then add conditions to ensure safety,

then simplify.

Convergence

- 1. Consider the triple {*inv* p} {*bd* e} *while* k < n *do* ... k := k+1 *od* { $p \land k \ge n$ }. Assume $p \rightarrow n \ge k$. To show that this loop terminates, we need a bound function *t* such that
 - (1) $p \rightarrow n k \ge 0$ (which holds by assumption) and
 - (2) $\{p \land k < n \land t = t_0\}$ k := k+1 $\{t < t_0\}$. (Assume loop code before k := k+1 doesn't affect k.)
 - a. Can we use t = n k as a bound expression?
 - b. Can we use t = n k + 1 as a bound expression?
 - c. Can we use t = 2n k as a bound expression?
- 2. Use the same program as in Question 3 but assume $p \rightarrow n \ge k-3$, not $n \ge k$.
 - a. Why does n k now fail as a bound expression?
 - b. Give an example of a bound expression that does work.
- 3. Consider the loop below. (Assume *n* is a constant and the omitted code does not change *k*.)
 - a. Why does using just *k* as the bound function fail?

b. Find an expression that involves k and prove that it's a loop bound. (You'll need to augment ρ .)

 ${n \ge -1 \land c \ge 0}$ k := n + c; ${inv p \land ____ }{bd ____ }{bd ____ }$ while $k \ge -1$ do ... k := k-1 ... od

- 4. What is the minimum expression (i.e., closest to zero) that can be used as a loop bound for {*inv* n ≤ x+y} {*bd* ...} *while* x+y > n *do* ... y := y-1 *od* ? (Assume x and n are constant.)
- 5. Consider the loop {*n* > 0} *k* := *n*; {*inv* ???} *while k* > 1 *do* ... *k* := *k*/2 *od* {...}
 - a. Argue that $ceiling(log_2 k)$ is a loop bound. (Augment the invariant as necessary.)
 - b. Argue that *k* is a loop bound.
 - c. Argue that $ceiling(log_2 n)$ is **not** a loop bound. (Trick question.)
- 6. Let's look at the general problem of convergence of {*inv p*} *while B do S od* {*q*}. For each property below, briefly discuss whether it is (1) required, (2) allowable but not required, or (3) incompatible with the requirements. [2023-04-06] Note we're not worrying about partial correctness here, just termination.
 - a. $p \rightarrow t \ge 0$
 - **b.** $t < 0 \rightarrow \neg p$
 - **c.** $\{p \land B \land t = t_0\} S \{t = t_0 1\}$
 - **d.** $p \land t \ge 0 \rightarrow B$
 - $e. \quad \neg B \rightarrow t = 0$
 - **f.** $\{p \land B \land t = t_0\} S \{t < t_0\}$
- 7. Prove the claim that if *s* and *t* are loop bounds for W then s+t is also a bound function.

Solution to Practice 18 (Loop Termination)

Total Correctness

1. First, let's use wlp to expand the outline for partial correctness. The result is

{p} if $x \ge 0$ then { $0 \le sqrt(x) < y$ } x := sqrt(x) { $0 \le x < y$ } $else \{0 \le y/b[k] < y\} x := y/b[k] \{0 \le x < y\}$ $fi \{0 \le x < y\}$ where $p = (x \ge 0 \rightarrow sqrt(x) < y) \land (x < 0 \rightarrow 0 \le y/b[k] < y)$. Next let's ensure that all the conditions are safe. This entails adding $x \ge 0$ for D(sqrt(x)),

 $[2023-04-06] 0 \le k \le |b| \land b[k] \ne 0$ for $D(0 \le y/b[k] \le y)$. The result is

```
{p} if x \ge 0 then

{x \ge 0 \land sqrt(x) < y} x := sqrt(x) \{x < y\}

else

{0 \le k \le |b| \land b[k] \ne 0 \land 0 \le y/b[k] < y} x := y/b[k] \{0 \le x < y\}

fi {x < y}

where p is now (x \ge 0 \rightarrow x \ge 0 \land sqrt(x) < y) \land (x < 0 \rightarrow 0 \le k \le |b| \land b[k] \ne 0 \land 0 \le y/b[k] < y).

We can simplify this to (0 \le k \le |b| \land b[k] \ge 1).
```

Convergence

- 1. (Termination of {*inv p*} {*bd n-k*} *while k* < *n do* ... *k* := *k*+1 *od*)
 - a. Yes: $\{p \land k < n \land n-k = t_0\} \dots \{n-(k+1) < t_0\} k := k+1 \{n-k < t_0\} \text{ requires } n-(k+1) < n-k, \text{ which is true.}$
 - b. Yes: Decrementing k certainly decreases n-k+1, and $n-k+1 > n-k \ge 0$, which is the other requirement.
 - c. Yes, but only if $n \ge 0$: We know $n k \ge 0$, so $2n k \ge n$, which is ≥ 0 if $n \ge 0$. (If n < 0 then 2n k might be negative.)
- 2. If $n \ge k-3$, then we only know $n-k \ge -3$. (Note n-k+3 works as a bound, however.)
- 3. (Decreasing loop variable)
 - a. We can't just *k* as the bound expression because we don't know $k \ge 0$. In fact, the loop terminates with k = -2.
 - b. Since k is initialized to n+c, and $c \ge 0$, we can add $-2 \le k \le n+c$ to the invariant and use k+2 as the bound expression. To show it's a bound, we need (1) $p \rightarrow k+2 \ge 0$, which we can get if $p \rightarrow n \ge -1 \land c \ge 0 \land k \ge -2$ and (2) that the loop body decreases k+2, which it does by decrementing k.

- 4. The smallest loop bound is x+y-n. We know it's ≥ 0 because $n \le x+y$, and we know it decreases by 1 each iteration, so at loop termination, x+y-n = 0, which implies that nothing less than x+y-n can work as a bound.
- 5. (Θ(*log n*) loop)
 - a. Add $0 \le k \le n \land n > 0$ to the invariant. Since k > 1, we know $ceiling(log_2 k) > 0$, and halving k decreases $ceiling(log_2 k)$ by one and $ceiling(log_2 k) 1 \ge 0$. Thus $ceiling(log_2 k)$ works as a loop bound.
 - b. Since k > 1, halving k decreases it but leaves it ≥ 0 .
 - c. *ceiling(log₂ n)* doesn't decrease because *n* is a constant. (Constants make terrible bounds :-)
- 6. (Loop convergence) Required are (a) $p \rightarrow t \ge 0$, (b) $t < 0 \rightarrow \neg p$ [i.e., the contrapositive of (a)], and (f) $\{p \land B \land t = t_0\} S \{t < t_0\}$. Property (c) $\{p \land B \land t = t_0\} S \{t = t_0 - 1\}$ is allowable but not required: It implies (f) but is stronger than we need. Property (e) $\neg B \rightarrow t = 0$ is allowable but not required. Property (d) $p \land t \ge 0 \rightarrow B$ is incompatible with the requirements (it would cause an infinite loop).
- 7. Sum of two loop bounds. Say $s = s_0$ and $t = t_0$ at the beginning of the loop body and that $s_0 \Delta s$ and $t_0 - \Delta t$ are the values of s and t at the end of the loop body. If s and t are loop bounds, then $s > \Delta s > 0$ and $t > \Delta t > 0$. For s+t to be a loop bound, we need $0 \le (s_0 - \Delta s) + (t_0 - \Delta t) < s_0 + t_0$. Expanding, $(s_0 - \Delta s) + (t_0 - \Delta t) = s_0 + t_0 - \Delta s + \Delta t < s_0 + t_0$ because Δs and Δt are positive, and $(s_0 - \Delta s) + (t_0 - \Delta t) \ge 0$ because $\Delta s < s_0$ and $\Delta t < t_0$. So s+t is a bound function.

An interesting question you might think about: is s * t a bound function?