
CS 536: Science of Programming Fri 2023-04-14, 18:00 Practice 17

  Proof Outlines for Partial Correctness
  Part 2: Partial and Minimal Proof Outlines

  CS 536: Science of Programming, Spring 2023
(solved); 2023-04-14: p. 5

A. Why
• Proof outlines give us a way to show the same information as a proof, but in an easier-to-use

form.

B. Objectives
At the end of this activity assignment you should be able to

• Write and check proof outlines of partial correctness.

C. Problems
For Problems 1 - 3, you are given a minimal proof outline and should expand it to a full proof out-
line. Don't give the formal proof of partial correctness. Do list any predicate logic obligations, and
expand your substitutions somewhere (inline or after outline).

1. Expand the following proof outline:

 {n > 1} k := 1; s := 0 {0 ≤ k < n ∧ s = sum(0, k–1)}

a. Use wp on both assignments.

b. Use sp on both assignments..

c. Use sp on the left assignment and wp on the right assignment.

2. Expand the following proof outline: 
 {T} if x ≥ 0 then y := x else y := –x fi {y = abs(x)}

a. Use sp on both branches and on the if-fi as a whole.

b. Use wp on the if-fi as a whole and on both branches.

c. Use (P ∧ B) and (P ∧ ¬B) (from the conditional rule) as overall preconditions for the two
branches, and use wp on both branches.

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20231

CS 536: Science of Programming Fri 2023-04-14, 18:00 Practice 17

3. Expand the proof outline below. 
a. Use wp everywhere you can. 
b. Use sp everywhere you can.

{n ≥ 0}  
x := 0; 
y := 1; 
{inv P(a, b, x, y)} 
while x < n do 
 x := f(x, y); 
 y := f(y, x) 
od 
{a + x < b – y}

4. Expand the minimal proof outline below. The program has a bug; in the full proof outline, in
what line(s) and in what form does the bug appear? Also, give two ways to fix the bug.

{inv p ≡ 0 ≤ k ≤ n+1 ∧ s = sum(0, k–1)} 
while k ≤ n do 
 k := k+1; 
 s := s+k 
od 
{s = sum(0, n)}

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20232

CS 536: Science of Programming Fri 2023-04-14, 18:00 Practice 17

Solution to Practice 17 (Partial and Minimal Proof Outlines for Partial Correctness)
1. (Expansions of minimal outline for two assignments.) Note that the three predicate logic oblig-

ations below differ, but not in significant ways.

1a. An expansion using wp (on both assignments):

 {n > 1} 
{0 ≤ 1 < n ∧ 0 = sum(0, 1–1)} k := 1; 
{0 ≤ k < n ∧ 0 = sum(0, k–1)} s := 0 {0 ≤ k < n ∧ s = sum(0, k–1)}

The predicate logic obligation is n > 1 → (0 ≤ 1 < n ∧ 0 = sum(0, 1–1))

1b. An expansion using sp (on both assignments): 1

 {n > 1} 
k := 1; {n > 1 ∧ k = 1} 
s = 0 {n > 1 ∧ k = 1 ∧ s = 0} 
{0 ≤ k < n ∧ s = sum(0, k–1)}

The predicate logic obligation is (n > 1 ∧ k = 1 ∧ s = 0) → (0 ≤ k < n ∧ s = sum(0, k–1))

1c. An expansion using sp (on the left) and wp (on the right):

 {n > 1} 
k := 1; {n > 1 ∧ k = 1} 
{0 ≤ k < n ∧ 0 = sum(0, k–1)} s := 0 
{0 ≤ k < n ∧ s = sum(0, k–1)}

The predicate logic obligation is (n > 1 ∧ k = 1) → (0 ≤ k < n ∧ 0 = sum(0, k–1)).

2. (Expansions of minimal outline for an if-else.) Note "T ∧" has been dropped in various places.

2a. An expansion using sp on both branches and on the whole if-else:

 {T} 
if x ≥ 0 then 
 {x ≥ 0} y := x {x ≥ 0 ∧ y = x} 
else 
 {x < 0} y := –x {x < 0 ∧ y = –x} 
fi 
{(x ≥ 0 ∧ y = x) ∨ (x < 0 ∧ y = –x)} 
{y = abs(x)}

The predicate logic obligation is ((x ≥ 0 ∧ y = x) ∨ (x < 0 ∧ y = –x)) → y = abs(x).

 Where to place line breaks in an outline a style issue. You don't have to use the one here, but please be con1 -
sistent. E.g., the true and false branches of an if-else should have equal indentation.

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20233

CS 536: Science of Programming Fri 2023-04-14, 18:00 Practice 17

2b. An expansion using wp on the whole if-else and both branches:

 {T} {(x ≥ 0 → x = abs(x)) ∧ (x < 0 → –x = abs(x))} 
if x ≥ 0 then 
 {x = abs(x)} y := x {y = abs(x)} 
else 
 {–x = abs(x)} y := –x {y = abs(x)} 
fi 
{y = abs(x)}

The logic obligation is (T → (x ≥ 0 → x = abs(x)) ∧ (x < 0 → –x = abs(x)))

2c. An expansion using (P ∧ B) and (P ∧ ¬B) as preconditions for the branches and also wp on the
branches:

{T} 
if x ≥ 0 then 
 {x ≥ 0} {x = abs(x)} y := x {y = abs(x)} 
else 
 {x < 0} {–x = abs(x)} y := –x {y = abs(x)} 
fi {y = abs(x)}

 This time there are two logic obligations, namely, the conjuncts from part (b): (x ≥ 0 →
x = abs(x)) and (x < 0 → –x = abs(x)).

3. Expansion of a loop. For reference, the minimal outline was

{n ≥ 0} x := 0; y := 1; 
{inv P(a, b, x, y)} while x < n do x := f(x, y); y := f(y, x) od {a + x < b – y}

3a. An expansion using wp as much as possible:

{n ≥ 0} 
{P(a, b, 0, 1) x := 0;  
{P(a, b, x, 1)} y := 1; 
{inv P(a, b, x, y)}  
while x < n do  
 {x < n ∧ P(a, b, x, f(y, x))} 
 {P(a, b, f(x, y), f(y, f(x, y)))} 
 x := f(x, y);  
 {P(a, b, x, f(y, x))} y := f(y, x) 
 {P(a, b, x, y)} 
od 
{x ≥ n ∧ P(a, b, x, y)} 
{a + x < b – y}

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20234

CS 536: Science of Programming Fri 2023-04-14, 18:00 Practice 17

There are three predicate logic obligations. Basically, they show that loop initialization works, the
loop precondition is met, and the loop establishes the desired postcondition.

(n ≥ 0 → P(a, b, 0, 1)) 
(x < n ∧ P(a, b, x, f(y, x))) → P(a, b, f(x, y), f(y, f(x, y))) 
(x ≥ n ∧ P(a, b, x, y) → a + x < b – y)

3b. An expansion using sp as much as possible. [2023-04-14] changes below

{n ≥ 0} x := 0; {n ≥ 0 ∧ x = 0} 
y := 1; {n ≥ 0 ∧ x = 0 ∧ y = 1} 
{inv P(a, b, x, y)} 
while x < n do 
 {x < n ∧ P(a, b, x, y)}  
 x := f(x, y);  
 {x₀ < n ∧ P(a, b, x₀, y) ∧ x = f(x₀, y)} 
 y := f(y, x)

 {x₀ < n ∧ P(a, b, x₀, y₀) ∧ x = f(x₀, y₀) ∧ y = f(y₀, x)} 
 {P(a, b, x, y)} 
od 
{x ≥ n ∧ P(a, b, x, y)} 
{a + x < b – y}

There are again three predicate logic obligations. The third one (loop termination establishes the
program's postcondition) is exactly the same as in the wp version because it's set by the loop
framework {inv …} while …, not by the loop body.

(n ≥ 0 ∧ x = 0 ∧ y = 1 → P(a, b, x, y)) 
(x₀ < n ∧ P(a, b, x₀, y₀) ∧ x = f(x₀, y) ∧ y = f(y₀, x)) → P(a, b, x, y) 
(x ≥ n ∧ P(a, b, x, y) → a + x < b – y)

4. The expansion is straightforward:

{inv p ≡ 0 ≤ k ≤ n+1 ∧ s = sum(0, k–1)} 
while k ≤ n do 
 {p ∧ k ≤ n} {p[s+k⧸s][k+1⧸k]} k := k+1; 
 {p[s+k⧸s]} s := s+k {p} 
od 
{p ∧ k > n} {s = sum(0, n)}

 The program is not correct because of the predicate obligation p ∧ k ≤ n → p[s+k⧸s][k+1⧸k] 
expands to an invalid predicate:

 0 ≤ k ≤ n+1 ∧ s = sum(0, k–1) ∧ k ≤ n → 0 ≤ k+1 ≤ n+1 ∧ s+(k+1) = sum(0, k+1–1)

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20235

CS 536: Science of Programming Fri 2023-04-14, 18:00 Practice 17

 The error is that we need s+(k+1) = sum(0, k+1–1), but this doesn't follow from s = sum(0, k–1).
The new value of s is off by one:

s = sum(0, k–1) 
 ⇒ s+k = sum(0, k–1) + k 
 ⇒ s+k = sum(0, k) 
 ⇒ s+k+1 = sum(0, k) + 1

 One fix is to swap k := k+1 and s := s+k. Our predicate logic obligation becomes

p ∧ k ≤ n → p[k+1⧸k][s+k⧸s] 
 ≡ p ∧ k ≤ n → (0 ≤ k+1 ≤ n+1 ∧ s = sum(0, k+1–1)) [s+k⧸s] 
 ≡ 0 ≤ k ≤ n+1 ∧ s = sum(0, k–1) ∧ k ≤ n 
 → (0 ≤ k+1 ≤ n+1 ∧ s+k = sum(0, k+1–1))

 Another fix is to change s := s+k t to s := s+k–1. Our obligation becomes

p ∧ k ≤ n → p[s+k–1⧸s][k+1⧸k] 
 ≡ p ∧ k ≤ n → (0 ≤ k ≤ n+1 ∧ s+k–1 = sum(0, k–1)) [k+1⧸k] 
 ≡ p ∧ k ≤ n → (0 ≤ k+1 ≤ n+1 ∧ s+(k+1)–1 = sum(0, k+1–1))

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20236

