Proof Rules and Proofs for Correctness Triples

Part 2: Conditional and Iterative Statements

CS 536: Science of Programming, Spring 2023

A. Why

- We can't generally prove that correctness triples are valid using truth tables.
- We need inference rules for compound statements such as conditional and iterative.

B. Objectives

At the end of this topic you should be able to

- Use the rules of inference for *if-else*, *if-then*, *if-fi*, and *while* statements.
- Describe how loop invariants work.

C. Problems

Use the Hilbert style (the two-column vertical format) to display rules.

- 1. Give the instance of the conditional rule we need to combine $\{x = y \land x < 0\}$ y := -x $\{y \ge 0\}$ and $\{x = y \land x \ge 0\}$ **skip** $\{y \ge 0\}$.
- 2. Our goal is to find p such that $\{p\}$ if b[M] < x then L := M else R := M fi $\{L < R\}$ is provable, using wp.
 - a. Calculate wp(L := M, L < R) and wp(R := M, L < R).
 - b. Let p = the wp of the if-fi and show the instance of the conditional rule that you get when you use part (a) to build the triples.
- 3. If we want to use the loop rule to prove $\{inv \ x = 2^k\}$ while $k \ne n$ do x := x+x; k := k+1 od $\{q\}$
 - a. What can we use for *q*?
 - b. What triple do we need to prove about the loop body? Show the rule instance.
- 4. Study the triple $\{x = X/2^k \land x > 1\}$ x := x/2; k := k+1 $\{x = X/2^k\}$.
 - a. Write out a formal proof of the triple that uses wp on both assignments.
 - b. Write out a second formal proof of the triple, but this time use *sp* on both assignments.
 - c. Let $W = while \ x > 1 \ do \ x := x/2 \ ; \ k := k+1 \ od$. Write out a formal proof of $\{x = X\} \ k := 0 \ \{inv \ x = X \ / \ 2^k\} \ W \ \{k = log_2 \ X\}^1$

For the proof of the loop body, just refer to Part (a) or (b) above (doesn't matter which) $\{x = X/2 \land k \land x > 1\} \ x := x/2 \ ; \ k := k+1 \ \{x = X/2 \land k\}$ See part a

¹ We're using integer division with truncation, so we're calculating an integer logarithm. E.g. log_2 3 = 1.

Solution to Practice 15 (Proof Rules and Proofs, pt. 2)

1. (Conditional rule)

One way to combine $\{x = y \land x < 0\}$ $y := -x \{y \ge 0\}$ and $\{x = y \land x \ge 0\}$ **skip** $\{y \ge 0\}$ is to use an **if**then statement $\{x = y\}$ if x < 0 then y := -x fi $\{y \ge 0\}$ (which contains an implicit else skip)

- 1. $\{x = y \land x < 0\} \ y := -x \ \{y \ge 0\}$
- 2. $\{x = y \land x \ge 0\}$ skip $\{y \ge 0\}$
- 3. $\{x = y\}$ if x < 0 then y := -x else skip fi $\{y \ge 0\}$

conditional 1, 2

The other way to combine them is to make the **skip** the true branch (this would be pretty weird).

4.
$$\{x = y\} \text{ if } x < 0 \text{ then } y := -x \text{ else skip } fi \{y \ge 0\}$$

conditional 2, 1

- 2. (Prove $\{p\}\ if\ b[M] < x\ then\ L := M\ else\ R := M\ fi\ \{L < R\}\ using\ wp)$
 - a. wp(L := M, L < R) = M < R and wp(R := M, L < R) = L < M.
 - b. The rule instance is
 - 1. $\{L < M\} R := M \{L < R\}$
 - 2. $\{M < R\} L := M \{L < R\}$
 - conditional 1, 2 where $p = (b[M] < x \rightarrow M < R) \land (b[M] \ge x \rightarrow L < M)$

(Technical note: If M = (L+R)/2, then we need $R \ge L+2$ to establish p.)

- 3. (Powers of 2 loop)
 - a. The loop postcondition is $q = x = 2^k \wedge k = n$ (the invariant and the negation of the test).
 - b. The triple we need for the loop body is $\{x = 2^k \land k \neq n\}$ x := x + x; k := k + 1 $\{x = 2^k\}$ (If the invariant and loop test are true, then the loop body re-establishes the invariant.) The rule instance is
 - 1. $\{x = 2^k \land k \neq n\} \ x := x + x; \ k := k + 1 \{2^k\}$
 - {inv $x = 2^k$ } while $k \ne n$ do x := x+x; k := k+1 od 2. $\{x = 2^k \land k = n\}$

loop 1

- 4. (Integer log₂ calculation)
 - a. (Using wp) An alternative proof forms the sequence and then does precondition str.
 - 1. $\{x = X/2^{(k+1)}\}\ k := k+1 \ \{x = X/2^k\}$

(backward) assignment

 $\{x/2 = X/2^{(k+1)}\} x := x/2 \{x = X/2^{(k+1)}\}$ 2.

(backward) assignment

3. $x = X/2^k \land x > 1 \rightarrow x/2 = X/2^k + 1$

predicate logic

4. $\{x = X/2^k \land x > 1\} \ x := x/2 \ \{x = X/2^k + 1\} \}$

precondition str. 3, 2

5. $\{x = X/2^k \land x > 1\} \ x := x/2 \ ; \ k := k+1 \ \{x = X/2^k\}$

sequence 4, 1

b. (Using *sp*) An alternative proof forms the sequence and then does precondition str.

1.
$$\{x = X/2^{k} \land x > 1\} \ x := x/2 \ \{q_{1}\}\$$
 (forward) assignment where $q_{1} = x_{0} = X/2^{k} \land x_{0} > 1 \land x = x_{0}/2$

2. $\{q_{1}\} \ k := k+1 \ \{q_{2}\}\$ (forward) assignment where $q_{2} = x_{0} = X/2^{k} \land x_{0} > 1 \land x = x_{0}/2 \land k = k_{0}+1$

3. $\{x = X/2^{k} \land x > 1\} \ x := x/2 \ ; \ k := k+1 \ \{q_{2}\}\$ sequence 1, 2

4. $q_{2} \rightarrow x = X/2^{k} \land x > 1\} \ x := x/2 \ ; \ k := k+1 \ \{x = X/2^{k}\}\$ predicate logic post. weakening 3, 4

c.

(Proof of entire loop)		
1.	$\{x = X\}\ k := 0\ \{x = X \land k = 0\}$	(forward) assignment
2.	$x = X \land k = 0 \rightarrow x = X / 2^k$	predicate logic
3.	$\{x = X\}\ k := 0\ \{x = X / 2^k\}$	post. weakening 2, 1
4.	${x = X/2^k \land x > 1} \ x := x/2 \ ; \ k := k+1 \ {x = X/2^k}$	(See part a or b)
5.	$\{inv \ x = X / 2^k\} \ W \ \{x = X / 2^k \land k \le 1\}$	loop 4
where $W = while x > 1 do x := x/2 ; k := k+1 od$		
6.	$x = X / 2^k \land x \le 1 \rightarrow k = log_2 X$	predicate logic
7.	$\{inv \ x = X / 2^k\} \ W \ \{k = log_2 \ X\}$	post. weakening 5, 6
8.	$\{x = X\} \ k := 0; \{ inv \ x = X / 2^k \} \ W \ \{ k = log_2 \ X \}$	sequence 3, 7