Illinois Institute of Technology Practice 15

Proof Rules and Proofs for Correctness Triples

Part 2: Conditional and Iterative Statements

CS 536: Science of Programming, Spring 2023

A. Why

« We can't generally prove that correctness triples are valid using truth tables.

+ We need inference rules for compound statements such as conditional and iterative.

B. Objectives

At the end of this topic you should be able to
« Use the rules of inference for if-else, if-then, if-fi, and while statements.

« Describe how loop invariants work.

C. Problems

Use the Hilbert style (the two-column vertical format) to display rules.
1. Give the instance of the conditional rule we need to combine{x =y A x<0}y:=-x{y =0} and
{(X=yArx=0}skip{y=0}.
2. Ourgoalistofind psuchthat{p}if b[M]<x thenL:=M else R:=M fi {L <R} is provable, us-
ing wp.
a. Calculatewp(L:=M,L<R)andwp(R:=M,L<R).
b. Letp =the wp of the if-fi and show the instance of the conditional rule that you get when
you use part (a) to build the triples.
3. If we want to use the loop rule to prove {inv x = 2 Ak} while k #n do x := x+x; k:= k+1 od {q}
a. What can we use for q?
b. What triple do we need to prove about the loop body? Show the rule instance.
4. Studythetriple {x = X/2MNk A x> 1} x:=x/2 k:=k+1 {x = X/2"k}.
a. Write out a formal proof of the triple that uses wp on both assignments.
b. Write out a second formal proof of the triple, but this time use sp on both assignments.
Cc. LetW = whilex>1dox:=x/2;k:=k+1 od. Write out a formal proof of
X=X} k:=0{invx=X/2 Nk} W{k =log, X}
For the proof of the loop body, just refer to Part (a) or (b) above (doesn't matter which)
IX=X/2Nk A Xx>1} x:=x/2; k:= k+1 {x = X/2Nk} See part a

T We're using integer division with truncation, so we're calculating an integer logarithm. E.g. /og, 3 = 1.

CS 536: Science of Programming -1- © James Sasaki, 2023

Illinois Institute of Technology Practice 15

Solution to Practice 15 (Proof Rules and Proofs, pt. 2)

1. (Conditional rule)
One way to combine{x=y A x<0}y:=-x{y=0}and{x =y A x =0} skip {y =0} is to use an if-
then statement {x =y} if x <0 then y := -x fi {y =0} (which contains an implicit else skip)

1. {(X=yax<0}y:=-x{y=0}
2. {x=yax=0}skip{y=0}

3. {x=y}ifx<O0theny:=-xelseskip fi{y =0} conditional 1, 2
The other way to combine them is to make the skip the true branch (this would be pretty weird).
4. {x=y}ifx<0theny:=-xelseskip fi{y =0} conditional 2, 1

2. (Prove (p}if b[M]<x thenL:=M else R:=M fi {L <R} using wp)

a. wp(L:=M,L<R)=M<Randwp(R:=M,L<R)=L<M.

b. The rule instance is
1. {L<M}R:=M{L <R}
2. {M<R}L:=M{L<R}
3. {p}ifb[M]<xthenl:=MelseR:=Mfi{L <R} conditional 1, 2

wherep = (b[M]<x = M <R) A(b[M]=zx = L<M)

(Technical note: If M = (L+R)/2, then we need R = L+2 to establish p.)

3. (Powers of 2 loop)
a. The loop postcondition is g = x = 22k A k = n (the invariant and the negation of the test).
b. The triple we need for the loop body is {x =22k A k 2n} x ;= x+x; k ;= k+1 {x =27k} (If the
invariant and loop test are true, then the loop body re-establishes the invariant.) The rule
instance is
1. {x=2Nk Ak zn}x:=x+x; k:=k+1 {2"k}
2. {inv x =27k} while k zn do x := x+x; k:= k+1 od
{(x=2Nk Ak=n} loop 1

4. (Integer log, calculation)

a. (Using wp) An alternative proof forms the sequence and then does precondition str.

1. {x=X/2Nk+1)} k= k+1 {x=X/2"k} (backward) assignment
2. AX/2=X/2Nk+1)} x:=x/2{x = X/2Nk+1)} (backward) assignment
3. x=X/2Mk A x>1 = x/2 = X/2Mk+1) predicate logic

4., {x=X/2Nk A x>1} x :=x/2 {x = X/2N(k+1)} precondition str. 3, 2

5 {x=X/2MNk Ax>1}x:=x/2; k:=k+1{x =X/2 Nk} sequence 4, 1

CS 536: Science of Programming -2- © James Sasaki, 2023

Illinois Institute of Technology Practice 15

b. (Using sp) An alternative proof forms the sequence and then does precondition str.
1. {x=X/2Nk Ax>1}x:=x/2{q:}
where q; = Xo = X/2MNk A Xo > T A X = Xo/2
2. {qi}k:=k+1{q:}
where g, = Xo = X/2Mko A Xo > T A X = Xo/2 Ak = ko+1
3. {x=X/2Mk A x>1}x:=x/2; k:=k+1{qz}
g, = x =X/2Nk
5 {Ix=X/2MNk A x>1}x:=x/2; k:=k+1{x =X/2 Nk}

(forward) assignment
(forward) assignment
sequence 1, 2

predicate logic
post. weakening 3, 4

A

c. (Proof of entire loop)

1. {x=X}k:=0{x=XAk=0} (forward) assignment
2. x=XAk=0—-x=X/2Nk predicate logic
3. {x=X}k:=0{x=X/2Nk} post. weakening 2, 1
4. {X=X/2Nk A x>1}x:=x/2; k= k+1 {x =X/2"k} (See partaorb)
5 Ainvx=X/2Nk} W{x=X/2 Nk A k <1} loop 4
where W = while x > 1 do x :=x/2; k := k+1 od
6. x=X/2Mkaxs1—k=log, X predicate logic
7. Ainvx=X/2Nk} W {k=log, X} post. weakening 5, 6

8. {x=X}k:=0;{invx=X/2Mk} W{k=1log, X} sequence 3,7

CS 536: Science of Programming -3- © James Sasaki, 2023

