
Illinois Institute of Technology	 Tue 2023-04-04, 13:50	 Practice 14

  Proof Rules and Proofs for Correctness Triples

  Part 1: Axioms, Sequencing, and Auxiliary Rules

  CS 536: Science of Programming, Spring 2023

2023-04-04 pp. 3,4

A. Why

• We can't generally prove that correctness triples are valid using truth tables.

• We need proof axioms for atomic statements (skip and assignment) and inference rules for com-
pound statements like sequencing.

• In addition, we have inference rules that let us manipulate preconditions and postconditions.

B. Objectives

At the end of this practice activity you should

• Be able to match a statement and its conditions to its proof rule.

C. Problems

Use the vertical format to display rule instances. Below, ^ means exponentiation.

1.	 Consider the triples {p₁} x := x+x {p₂} and {p₂} k := k+1 {x = 2^k} where p₁ and p₂ are unknown.

a.	 Find values for p₁ and p₂ that make the triples provable. (Hint: Use wp.)

b.	 What do you get if you combine the triples using the sequence rule? Show the complete
three-line proof. (Include the rules for the two assignments before using sequence.)

c.	 Add (two more) lines to the proof to strengthen the precondition to be x = 2^k instead of p₁.

d.	 Rewrite the proof so that instead of forming the sequence and then strengthening its pre-
condition to x = 2^k, we strengthen the precondition of x := x+x to be x = 2^k before combin-
ing with k := k+1 to form the sequence.

e.	 Write a new proof that uses sp on the two assignments (instead of wp), then forms the se-
quence and then weakens the postcondition.

f.	 Write a new proof that again uses sp but this time simplify the postcondition of each as-
signment (using weakening) before forming the sequence.

CS 536: Science of Programming	 – –	 © James Sasaki, 20231

Illinois Institute of Technology	 Tue 2023-04-04, 13:50	 Practice 14

2.	 (Establishing x = 2^k)

a.	 Write a proof of {T} x := 1; k := e {x = 2^k} that uses wp to calculate p and q for
{p} k := e {x = 2^k} and {q} x := 1 {p}, forms the sequence, and strengthens the initial pre-
condition to T. Also, what value should we use for e?

b.	 Repeat, but on the sequence {T} k := e; x := 1;{x = 2^k}. (No change to e is needed.)

c.	 Now give a proof for {T} k := 1; x := e {x = 2^k} that uses sp on each assignment and weakens
the final postcondition to x = 2^k. What value do you want for e?

d.	 One more variation: Use sp on k := 1 and wp on x := …. 

3.	 The proof below is incomplete.

1.	 {p} S₁ {q}	 	 assumption 1 
2.	 q → q′	 	 assumption 2

3.	 ???	 	 	 ??? 
4.	 {q′} S₂ {r}	 	 assumption 3 
5.	 {p} S₁; S₂ {r}	 ???

	 a.	 Fill in the missing parts to get a complete proof.

b.	 Turn the proof into a derived proof rule by changing "assumption" to "antecedent", drop-
ping line 3, and using "extended sequence 1, 2, 3" for the last line. What is your result?

CS 536: Science of Programming	 – –	 © James Sasaki, 20232

Illinois Institute of Technology	 Tue 2023-04-04, 13:50	 Practice 14

Solution to Practice 14 (Proof Rules and Proofs, pt.1)

1.	 (Preconditions for x = 2^k postcondition)

a.	 p₂ ≡ wp(k := k+1, x = 2^k) ≡ x = 2^(k+1). 
p₁ ≡ wp(x := x+x, p₂) ≡ wp(x := x+x, x = 2^(k+1)) ≡ x+x = 2^(k+1).

b.	 The full proof is:

1.	 {x = 2^(k+1)} k := k+1 {x = 2^k}	 assignment (backward) 
2.	 {x+x = 2^(k+1)} x := x+x {x = 2^(k+1)}	 assignment (backward) 
3.	 {x+x = 2^(k+1)} x := x+x; k := k+1 {x = 2^k}	 sequence 2, 1

c.	 To make the precondition x = 2^k, we have to strengthen the precondition of line 3. We
need two more lines of proof.

	 (1 - 3 same as in part b)

4.	 x= 2^k → x+x = 2^(k+1)	 predicate logic 
5.	 {x = 2^k} x := x+x; k := k+1 {x = 2^k}	 precond. strength. 4, 3

d.	 We need to reorder the proof lines to strengthen the precondition of x := x+x before com-
bining it with k := k+1:

1.	 {x = 2^(k+1)} k := k+1 {x = 2^k}	 assignment (backward) 
2.	 {x+x = 2^(k+1)} x := x+x {x = 2^(k+1)}	 assignment (backward)

3.	 x= 2^k → x+x = 2^(k+1)	 predicate logic 
4.	 {x = 2^k} x := x+x {x = 2^(k+1)}	 precond. strength. 3, 2

5.	 {x = 2^k} x := x+x; k := k+1 {x = 2^k}	 sequence 4, 1	 [2023-04-04]

e.	 If we use sp on the assignments and weaken the postcondition of the sequence, we get:

1.	 {x = 2^k} x := x+x {x₀ = 2^k ∧ x = x₀+x₀}	 assignment (forward) 
2.	 {x₀ = 2^k ∧ x = x₀+x₀} k := k+1 {q₀}	 assignment (forward) 
	 	 where q₀ ≡ x₀ = 2^k₀ ∧ x = x₀+x₀ ∧ k = k₀+1 
3.	 {x = 2^k} x := x+x; k := k+1 {q₀}	 sequence 2, 1 
4.	 q₀ → x = 2^k	 predicate logic 
5.	 {x = 2^k} x := x+x; k := k+1 {x = 2^k}	 postcond. weak. 3, 4

f.	 If we use sp but weaken the postconditions as we go, we get:

1.	 {x = 2^k} x := x+x {x₀ = 2^k ∧ x = x₀+x₀}	 assignment (forward) 
2.	 x₀ = 2^k ∧ x = x₀+x₀ → x / 2 = 2^k	 predicate logic 
3.	 {x = 2^k} x := x+x {x / 2 = 2^k}	 postcond. weak, 1, 2 
4.	 {x / 2 = 2^k} k := k+1 {x / 2 = 2^k₀ ∧ k = k₀+1}	 assignment (forward) 
5.	 x / 2 = 2^k₀ ∧ k = k₀+1 → x = 2^k	 predicate logic 
6.	 {x / 2 = 2^k} k := k+1 {x = 2^k}	 postcond. weak, 4, 5 
7.	 {x = 2^k} x := x+x; k := k+1 {x = 2^k}	 sequence 3, 6

CS 536: Science of Programming	 – –	 © James Sasaki, 20233

Illinois Institute of Technology	 Tue 2023-04-04, 13:50	 Practice 14

2.	 (Proofs of {T} x := 1; k := e {x = 2^k}.)

a.	 (Use wp twice, form the sequence, and strengthen the precondition to T.)

1.	 {x = 2^e} k := e {x = 2^k)	 assignment (backward) 
2.	 {1 = 2^e} x := 1 {x = 2^e}	 assignment (backward) 
3.	 {1 = 2^e} x := 1; k := e {x = 2^k)	 sequence 2, 1 
	 	 ( Note we need e = 0  ) 
4.	 T → 1 = 2^e	 predicate logic 
5.	 {T} x := 1; k := e {x = 2^k)	 precond. strength. 4, 3

b.	 (Prove {T} k := e; x := 1 {x = 2^k} in the same way, with no change to e.)

1.	 {1 = 2^k} x := 1 {x = 2^k)	 assignment (backward) 
2.	 {1 = 2^0} k := 0 {1 = 2^k}	 assignment (backward) 
	 	 ( Again, e = 0  ) 
3.	 {1 = 2^0} k := 0; x := 1 {x = 2^k)	 sequence 2, 1 
4.	 T → 1 = 2^0	 predicate logic 
5.	 {T} k := 0; x := e {x = 2^k)	 precond. strength. 4, 3

c.	 (Prove {T} k := 1; x := e {x = 2^k} using sp and ending with postcondition weakening.)

1.	 {T} k := 1 {k = 1}	 assignment (forward) 
2.	 {k = 1} x := e {k = 1 ∧ x = e}	 assignment (forward) 
3.	 k = 1 ∧ x = e → x = 2^k	 predicate logic 
4.	 {k = 1} x := e {k = 1 ∧ x = e}	 postcond. weak. 2, 3 
5.	 {T} k := 1; x := e {x = 2^k}	 sequence 1, 4

This time, e = 2, since we need x = 2^k with k = 1.

d.	 (Prove {T} k := 1; x := e {x = 2^k} using sp on first assignment, wp on second.)

1.	 {T} k := 1 {k = 1}	 assignment (forward)

2.	 {e = 2^k} x := e {x = 2^k}	 assignment (backward) 
3.	 k = 1 → e = 2^k 	 predicate logic 
4.	 {  k=1  } x := e {x = 2^k}	 precond. strength. 3, 2 
5.	 {T} k := 1; x := e {x = 2^k}	 sequence 1, 4

3.	 (Derive an extended sequence rule)

	 a.	 Filling in the missing parts gives

1.	 {p} S₁ {q}	 	 antecedent 1 
2.	 q → q′	 	 antecedent 2 
3.	 {p} S₁ {q′}	 	 postcond. weak. 1, 2 [2023-04-04] 
4.	 {q′} S₂ {r}	 	 antecedent 3 
5.	 {p} S₁; S₂ {r}	 sequence 3, 4 [2023-04-04]

CS 536: Science of Programming	 – –	 © James Sasaki, 20234

Illinois Institute of Technology	 Tue 2023-04-04, 13:50	 Practice 14

b.	 After we change "assumption" to "antecedent", change the last line's reason to "extended
sequence" and drop the remaining line(s), we get a derived rule:

1.	 {p} S₁ {q}	 	 antecedent 1 
2.	 q → q′	 	 antecedent 2 
3.	 {q′} S₂ {r}	 	 antecedent 3 
4.	 {p} S₁; S₂ {r}	 extended sequence 1, 2, 3

CS 536: Science of Programming	 – –	 © James Sasaki, 20235

