
Illinois Institute of Technology Tue 2023-04-04, 13:50 Practice 14

  Proof Rules and Proofs for Correctness Triples
  Part 1: Axioms, Sequencing, and Auxiliary Rules

  CS 536: Science of Programming, Spring 2023
2023-04-04 pp. 3,4

A. Why
• We can't generally prove that correctness triples are valid using truth tables.

• We need proof axioms for atomic statements (skip and assignment) and inference rules for com-
pound statements like sequencing.

• In addition, we have inference rules that let us manipulate preconditions and postconditions.

B. Objectives
At the end of this practice activity you should

• Be able to match a statement and its conditions to its proof rule.

C. Problems
Use the vertical format to display rule instances. Below, ^ means exponentiation.

1. Consider the triples {p₁} x := x+x {p₂} and {p₂} k := k+1 {x = 2^k} where p₁ and p₂ are unknown.

a. Find values for p₁ and p₂ that make the triples provable. (Hint: Use wp.)

b. What do you get if you combine the triples using the sequence rule? Show the complete
three-line proof. (Include the rules for the two assignments before using sequence.)

c. Add (two more) lines to the proof to strengthen the precondition to be x = 2^k instead of p₁.

d. Rewrite the proof so that instead of forming the sequence and then strengthening its pre-
condition to x = 2^k, we strengthen the precondition of x := x+x to be x = 2^k before combin-
ing with k := k+1 to form the sequence.

e. Write a new proof that uses sp on the two assignments (instead of wp), then forms the se-
quence and then weakens the postcondition.

f. Write a new proof that again uses sp but this time simplify the postcondition of each as-
signment (using weakening) before forming the sequence.

CS 536: Science of Programming – – © James Sasaki, 20231

Illinois Institute of Technology Tue 2023-04-04, 13:50 Practice 14

2. (Establishing x = 2^k)

a. Write a proof of {T} x := 1; k := e {x = 2^k} that uses wp to calculate p and q for
{p} k := e {x = 2^k} and {q} x := 1 {p}, forms the sequence, and strengthens the initial pre-
condition to T. Also, what value should we use for e?

b. Repeat, but on the sequence {T} k := e; x := 1;{x = 2^k}. (No change to e is needed.)

c. Now give a proof for {T} k := 1; x := e {x = 2^k} that uses sp on each assignment and weakens
the final postcondition to x = 2^k. What value do you want for e?

d. One more variation: Use sp on k := 1 and wp on x := …. 

3. The proof below is incomplete.
1. {p} S₁ {q} assumption 1 
2. q → q′ assumption 2
3. ??? ??? 
4. {q′} S₂ {r} assumption 3 
5. {p} S₁; S₂ {r} ???

 a. Fill in the missing parts to get a complete proof.

b. Turn the proof into a derived proof rule by changing "assumption" to "antecedent", drop-
ping line 3, and using "extended sequence 1, 2, 3" for the last line. What is your result?

CS 536: Science of Programming – – © James Sasaki, 20232

Illinois Institute of Technology Tue 2023-04-04, 13:50 Practice 14

Solution to Practice 14 (Proof Rules and Proofs, pt.1)
1. (Preconditions for x = 2^k postcondition)

a. p₂ ≡ wp(k := k+1, x = 2^k) ≡ x = 2^(k+1). 
p₁ ≡ wp(x := x+x, p₂) ≡ wp(x := x+x, x = 2^(k+1)) ≡ x+x = 2^(k+1).

b. The full proof is:
1. {x = 2^(k+1)} k := k+1 {x = 2^k} assignment (backward) 
2. {x+x = 2^(k+1)} x := x+x {x = 2^(k+1)} assignment (backward) 
3. {x+x = 2^(k+1)} x := x+x; k := k+1 {x = 2^k} sequence 2, 1

c. To make the precondition x = 2^k, we have to strengthen the precondition of line 3. We
need two more lines of proof.

 (1 - 3 same as in part b)
4. x= 2^k → x+x = 2^(k+1) predicate logic 
5. {x = 2^k} x := x+x; k := k+1 {x = 2^k} precond. strength. 4, 3

d. We need to reorder the proof lines to strengthen the precondition of x := x+x before com-
bining it with k := k+1:

1. {x = 2^(k+1)} k := k+1 {x = 2^k} assignment (backward) 
2. {x+x = 2^(k+1)} x := x+x {x = 2^(k+1)} assignment (backward)
3. x= 2^k → x+x = 2^(k+1) predicate logic 
4. {x = 2^k} x := x+x {x = 2^(k+1)} precond. strength. 3, 2
5. {x = 2^k} x := x+x; k := k+1 {x = 2^k} sequence 4, 1 [2023-04-04]

e. If we use sp on the assignments and weaken the postcondition of the sequence, we get:
1. {x = 2^k} x := x+x {x₀ = 2^k ∧ x = x₀+x₀} assignment (forward) 
2. {x₀ = 2^k ∧ x = x₀+x₀} k := k+1 {q₀} assignment (forward) 
 where q₀ ≡ x₀ = 2^k₀ ∧ x = x₀+x₀ ∧ k = k₀+1 
3. {x = 2^k} x := x+x; k := k+1 {q₀} sequence 2, 1 
4. q₀ → x = 2^k predicate logic 
5. {x = 2^k} x := x+x; k := k+1 {x = 2^k} postcond. weak. 3, 4

f. If we use sp but weaken the postconditions as we go, we get:
1. {x = 2^k} x := x+x {x₀ = 2^k ∧ x = x₀+x₀} assignment (forward) 
2. x₀ = 2^k ∧ x = x₀+x₀ → x / 2 = 2^k predicate logic 
3. {x = 2^k} x := x+x {x / 2 = 2^k} postcond. weak, 1, 2 
4. {x / 2 = 2^k} k := k+1 {x / 2 = 2^k₀ ∧ k = k₀+1} assignment (forward) 
5. x / 2 = 2^k₀ ∧ k = k₀+1 → x = 2^k predicate logic 
6. {x / 2 = 2^k} k := k+1 {x = 2^k} postcond. weak, 4, 5 
7. {x = 2^k} x := x+x; k := k+1 {x = 2^k} sequence 3, 6

CS 536: Science of Programming – – © James Sasaki, 20233

Illinois Institute of Technology Tue 2023-04-04, 13:50 Practice 14

2. (Proofs of {T} x := 1; k := e {x = 2^k}.)

a. (Use wp twice, form the sequence, and strengthen the precondition to T.)
1. {x = 2^e} k := e {x = 2^k) assignment (backward) 
2. {1 = 2^e} x := 1 {x = 2^e} assignment (backward) 
3. {1 = 2^e} x := 1; k := e {x = 2^k) sequence 2, 1 
 ( Note we need e = 0  ) 
4. T → 1 = 2^e predicate logic 
5. {T} x := 1; k := e {x = 2^k) precond. strength. 4, 3

b. (Prove {T} k := e; x := 1 {x = 2^k} in the same way, with no change to e.)
1. {1 = 2^k} x := 1 {x = 2^k) assignment (backward) 
2. {1 = 2^0} k := 0 {1 = 2^k} assignment (backward) 
 ( Again, e = 0  ) 
3. {1 = 2^0} k := 0; x := 1 {x = 2^k) sequence 2, 1 
4. T → 1 = 2^0 predicate logic 
5. {T} k := 0; x := e {x = 2^k) precond. strength. 4, 3

c. (Prove {T} k := 1; x := e {x = 2^k} using sp and ending with postcondition weakening.)
1. {T} k := 1 {k = 1} assignment (forward) 
2. {k = 1} x := e {k = 1 ∧ x = e} assignment (forward) 
3. k = 1 ∧ x = e → x = 2^k predicate logic 
4. {k = 1} x := e {k = 1 ∧ x = e} postcond. weak. 2, 3 
5. {T} k := 1; x := e {x = 2^k} sequence 1, 4

This time, e = 2, since we need x = 2^k with k = 1.

d. (Prove {T} k := 1; x := e {x = 2^k} using sp on first assignment, wp on second.)
1. {T} k := 1 {k = 1} assignment (forward)
2. {e = 2^k} x := e {x = 2^k} assignment (backward) 
3. k = 1 → e = 2^k predicate logic 
4. {  k=1  } x := e {x = 2^k} precond. strength. 3, 2 
5. {T} k := 1; x := e {x = 2^k} sequence 1, 4

3. (Derive an extended sequence rule)

 a. Filling in the missing parts gives
1. {p} S₁ {q} antecedent 1 
2. q → q′ antecedent 2 
3. {p} S₁ {q′} postcond. weak. 1, 2 [2023-04-04] 
4. {q′} S₂ {r} antecedent 3 
5. {p} S₁; S₂ {r} sequence 3, 4 [2023-04-04]

CS 536: Science of Programming – – © James Sasaki, 20234

Illinois Institute of Technology Tue 2023-04-04, 13:50 Practice 14

b. After we change "assumption" to "antecedent", change the last line's reason to "extended
sequence" and drop the remaining line(s), we get a derived rule:

1. {p} S₁ {q} antecedent 1 
2. q → q′ antecedent 2 
3. {q′} S₂ {r} antecedent 3 
4. {p} S₁; S₂ {r} extended sequence 1, 2, 3

CS 536: Science of Programming – – © James Sasaki, 20235

