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  Proof Rules and Proofs for Correctness Triples 
  Part 1: Axioms, Sequencing, and Auxiliary Rules 

  CS 536: Science of Programming, Spring 2023 
2023-04-04 pp. 3,4 

A. Why 
• We can't generally prove that correctness triples are valid using truth tables. 

• We need proof axioms for atomic statements (skip and assignment) and inference rules for com-
pound statements like sequencing. 

• In addition, we have inference rules that let us manipulate preconditions and postconditions. 

B. Objectives 
At the end of this practice activity you should 

• Be able to match a statement and its conditions to its proof rule. 

C. Problems 
Use the vertical format to display rule instances.  Below, ^ means exponentiation. 

1. Consider the triples {p₁} x := x+x {p₂} and {p₂} k := k+1 {x = 2^k} where p₁ and p₂ are unknown. 

a. Find values for p₁ and p₂ that make the triples provable.  (Hint: Use wp.) 

b. What do you get if you combine the triples using the sequence rule?  Show the complete 
three-line proof.  (Include the rules for the two assignments before using sequence.) 

c. Add (two more) lines to the proof to strengthen the precondition to be x = 2^k instead of p₁. 

d. Rewrite the proof so that instead of forming the sequence and then strengthening its pre-
condition to x = 2^k, we strengthen the precondition of x := x+x to be x = 2^k before combin-
ing with k := k+1 to form the sequence. 

e. Write a new proof that uses sp on the two assignments (instead of wp), then forms the se-
quence and then weakens the postcondition. 

f. Write a new proof that again uses sp but this time simplify the postcondition of each as-
signment (using weakening) before forming the sequence. 
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2. (Establishing x = 2^k) 

a. Write a proof of {T} x := 1; k := e {x = 2^k} that uses wp to calculate p and q for 
{p} k := e {x = 2^k} and {q} x := 1 {p}, forms the sequence, and strengthens the initial pre-
condition to T.  Also, what value should we use for e? 

b. Repeat, but on the sequence {T} k := e; x := 1;{x = 2^k}.  (No change to e is needed.) 

c. Now give a proof for {T} k := 1; x := e {x = 2^k} that uses sp on each assignment and weakens 
the final postcondition to x = 2^k.  What value do you want for e? 

d. One more variation: Use sp on k := 1 and wp on x := …. 

3. The proof below is incomplete. 
1. {p} S₁ {q}  assumption 1 
2. q → q′  assumption 2 
3. ???   ??? 
4. {q′} S₂ {r}  assumption 3 
5. {p} S₁; S₂ {r} ??? 

 a. Fill in the missing parts to get a complete proof. 

b. Turn the proof into a derived proof rule by changing "assumption" to "antecedent", drop-
ping line 3, and using "extended sequence 1, 2, 3" for the last line.  What is your result? 
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Solution to Practice 14 (Proof Rules and Proofs, pt.1) 
1. (Preconditions for x = 2^k postcondition) 

a. p₂ ≡ wp(k := k+1, x = 2^k) ≡ x = 2^(k+1). 
p₁ ≡ wp(x := x+x, p₂) ≡ wp(x := x+x, x = 2^(k+1)) ≡ x+x = 2^(k+1). 

b. The full proof is: 
1. {x = 2^(k+1)} k := k+1 {x = 2^k} assignment (backward) 
2. {x+x = 2^(k+1)} x := x+x {x = 2^(k+1)} assignment (backward) 
3. {x+x = 2^(k+1)} x := x+x; k := k+1 {x = 2^k} sequence 2, 1 

c. To make the precondition x = 2^k, we have to strengthen the precondition of line 3.  We 
need two more lines of proof. 

     (1 - 3 same as in part b) 
4. x= 2^k → x+x = 2^(k+1) predicate logic 
5. {x = 2^k} x := x+x; k := k+1 {x = 2^k} precond. strength. 4, 3 

d. We need to reorder the proof lines to strengthen the precondition of x := x+x before com-
bining it with k := k+1: 

1. {x = 2^(k+1)} k := k+1 {x = 2^k} assignment (backward) 
2. {x+x = 2^(k+1)} x := x+x {x = 2^(k+1)} assignment (backward) 
3. x= 2^k → x+x = 2^(k+1) predicate logic 
4. {x = 2^k} x := x+x {x = 2^(k+1)} precond. strength. 3, 2 
5. {x = 2^k} x := x+x; k := k+1 {x = 2^k} sequence 4, 1 [2023-04-04] 

e. If we use sp on the assignments and weaken the postcondition of the sequence, we get: 
1. {x = 2^k} x := x+x {x₀ = 2^k ∧ x = x₀+x₀} assignment (forward) 
2. {x₀ = 2^k ∧ x = x₀+x₀} k := k+1 {q₀} assignment (forward) 
  where q₀ ≡ x₀ = 2^k₀ ∧ x = x₀+x₀ ∧ k = k₀+1 
3. {x = 2^k} x := x+x; k := k+1 {q₀} sequence 2, 1 
4. q₀ → x = 2^k predicate logic 
5. {x = 2^k} x := x+x; k := k+1 {x = 2^k} postcond. weak. 3, 4 

f. If we use sp but weaken the postconditions as we go, we get: 
1. {x = 2^k} x := x+x {x₀ = 2^k ∧ x = x₀+x₀} assignment (forward) 
2. x₀ = 2^k ∧ x = x₀+x₀ → x  /  2 = 2^k predicate logic 
3. {x = 2^k} x := x+x {x  /  2 = 2^k} postcond. weak, 1, 2 
4. {x  /  2 = 2^k} k := k+1 {x  /  2 = 2^k₀ ∧ k = k₀+1} assignment (forward) 
5. x  /  2 = 2^k₀ ∧ k = k₀+1 → x = 2^k predicate logic 
6. {x  /  2 = 2^k} k := k+1 {x = 2^k} postcond. weak, 4, 5 
7. {x = 2^k} x := x+x; k := k+1 {x = 2^k} sequence 3, 6 
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2. (Proofs of {T} x := 1; k := e {x = 2^k}.) 

a. (Use wp twice, form the sequence, and strengthen the precondition to T.) 
1. {x = 2^e} k := e {x = 2^k) assignment (backward) 
2. {1 = 2^e} x := 1 {x = 2^e} assignment (backward) 
3. {1 = 2^e} x := 1; k := e {x = 2^k) sequence 2, 1 
  ( Note we need e = 0  ) 
4. T → 1 = 2^e predicate logic 
5. {T} x := 1; k := e {x = 2^k) precond. strength. 4, 3 

b. (Prove {T} k := e; x := 1 {x = 2^k} in the same way, with no change to e.) 
1. {1 = 2^k} x := 1 {x = 2^k) assignment (backward) 
2. {1 = 2^0} k := 0 {1 = 2^k} assignment (backward) 
  ( Again, e = 0  ) 
3. {1 = 2^0} k := 0; x := 1 {x = 2^k) sequence 2, 1 
4. T → 1 = 2^0 predicate logic 
5. {T} k := 0; x := e {x = 2^k) precond. strength. 4, 3 

c. (Prove {T} k := 1; x := e {x = 2^k} using sp and ending with postcondition weakening.) 
1. {T} k := 1 {k = 1} assignment (forward) 
2. {k = 1} x := e {k = 1 ∧ x = e} assignment (forward) 
3. k = 1 ∧ x = e → x = 2^k predicate logic 
4. {k = 1} x := e {k = 1 ∧ x = e} postcond. weak. 2, 3 
5. {T} k := 1; x := e {x = 2^k} sequence 1, 4 

This time, e = 2, since we need x = 2^k with k = 1. 

d. (Prove {T} k := 1; x := e {x = 2^k} using sp on first assignment, wp on second.) 
1. {T} k := 1 {k = 1} assignment (forward) 
2. {e = 2^k} x := e {x = 2^k} assignment (backward) 
3. k = 1 → e = 2^k  predicate logic 
4. {  k=1  } x := e {x = 2^k} precond. strength. 3, 2 
5. {T} k := 1; x := e {x = 2^k} sequence 1, 4 

3. (Derive an extended sequence rule) 

 a. Filling in the missing parts gives 
1. {p} S₁ {q}  antecedent 1 
2. q → q′  antecedent 2 
3. {p} S₁ {q′}  postcond. weak. 1, 2 [2023-04-04] 
4. {q′} S₂ {r}  antecedent 3 
5. {p} S₁; S₂ {r} sequence 3, 4 [2023-04-04] 
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b. After we change "assumption" to "antecedent", change the last line's reason to "extended 
sequence" and drop the remaining line(s), we get a derived rule: 

1. {p} S₁ {q}  antecedent 1 
2. q → q′  antecedent 2 
3. {q′} S₂ {r}  antecedent 3 
4. {p} S₁; S₂ {r} extended sequence 1, 2, 3 
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