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Proof Rules and Proofs for Correctness Triples

Part 1: Axioms, Sequencing, and Auxiliary Rules

CS 536: Science of Programming, Spring 2023
2023-04-04 pp. 3,4

A. Why

« We can't generally prove that correctness triples are valid using truth tables.

« We need proof axioms for atomic statements (skip and assignment) and inference rules for com-
pound statements like sequencing.

« In addition, we have inference rules that let us manipulate preconditions and postconditions.

B. Objectives

At the end of this practice activity you should

« Be able to match a statement and its conditions to its proof rule.

C. Problems

Use the vertical format to display rule instances. Below, » means exponentiation.
1. Consider the triples {p;} x := x+x {p,} and {p,} k := k+1 {x = 2 Ak} where p, and p, are unknown.
a. Find values for p; and p, that make the triples provable. (Hint: Use wp.)

b. What do you get if you combine the triples using the sequence rule? Show the complete
three-line proof. (Include the rules for the two assignments before using sequence.)

Add (two more) lines to the proof to strengthen the precondition to be x = 27k instead of p;.

d. Rewrite the proof so that instead of forming the sequence and then strengthening its pre-
condition to x = 27k, we strengthen the precondition of x := x+x to be x = 2k before combin-
ing with k := k+1 to form the sequence.

e. Write a new proof that uses sp on the two assignments (instead of wp), then forms the se-
quence and then weakens the postcondition.

f.  Write a new proof that again uses sp but this time simplify the postcondition of each as-
signment (using weakening) before forming the sequence.
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2. (Establishing x = 2/k)
a. Write a proof of {T} x:= 1, k:=e {x = 2"k} that uses wp to calculate p and q for
{p} k:=e {x =27k} and {q} x:= 1 {p}, forms the sequence, and strengthens the initial pre-
condition to T. Also, what value should we use for e?

b. Repeat, but on the sequence {T} k:=e; x:= 1;{x = 2/Ak}. (No change to e is needed.)

¢. Now give a proof for {T} k:=1; x := e {x = 27k} that uses sp on each assignment and weakens
the final postcondition to x = 2Ak. What value do you want for e?

d. One more variation: Usesp onk := 7and wp on x := ....

3. The proof below is incomplete.

1. {p}Si{q} assumption 1
2. q—¢q assumption 2
3. 2 7??
4. Aq'} S: {r} assumption 3
5. {p}Si S {r} 7

a. Fillin the missing parts to get a complete proof.

b. Turn the proof into a derived proof rule by changing "assumption" to "antecedent", drop-
ping line 3, and using "extended sequence 1, 2, 3" for the last line. What is your result?
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Solution to Practice 14 (Proof Rules and Proofs, pt.1)

1. (Preconditions for x = 2/k postcondition)
a. po=wp(k:=k+1, x=27k) = x = 2N(k+1).

Practice 14

p1 = WPp(X:=x+X, p2) = wp(x:=Xx+x, x =2Nk+1)) = x+x =27 (k+1).

b. The full proofis:
1. {x=2M(k+1)} k:= k+1 {x = 27k}
2. Ax+x=2MNk+1)} x ;= x+x {x =2Nk+1)}
3. {x+x=2MNk+1)} x:=x+x; k= k+1 {x = 27k}

assignment (backward)
assignment (backward)
sequence 2, 1

c. To make the precondition x = 27k, we have to strengthen the precondition of line 3. We

need two more lines of proof.
(1 -3 same as in part b)

4,  x=27k = x+x=2Nk+1)
5. {x =27k} x:=x+x; k:=k+1 {x = 2Nk}

predicate logic
precond. strength. 4, 3

d. We need to reorder the proof lines to strengthen the precondition of x := x+x before com-

bining it with k := k+7:
1. {x=2Nk+1)} k:= k+1 {x = 2Nk}
{x+x =2Nk+1)} x ;= x+x {x = 2N (k+1)}
x=2Nk = x+x=27N(k+1)
{x = 2Nk} x ;= x+x {x =2N(k+1)}
{x =27k} x := x+x; k ;= k+1 {x = 27k}

vk W

assignment (backward)
assignment (backward)
predicate logic

precond. strength. 3, 2
sequence 4, 1 [2023-04-04]

e. If we use sp on the assignments and weaken the postcondition of the sequence, we get:

1. {x=27k} x:=x+X {Xo = 2Nk A X = Xo+Xo}
2. {Xg = 2Nk A X = XotXo} k= k+1 {qo}
where go = Xo = 2ko A X = Xo+Xo A kK = kot+1
3. {X=2Mk}x:=x+x k= k+1{qo}
Qo — X =27k
5. {x=2Mk} x:=x+x; k:=k+1 {x = 2Nk}

&>

assignment (forward)
assignment (forward)

sequence 2, 1
predicate logic
postcond. weak. 3, 4

f. If we use sp but weaken the postconditions as we go, we get:

{x =27k} x ;= x+X {Xg = 2Nk A X = Xo+Xo}

Xo = 2NK A X = Xot+Xo = X/2 = 2Nk

X =27k} x ;= x+x {x/2 = 2"k}

{x/2 = 2Nk} k:=k+1 {x/2 = 2Nky A k = ko+1}
X/2 =2Nkg A k = ko+1 = x = 2Nk

{x/2 = 2Nk} k:= k+1 {x = 27k}

{x =27k} x := x+x; k:= k+1 {x = 27k}

NouhswnN =
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assignment (forward)
predicate logic
postcond. weak, 1, 2
assignment (forward)
predicate logic
postcond. weak, 4, 5
sequence 3, 6
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2. (Proofsof {T} x:=1; k:=e {x=2"k}.)

Practice 14

a. (Use wp twice, form the sequence, and strengthen the precondition to T.)

1. {x=27e}k:=e{x=2Nk)

2. {1=2re}x:=1{x=2Ne}

3. {1=2Me}x:=1;k:=e{x=2Nk)
(Note we need e =0)

4, T 1=27e

5. {T}x:=1;k:=e{x=2Nk)

assignment (backward)
assignment (backward)
sequence 2, 1

predicate logic
precond. strength. 4, 3

b. (Prove {T} k:=e; x:=1 {x =27k} in the same way, with no change to e.)

1. {1 =20k} x:=1{x = 2Nk)
2. {1=2M0}k:=0{1=2/k}

(Again, e =0)
3. {1=27N0}k:=0;,x:=1{x=2"k)
4, T - 1=270

5. {T}k:=0;x:=e{x=2"k)

assignment (backward)
assignment (backward)

sequence 2, 1
predicate logic
precond. strength. 4, 3

c. (Prove{T} k:=1;x:=e {x =2k} using sp and ending with postcondition weakening.)

1. AT} k:=1{k=1}

2. {tk=1})x=e{k=1Arx=¢e}
3. k=T1arx=e—>x=2Nk

4. {tk=1}x:=e{k=1Arx=¢}
5. {T}k:=1;x:=e{x=2"k}

This time, e = 2, since we need x = 2Ak with k = 1.

assignment (forward)
assignment (forward)
predicate logic
postcond. weak. 2, 3
sequence 1, 4

d. (Prove {T} k:=1; x:=e {x =2k} using sp on first assignment, wp on second.)

1. {Thk:=1{k=1}

{e = 27k} x := e {x = 2Nk}
k=1—-e=2Nk
{k=1}x:=e {x =27k}
{Thk:=1;x:=e{x=2Nk}

vk wnN

3. (Derive an extended sequence rule)

a. Filling in the missing parts gives

1. A{p}S:i {q}

2. g—q

3. {p}Si{q’}
4. A{q’} S {r}

5. {p} Si; S {r}

CS 536: Science of Programming -4-

assignment (forward)
assignment (backward)
predicate logic
precond. strength. 3, 2
sequence 1,4

antecedent 1

antecedent 2

postcond. weak. 1, 2 [2023-04-04]
antecedent 3

sequence 3, 4 [2023-04-04]
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b. After we change "assumption" to "antecedent", change the last line's reason to "extended
sequence" and drop the remaining line(s), we get a derived rule:

1. Ap}S:i {q}

2. qg—gq

3. {q}S:{r}

4. {p} Si; S2 {r}
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antecedent 1
antecedent 2
antecedent 3

extended sequence 1, 2, 3
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