Illinois Institute of Technology Practice 14

Proof Rules and Proofs for Correctness Triples

Part 1: Axioms, Sequencing, and Auxiliary Rules

CS 536: Science of Programming, Spring 2023
2023-04-04 pp. 3,4

A. Why

« We can't generally prove that correctness triples are valid using truth tables.

« We need proof axioms for atomic statements (skip and assignment) and inference rules for com-
pound statements like sequencing.

« In addition, we have inference rules that let us manipulate preconditions and postconditions.

B. Objectives

At the end of this practice activity you should

« Be able to match a statement and its conditions to its proof rule.

C. Problems

Use the vertical format to display rule instances. Below, » means exponentiation.
1. Consider the triples {p;} x := x+x {p,} and {p,} k := k+1 {x = 2 Ak} where p, and p, are unknown.
a. Find values for p; and p, that make the triples provable. (Hint: Use wp.)

b. What do you get if you combine the triples using the sequence rule? Show the complete
three-line proof. (Include the rules for the two assignments before using sequence.)

Add (two more) lines to the proof to strengthen the precondition to be x = 27k instead of p;.

d. Rewrite the proof so that instead of forming the sequence and then strengthening its pre-
condition to x = 27k, we strengthen the precondition of x := x+x to be x = 2k before combin-
ing with k := k+1 to form the sequence.

e. Write a new proof that uses sp on the two assignments (instead of wp), then forms the se-
quence and then weakens the postcondition.

f. Write a new proof that again uses sp but this time simplify the postcondition of each as-
signment (using weakening) before forming the sequence.

CS 536: Science of Programming -1- © James Sasaki, 2023

Illinois Institute of Technology Practice 14

2. (Establishing x = 2/k)
a. Write a proof of {T} x:= 1, k:=e {x = 2"k} that uses wp to calculate p and q for
{p} k:=e {x =27k} and {q} x:= 1 {p}, forms the sequence, and strengthens the initial pre-
condition to T. Also, what value should we use for e?

b. Repeat, but on the sequence {T} k:=e; x:= 1;{x = 2/Ak}. (No change to e is needed.)

¢. Now give a proof for {T} k:=1; x := e {x = 27k} that uses sp on each assignment and weakens
the final postcondition to x = 2Ak. What value do you want for e?

d. One more variation: Usesp onk := 7and wp on x :=

3. The proof below is incomplete.

1. {p}Si{q} assumption 1
2. q—¢q assumption 2
3. 2 7??
4. Aq'} S: {r} assumption 3
5. {p}Si S {r} 7

a. Fillin the missing parts to get a complete proof.

b. Turn the proof into a derived proof rule by changing "assumption" to "antecedent", drop-
ping line 3, and using "extended sequence 1, 2, 3" for the last line. What is your result?

CS 536: Science of Programming -2- © James Sasaki, 2023

Illinois Institute of Technology

Solution to Practice 14 (Proof Rules and Proofs, pt.1)

1. (Preconditions for x = 2/k postcondition)
a. po=wp(k:=k+1, x=27k) = x = 2N(k+1).

Practice 14

p1 = WPp(X:=x+X, p2) = wp(x:=Xx+x, x =2Nk+1)) = x+x =27 (k+1).

b. The full proofis:
1. {x=2M(k+1)} k:= k+1 {x = 27k}
2. Ax+x=2MNk+1)} x ;= x+x {x =2Nk+1)}
3. {x+x=2MNk+1)} x:=x+x; k= k+1 {x = 27k}

assignment (backward)
assignment (backward)
sequence 2, 1

c. To make the precondition x = 27k, we have to strengthen the precondition of line 3. We

need two more lines of proof.
(1 -3 same as in part b)

4, x=27k = x+x=2Nk+1)
5. {x =27k} x:=x+x; k:=k+1 {x = 2Nk}

predicate logic
precond. strength. 4, 3

d. We need to reorder the proof lines to strengthen the precondition of x := x+x before com-

bining it with k := k+7:
1. {x=2Nk+1)} k:= k+1 {x = 2Nk}
{x+x =2Nk+1)} x ;= x+x {x = 2N (k+1)}
x=2Nk = x+x=27N(k+1)
{x = 2Nk} x ;= x+x {x =2N(k+1)}
{x =27k} x := x+x; k ;= k+1 {x = 27k}

vk W

assignment (backward)
assignment (backward)
predicate logic

precond. strength. 3, 2
sequence 4, 1 [2023-04-04]

e. If we use sp on the assignments and weaken the postcondition of the sequence, we get:

1. {x=27k} x:=x+X {Xo = 2Nk A X = Xo+Xo}
2. {Xg = 2Nk A X = XotXo} k= k+1 {qo}
where go = Xo = 2ko A X = Xo+Xo A kK = kot+1
3. {X=2Mk}x:=x+x k= k+1{qo}
Qo — X =27k
5. {x=2Mk} x:=x+x; k:=k+1 {x = 2Nk}

&>

assignment (forward)
assignment (forward)

sequence 2, 1
predicate logic
postcond. weak. 3, 4

f. If we use sp but weaken the postconditions as we go, we get:

{x =27k} x ;= x+X {Xg = 2Nk A X = Xo+Xo}

Xo = 2NK A X = Xot+Xo = X/2 = 2Nk

X =27k} x ;= x+x {x/2 = 2"k}

{x/2 = 2Nk} k:=k+1 {x/2 = 2Nky A k = ko+1}
X/2 =2Nkg A k = ko+1 = x = 2Nk

{x/2 = 2Nk} k:= k+1 {x = 27k}

{x =27k} x := x+x; k:= k+1 {x = 27k}

NouhswnN =

CS 536: Science of Programming -3-

assignment (forward)
predicate logic
postcond. weak, 1, 2
assignment (forward)
predicate logic
postcond. weak, 4, 5
sequence 3, 6

© James Sasaki, 2023

Illinois Institute of Technology

2. (Proofsof {T} x:=1; k:=e {x=2"k}.)

Practice 14

a. (Use wp twice, form the sequence, and strengthen the precondition to T.)

1. {x=27e}k:=e{x=2Nk)

2. {1=2re}x:=1{x=2Ne}

3. {1=2Me}x:=1;k:=e{x=2Nk)
(Note we need e =0)

4, T 1=27e

5. {T}x:=1;k:=e{x=2Nk)

assignment (backward)
assignment (backward)
sequence 2, 1

predicate logic
precond. strength. 4, 3

b. (Prove {T} k:=e; x:=1 {x =27k} in the same way, with no change to e.)

1. {1 =20k} x:=1{x = 2Nk)
2. {1=2M0}k:=0{1=2/k}

(Again, e =0)
3. {1=27N0}k:=0;,x:=1{x=2"k)
4, T - 1=270

5. {T}k:=0;x:=e{x=2"k)

assignment (backward)
assignment (backward)

sequence 2, 1
predicate logic
precond. strength. 4, 3

c. (Prove{T} k:=1;x:=e {x =2k} using sp and ending with postcondition weakening.)

1. AT} k:=1{k=1}

2. {tk=1})x=e{k=1Arx=¢e}
3. k=T1arx=e—>x=2Nk

4. {tk=1}x:=e{k=1Arx=¢}
5. {T}k:=1;x:=e{x=2"k}

This time, e = 2, since we need x = 2Ak with k = 1.

assignment (forward)
assignment (forward)
predicate logic
postcond. weak. 2, 3
sequence 1, 4

d. (Prove {T} k:=1; x:=e {x =2k} using sp on first assignment, wp on second.)

1. {Thk:=1{k=1}

{e = 27k} x := e {x = 2Nk}
k=1—-e=2Nk
{k=1}x:=e {x =27k}
{Thk:=1;x:=e{x=2Nk}

vk wnN

3. (Derive an extended sequence rule)

a. Filling in the missing parts gives

1. A{p}S:i {q}

2. g—q

3. {p}Si{q’}
4. A{q’} S {r}

5. {p} Si; S {r}

CS 536: Science of Programming -4-

assignment (forward)
assignment (backward)
predicate logic
precond. strength. 3, 2
sequence 1,4

antecedent 1

antecedent 2

postcond. weak. 1, 2 [2023-04-04]
antecedent 3

sequence 3, 4 [2023-04-04]

© James Sasaki, 2023

Illinois Institute of Technology

Practice 14

b. After we change "assumption" to "antecedent", change the last line's reason to "extended
sequence" and drop the remaining line(s), we get a derived rule:

1. Ap}S:i {q}

2. qg—gq

3. {q}S:{r}

4. {p} Si; S2 {r}

CS 536: Science of Programming

antecedent 1
antecedent 2
antecedent 3

extended sequence 1, 2, 3

© James Sasaki, 2023

