Weakest Preconditions

Part 1: Definitions and Basic Properties CS 536: Science of Programming, Spring 2023

A. Why

• Weakest liberal preconditions (w/p) and weakest preconditions (wp) are the most general requirements that a program must meet to be correct.

B. Objectives

At the end of this activity you should be able to

- Define what a weakest liberal precondition (w/p) and weakest precondition (wp) is and how it's related to (and different from) preconditions in general
- Be able to calculate the *wlp* of a simple loop-free program.

C. Problems

- 1. Let $w \Leftrightarrow wp(S, q)$, let S be deterministic, and let $\{\tau\} = M(S, \sigma)$ where $\tau \in \Sigma \cup \{\bot\}$.
 - a. For which $\sigma \vDash w$ do we have $\sigma \vDash_{tot} \{w\} S \{q\}$?
 - b. For which $\sigma \models \neg w$ do we have $\sigma \models_{tot} \{\neg w\} S \{q\}$? How about $\sigma \models \{\neg w\} S \{q\}$?
 - c. For which $\sigma \vDash w$ do we have $\sigma \vDash_{tot} \{w\} S \{\neg q\}$?
 - d. For which $\sigma \models \neg w$ do we have $\sigma \models_{tot} \{\neg w\} S \{\neg q\}$? How about $\sigma \models \{\neg w\} S \{\neg q\}$?
 - e. If S is nondeterministic, how do we have to modify the statement in part (d)?
- 2. If $\sigma \vDash w$ and $\sigma \vDash \{w\} S \{q\}$ and $\sigma \nvDash_{tot} \{w\} S \{q\}$,
 - a. What can we conclude about $M(S, \sigma)$?
 - b. If in addition, S is deterministic, what more can we conclude about $M(S, \sigma)$?
- 3. For an arbitrary *p* (not necessarily one that implies *w*), what \models and \models_{tot} properties relationships do the triples
 - a. $\{p \land w\} S \{q\}$ and $\{\neg p \land w\} S \{q\}$ have?
 - b. $\{p \land \neg w\} S \{\neg q\}$ and $\{\neg p \land \neg w\} S \{\neg q\}$ have, if S is deterministic?
 - c. $\{p \land \neg w\} S \{q\}$ and $\{\neg p \land \neg w\} S \{q\}$ have, if S is nondeterministic?

- 4. How are $wp(S, q_1 \lor q_2)$ and $wp(S, q_1) \cup wp(S, q_2)$ related if S is deterministic? If S is nondeterministic?
- 5. Briefly explain why each of the following statements about *wp* and *wlp* are correct. (Answers like "That's how *X* is defined" are allowed.)
 - a. For all $\sigma \in \Sigma$, $\sigma \models wp(S, q)$ iff $M(S, \sigma) \models q$
 - b. For all $\sigma \in \Sigma$, $\sigma \models w/p(S, q)$ iff $M(S, \sigma) \bot \models q$
 - c. $\vDash_{tot} \{wp(S, q)\} S \{q\}$
 - d. $\models \{w | p(S, q)\} S \{q\}$
 - e. $\models_{tot} \{p\} S \{q\} \text{ iff } \models p \rightarrow wp(S, q)$
 - f. $\models \{p\} S \{q\} \text{ iff } \models p \rightarrow wlp(S, q)$
 - g. $\models \{\neg wp(S, q)\} S \{\neg q\}$, if S is deterministic
 - h. $\models_{tot} \{\neg w | p(S, q) \} S \{\neg q\}$, if S is deterministic
 - i. $\nvDash p \rightarrow wp(S, q) \text{ iff } \nvDash_{tot} \{p\} S \{q\}$
 - j. $\forall p \rightarrow wlp(S, q) \text{ iff } \notin \{p\} S \{q\}$
- 6. Which of the following statements about relationships between *wp* and *wlp* are possible and which are impossible? Briefly explain why or why not.
 - a. $wlp(S, q) \wedge wlp(S, \neg q)$
 - b. $\neg wp(S, q) \land \neg wp(S, \neg q)$
 - c. $wp(S, q) \land \neg wlp(S, q)$
 - d. $wlp(S, q) \land \neg wp(S, \neg q)$
 - e. $wp(S, q) \land \neg wlp(S, \neg q)$
 - f. For deterministic S, $\neg wp(S, q) \land \neg wp(S, \neg q)$ and $M(S, \sigma) \bot \neq \emptyset$
 - g. For deterministic S, $\neg wp(S, q) \land \neg wp(S, \neg q)$ and $\bot \notin M(S, \sigma)$

Solution to Practice 10 (Weakest Preconditions, pt. 1)

- 1. (Properties of weakest preconditions)
 - a. For all $\sigma \models w$, we have $\sigma \models_{tot} \{w\} S \{q\}$, since w is a precondition for $\models_{tot} \{...\} S \{q\}$.
 - b. For no $\sigma \models \neg w$ do we have $\sigma \models_{tot} \{\neg w\} S \{q\}$ because for w to be the weakest precondition for S and q, it cannot be that $M(S, \sigma) \models q$. For partial correctness, however, if $M(S, \sigma) = \{\bot\}$, then σ satisfies $\{\neg w\} S \{q\}$.
 - c. For no $\sigma \models w$ do we have $\sigma \models_{tot} \{w\}$ S $\{\neg q\}$ because w is a precondition for $\models_{tot} \{...\}$ S $\{q\}$.
 - d. For all $\sigma \models \neg w$, we have $\sigma \models \{\neg w\} S \{\neg q\}$ because for w to be the weakest precondition for Sand $q, \sigma \models \neg w$ implies $M(S, \sigma) \nvDash q$. Since S is deterministic, either $M(S, \sigma) = \{\bot\}$ or $M(S, \sigma) \models \neg q$. Either way, $\sigma \models \{\neg w\} S \{\neg q\}$. Total correctness is not guaranteed, since \bot can occur.
 - e. If *S* is nondeterministic and $M(S, \sigma) \neq q$, then as in the deterministic case, nontermination is a possibility ($\perp \in M(S, \sigma)$ can happen). Regardless, we no longer know $M(S, \sigma) \models \neg q$ because we can have $M(S, \sigma) \neq q$ and $M(S, \sigma) \neq \neg q$ simultaneously.
- 2. (Partial but not total correctness when the *wp* is satisfied)
 - a. If $\sigma \models w$ and $\sigma \models \{w\} S \{q\}$ then $M(S, \sigma) \{\bot\} \models q$. If $\sigma \nvDash_{tot} \{w\} S \{q\}$ then $M(S, \sigma) \nvDash q$. This can only happen if $\bot \in M(S, \sigma)$. (I.e., *S* can diverge under σ .)
 - b. If in addition *S* is deterministic, then we don't just have $\perp \in M(S, \sigma)$, we have $\{\perp\} = M(S, \sigma)$. (I.e., S diverges under σ .)
- 3. (Intersection with *wp*)
 - a. $\models_{tot} \{p \land w\} S \{q\}$ and $\models_{tot} \{\neg p \land w\} S \{q\}$ follow from *w* being a precondition under \models_{tot} .
 - b. Because *w* is weakest, we have for all $\sigma \models p \land \neg w$, that $\sigma \nvDash_{tot} \{p \land \neg w\} S \{q\}$. If *S* is deterministic, this implies $\sigma \models \{p \land \neg w\} S \{\neg q\}$. Similarly, for all $\sigma \models \neg p \land \neg w$, we have $\sigma \models \{p \land \neg w\} S \{\neg q\}$.
 - c. If *S* is nondeterministic then if $\sigma \vDash p \land \neg w$, we still know $\sigma \nvDash_{tot}$. { $p \land \neg w$ } *S* {q} but both $\sigma \vDash$ and $\sigma \nvDash \{p \land \neg w\}$ *S* { $\neg q$ } are possible. Similarly, if $\sigma \vDash \neg p \land \neg w$, we know $\sigma \nvDash_{tot} \{\neg p \land \neg w\}$ *S* {q}, but both $\sigma \vDash$ and $\sigma \nvDash \{p \land \neg w\}$ *S* { $\neg q$ } are possible.
- 4. For deterministic *S*, $wp(S, q_1 \lor q_2) = wp(S, q_1) \cup wp(S, q_2)$. For nondeterministic *S*, we have \supseteq instead of =.
- 5. (Properties of *wp* and *wlp*)
 - (a) and (b) are the basic definitions of *wp* and *wlp*
 - (c) and (d) say that *wp* and *wlp* are preconditions
 - (e) and (f) say that *wp* and *wlp* are weakest preconditions

(g) and (h) also say that *wp* and *wlp* are weakest (i) and (j) are the contrapositives of (e) and (f).

- 6. (Situations involving *wp* and *wlp*)
 - a. $M(S, \sigma) = \{\bot\}$ implies $wlp(S, q) \land wlp(S, \neg q)$
 - b. $M(S, \sigma) = \{\bot\}$ implies $\sigma \vDash \neg wp(S, q) \land \neg wp(S, \neg q)$.
 - *c.* wp(S, q) implies $\neg wlp(S, q)$, so $wp(S, q) \land \neg wlp(S, q)$ is impossible.
 - d. Since wlp(S, q) implies $\neg wp(S, \neg q)$, we must have $wlp(S, q) \land \neg wp(S, \neg q)$ whenever wlp(S, q).
 - e. $wp(S, q) \Rightarrow \neg wlp(S, \neg q)$ is the contrapositive of the implication for (d) [if you swap q and $\neg q$], so $wp(S, q) \land \neg wlp(S, \neg q)$ must happen if wp(S, q).
 - f. For deterministic S, $\neg wp(S, q) \land \neg wp(S, \neg q)$ implies $M(S, \sigma) = \{\bot\}$, so $M(S, \sigma) \bot$ is empty.
 - g. For nondeterministic *S*, it's possible to have $M(S, \sigma) = \{\tau_1, \tau_2\}$ where $\tau_1 \models q$ and $\tau_2 \models \neg q$. When that happens, wp(S, q) and $wp(S, \neg q)$ are both false but $\perp \notin M(S, \sigma)$.