Weakest Preconditions

 Part 1: Definitions and Basic Properties

 Part 1: Definitions and Basic Properties
 CS 536: Science of Programming, Spring 2023

A. Why

- Weakest liberal preconditions (w/p) and weakest preconditions (wp) are the most general requirements that a program must meet to be correct.

B. Objectives

At the end of this activity you should be able to

- Define what a weakest liberal precondition (w / p) and weakest precondition ($w p$) is and how it's related to (and different from) preconditions in general
- Be able to calculate the w/p of a simple loop-free program.

C. Problems

1. Let $w \Leftrightarrow w p(S, q)$, let S be deterministic, and let $\{\tau\}=M(S, \sigma)$ where $\tau \in \Sigma \cup\{\perp\}$.
a. For which $\sigma \vDash w$ do we have $\sigma \vDash_{\text {tot }}\{w\} S\{q\}$?
b. For which $\sigma \vDash \neg w$ do we have $\sigma \vDash_{\text {tot }}\{\neg w\} S\{q\}$? How about $\sigma \vDash\{\neg w\} S\{q\}$?
c. For which $\sigma \vDash w$ do we have $\sigma \vDash_{\text {tot }}\{w\} S\{\neg q\}$?
d. For which $\sigma \vDash \neg w$ do we have $\sigma \vDash_{\text {tot }}\{\neg w\} S\{\neg q\}$? How about $\sigma \vDash\{\neg w\} S\{\neg q\}$?
e. If S is nondeterministic, how do we have to modify the statement in part (d)?
2. If $\sigma \vDash w$ and $\sigma \vDash\{w\} S\{q\}$ and $\sigma \not \vDash_{\text {tot }}\{w\} S\{q\}$,
a. What can we conclude about $M(S, \sigma)$?
b. If in addition, S is deterministic, what more can we conclude about $M(S, \sigma)$?
3. For an arbitrary p (not necessarily one that implies w), what \vDash and $\vDash_{\text {tot }}$ properties relationships do the triples
a. $\{p \wedge w\} S\{q\}$ and $\{\neg p \wedge w\} S\{q\}$ have ?
b. $\{p \wedge \neg w\} S\{\neg q\}$ and $\{\neg p \wedge \neg w\} S\{\neg q\}$ have, if S is deterministic?
c. $\{p \wedge \neg w\} S\{q\}$ and $\{\neg p \wedge \neg w\} S\{q\}$ have, if S is nondeterministic?
4. How are $w p\left(S, q_{1} \vee q_{2}\right)$ and $w p\left(S, q_{1}\right) \cup w p\left(S, q_{2}\right)$ related if S is deterministic? If S is nondeterministic?
5. Briefly explain why each of the following statements about $w p$ and $w l p$ are correct. (Answers like "That's how X is defined" are allowed.)
a. For all $\sigma \in \Sigma, \sigma \vDash w p(S, q)$ iff $M(S, \sigma) \vDash q$
b. For all $\sigma \in \Sigma, \sigma \vDash w / p(S, q)$ iff $M(S, \sigma)-\perp \vDash q$
c. $\vDash_{t o t}\{w p(S, q)\} S\{q\}$
d. $\vDash\{w / p(S, q)\} S\{q\}$
e. $\vDash_{\text {tot }}\{p\} S\{q\}$ iff $\vDash p \rightarrow w p(S, q)$
f. $\vDash\{p\} S\{q\}$ iff $\vDash p \rightarrow w / p(S, q)$
g. $\vDash\{\neg w p(S, q)\} S\{\neg q\}$, if S is deterministic
h. $\vDash_{\text {tot }}\{\neg w l p(S, q)\} S\{\neg q\}$, if S is deterministic
i. $\neq p \rightarrow w p(S, q)$ iff $\not \neq_{\text {tot }}\{p\} S\{q\}$
j. $\quad \neq p \rightarrow w / p(S, q)$ iff $\neq\{p\} S\{q\}$
6. Which of the following statements about relationships between $w p$ and w / p are possible and which are impossible? Briefly explain why or why not.
a. $\quad w / p(S, q) \wedge w / p(S, \neg q)$
b. $\neg w p(S, q) \wedge \neg w p(S, \neg q)$
c. $w p(S, q) \wedge \neg w l p(S, q)$
d. $w l p(S, q) \wedge \neg w p(S, \neg q)$
e. $w p(S, q) \wedge \neg w l p(S, \neg q)$
f. For deterministic $S, \neg w p(S, q) \wedge \neg w p(S, \neg q)$ and $M(S, \sigma)-\perp \neq \varnothing$
g. For deterministic $S, \neg w p(S, q) \wedge \neg w p(S, \neg q)$ and $\perp \notin M(S, \sigma)$

Solution to Practice 10 (Weakest Preconditions, pt. 1)

1. (Properties of weakest preconditions)
a. For all $\sigma \vDash w$, we have $\sigma \vDash_{\text {tot }}\{w\} S\{q\}$, since w is a precondition for $\vDash_{\text {tot }}\{\ldots\} S\{q\}$.
b. For no $\sigma \vDash \neg w$ do we have $\sigma \vDash_{\text {tot }}\{\neg w\} S\{q\}$ because for w to be the weakest precondition for S and q, it cannot be that $M(S, \sigma) \vDash q$. For partial correctness, however, if $M(S, \sigma)=\{\perp\}$, then σ satisfies $\{\neg w\} S\{q\}$.
c. For no $\sigma \vDash w$ do we have $\sigma \vDash_{\text {tot }}\{w\} S\{\neg q\}$ because w is a precondition for $\vDash_{\text {tot }}\{\ldots\} S\{q\}$.
d. For all $\sigma \vDash \neg w$, we have $\sigma \vDash\{\neg w\} S\{\neg q\}$ because for w to be the weakest precondition for S and $q, \sigma \vDash \neg w$ implies $M(S, \sigma) \not \vDash q$. Since S is deterministic, either $M(S, \sigma)=\{\perp\}$ or $M(S, \sigma) \vDash \neg q$. Either way, $\sigma \vDash\{\neg w\} S\{\neg q\}$. Total correctness is not guaranteed, since \perp can occur.
e. If S is nondeterministic and $M(S, \sigma) \nLeftarrow q$, then as in the deterministic case, nontermination is a possibility $(\perp \in M(S, \sigma)$ can happen). Regardless, we no longer know $M(S, \sigma) \vDash \neg q$ because we can have $M(S, \sigma) \nRightarrow q$ and $M(S, \sigma) \nRightarrow \neg q$ simultaneously.
2. (Partial but not total correctness when the $w p$ is satisfied)
a. If $\sigma \vDash w$ and $\sigma \vDash\{w\} S\{q\}$ then $M(S, \sigma)-\{\perp\} \vDash q$. If $\sigma \not \vDash_{\text {tot }}\{w\} S\{q\}$ then $M(S, \sigma) \nRightarrow q$. This can only happen if $\perp \in M(S, \sigma)$. (I.e., S can diverge under σ.)
b. If in addition S is deterministic, then we don't just have $\perp \in M(S, \sigma)$, we have $\{\perp\}=M(S, \sigma)$. (I.e., S diverges under σ.)
3. (Intersection with $w p$)
a. $\vDash_{\text {tot }}\{p \wedge w\} S\{q\}$ and $\vDash_{\text {tot }}\{\neg p \wedge w\} S\{q\}$ follow from w being a precondition under $\vDash_{\text {tot }}$.
b. Because w is weakest, we have for all $\sigma \vDash p \wedge \neg w$, that $\sigma \vDash_{\text {tot }}\{p \wedge \neg w\} S\{q\}$. If S is deterministic, this implies $\sigma \vDash\{p \wedge \neg w\} S\{\neg q\}$. Similarly, for all $\sigma \vDash \neg p \wedge \neg w$, we have $\sigma \vDash\{p \wedge \neg w\} S\{\neg q\}$.
c. If S is nondeterministic then if $\sigma \vDash p \wedge \neg w$, we still know $\sigma \not \vDash_{\text {tot }}\{p \wedge \neg w\} S\{q\}$ but both $\sigma \vDash$ and $\sigma \nLeftarrow\{p \wedge \neg w\} S\{\neg q\}$ are possible. Similarly, if $\sigma \vDash \neg p \wedge \neg w$, we know $\sigma \not \vDash_{\text {tot }}\{\neg p \wedge \neg w\} S\{q\}$, but both $\sigma \vDash$ and $\sigma \nRightarrow\{p \wedge \neg w\} S\{\neg q\}$ are possible.
4. For deterministic $S, w p\left(S, q_{1} \vee q_{2}\right)=w p\left(S, q_{1}\right) \cup w p\left(S, q_{2}\right)$. For nondeterministic S, we have \supseteq instead of $=$.
5. (Properties of $w p$ and w / p)
(a) and (b) are the basic definitions of $w p$ and w/p
(c) and (d) say that $w p$ and w / p are preconditions
(e) and (f) say that wp and wlp are weakest preconditions
(g) and (h) also say that wp and wlp are weakest
(i) and (j) are the contrapositives of (e) and (f).
6. (Situations involving $w p$ and w / p)
a. $M(S, \sigma)=\{\perp\}$ implies $w / p(S, q) \wedge w / p(S, \neg q)$
b. $M(S, \sigma)=\{\perp\}$ implies $\sigma \vDash \neg w p(S, q) \wedge \neg w p(S, \neg q)$.
c. $w p(S, q)$ implies $\neg w l p(S, q)$, so $w p(S, q) \wedge \neg w l p(S, q)$ is impossible.
d. Since $w l p(S, q)$ implies $\neg w p(S, \neg q)$, we must have $w l p(S, q) \wedge \neg w p(S, \neg q)$ whenever $w l p(S, q)$.
e. $\quad w p(S, q) \Rightarrow \neg w / p(S, \neg q)$ is the contrapositive of the implication for (d) [if you swap q and $\neg q$], so $w p(S, q) \wedge \neg w l p(S, \neg q)$ must happen if $w p(S, q)$.
f. For deterministic $S, \neg w p(S, q) \wedge \neg w p(S, \neg q)$ implies $M(S, \sigma)=\{\perp\}$, so $M(S, \sigma)-\perp$ is empty.
g. For nondeterministic S, it's possible to have $M(S, \sigma)=\left\{\tau_{1}, \tau_{2}\right\}$ where $\tau_{1} \vDash q$ and $\tau_{2} \vDash \neg q$. When that happens, $w p(S, q)$ and $w p(S, \neg q)$ are both false but $\perp \notin M(S, \sigma)$.
