
Illinois Institute of Technology	 Thu 2023-02-09, 16:17	 Practice 9

  Correctness (“Hoare”) Triples

  Part 2: Sequencing, Assignment, Strengthening, and Weakening

  CS 536: Science of Programming, Spring 2023

A. Why

• To specify a program’s correctness, we need to know its precondition and postcondition (what

should be true before and after executing it).

• The semantics of a verified program combines its program semantics rule with the state-oriented
semantics of its specification predicates.

• To connect correctness triples in sequence, we need to weaken and strengthen conditions.

B. Objectives

At the end of today you should be able to:

• Differentiate between different annotations for the same program.

• Determine whether two correctness triples can be joined and to give the result of joining.

• Reason "backwards" about assignment statements.

• Connect correctness triples in sequence by weakening and strengthening intermediate
conditions

C. Problems

1.	 Suppose { p } S { q } and { r } S { t } are both valid (both partial and total correctness work here).

Which of the following must also be valid?

a. 	 { p ∧ r } S { q ∧ t }	 	 d.	 { ¬p → r } S { ¬q → t }	 	 g.	 { p } S { q ∨ t }

b.	 { p ∨ r } S { q ∨ t } 	 	 e.	 { p → r } S { q → t }	 	 	 h.	 { p ∨ r } S { q }

c.	 { p ∧ r } S { q ∨ t } 	 	 f.	 { p ∧ r } S { q } 	 	 	 	 i.	 { p } S { q ∧ t }

2.	 Arrange the following predicates in decreasing order of strength. 
a.	 x ₁ = c ∧ x ₂ < d 
b.	 x ₁ ≤ m ∨ x ₂ ≤ m ∧ m = m a x (c , d) 
c.	 x ₁ = c 
d.	 ∃ k ∈ ℕ . x   k ≤ m 
e.	 x ₁ ≤ c ∨ x ₂ ≤ d 
f.	 F 
g.	 x ₁ ≤ c 
h.	 T

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20231

Illinois Institute of Technology	 Thu 2023-02-09, 16:17	 Practice 9

For the following problems, assume we're working over ℤ. If there is more than one correct answer
then any right answer is sufficient.

3.	 Consider the triple { x ≥ 0 } y : = x * x * x { y > 4 * x }

a.	 Show that this triple is invalid for partial correctness by giving a counterexample state σ that
doesn't satisfy it.

b.	 Let P (a , b) ≡ b  >  4 * a . Using the backward assignment rule, what is the (weakest)
precondition such that { … } y  : =  x * x * x { y  >  4 * x } is valid? State the condition in terms of
P (…) and also applying the definition of P . (E.g., P (5 , 1) ≡ 5 > 4 * 1 .)

c.	 What are the values of x that don't meet the requirement in (b)? 

4.	 Consider the statement if y ≥ 0 then x : = 3 * y else y : = y * y fi. Assume that all we know just
before the if is T . (So basically, we know nothing.) For each of the positions below, what is the
strongest (most precise) predicate that is correct?
*

a.	 Just before x : = 3 * y ?

b.	 Just after x : = 3 * y ?

c.	 Just before y : = y * y ?

d.	 Just after y : = y * y ?

e.	 Just after the fi (the “end if”) ? 
(Hint: Combine your answers to parts (b) and (d).)

5.	 Find code to fill out { x ≥ 0 } if ? ? ? then y : = x * x else y : = ? ? ? fi { y  >  2 * x } to get a valid
triple. There is more than one right answer. (Hint: If y = x * x , then when is y  >  2 * x ?)

Recall that backward assignment tells us that { R (e) } x : = e { R (x) } is valid; here R (x) is a
predicate function over x and R (e) is the predicate R gives when x ≡ e . E.g., { R (2 * k) } x : =
2 * k { R (x) } is valid, and if, say, R (x) ≡ x % 2 = 0 (x is even), then the precondition is R (2 * k) ≡
2 * k % 2 = 0 , 

6.	 Our goal is to use backward assignment to find p and q such that ⊨ { p } x : = x * x { x > 1 5 }
and ⊨ { q } x : = x + 1 { p } so that we can join them to get { q } y : = 2 * z ; x : = (y + 1) * y { x ≥
y * y } .

a.	 Take { p } x : = x * x { Q (x) } where Q (x) ≡ the postcondition x > 1 5 . Fill in the missing
parts in p ≡ Q (? ? ?) ≡ ???, using backward assignment.

b.	 Now take { q } x : = x + 1 { S (x) } where S (x) ≡ p (from part a). Fill in q ≡ S (? ? ?) ≡ ???,
again using backward assignment.

 Remember, we say "the" strongest predicate, but anything logically equivalent works too. Same for "the" *

weakest predicate.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20232

Illinois Institute of Technology	 Thu 2023-02-09, 16:17	 Practice 9

7.	 Repeat the previous problem using { p } x : = (y + 1) * y { x ≥ y * y } and ⊨ { q } y : = 2 * z { p }

8.	 The questions below have the form “If X , then Y __________ occur”. To answer them, fill in the
blank with “must”, “can't”, or “may or may not”.

• Must occur means X implies Y . (E.g., if x > 1 , then x > 0 must occur.)

• Can't occur means X implies ¬Y. (E.g., if x > 1 , then x < - 3 can't occur.)

• Can occur means that either X ∧ Y or X ∧ ¬Y can happen. (E.g., if x > 1 , then y = 0 may or
may not occur.)

You're not required to justify your answer, though you can if you want to (and you should be
able to if asked in to in an exam). Unless specified, assume that σ≠⊥ and S may or may not be
deterministic. (Note a number of these questions probably go more with Class 8 then Class 9.)

a.	 If σ⊨ { p } S { q } and σ⊭ p , then ⊥∈ M (S ,σ) 	 	 	 	 	 	 	 	 __________ occur.

b.	 If σ⊨ { p } S { q } and σ⊭ p , then M (S ,σ) – { ⊥ } ⊨ q 	 	 	 	 	 	 	 __________ occur.

c.	 If σ⊨ { p } S { q } and σ⊨ p , then ⊥∈ M (S ,σ) 	 	 	 	 	 	 	 	 __________ occur.

d.	 If σ⊨ { p } S { q } and σ⊨ p , then M (S ,σ) – { ⊥ } ⊨ q 	 	 	 	 	 	 	 __________ occur.

e.	 If ⊨tot { p } S { q } then ⊨tot { p } S { T } 	 	 	 	 	 	 	 	 	 	 	 __________ occur.

f.	 If ⊨tot { p } S { T } then ⊨tot { p } S { q } 	 	 	 	 	 	 	 	 	 	 	 __________ occur.

g.	 If σ⊭ { p } S { q } and S is deterministic, then σ⊨ p , ⊥∉ M (S ,σ) , and M (S ,σ) ⊨ ¬q __________ all
occur simultaneously.

h.	 If ⊥∉ M (S ,σ) , M (S ,σ) ⊭ q , and S is deterministic, then M (S ,σ) ⊨ ¬q 	 	 __________ occur.

i.	 If ⊥∉ M (S ,σ) , M (S ,σ) ⊭ q , and S is nondeterministic, then M (S ,σ) ⊨ ¬q 	 __________ occur.

j.	 If M (S ,σ) ⊭ q , τ ∈ M (S ,σ) , and S is nondeterministic, then τ⊨ q 		 	 __________ occur.

k.	 If S is deterministic and σ⊨ { p } S { q } , then σ⊨ { p } S { ¬q } 	 	 	 	 	 __________ occur.

l.	 If σ⊭tot { p } S { q } and S is deterministic, then σ⊨ { p } S { ¬q } 	 	 	 	 __________ occur.

m.	 If σ⊭tot { p } S { q } and S is nondeterministic, then σ⊨ { p } S { ¬q } 	 	 	 __________ occur.

n.	 If σ⊭ { p } S { q } and S is deterministic, then σ ⊨ tot { p } S { ¬q } 	 	 	 	 __________ occur.

o.	 If σ⊭ { p } S { q } and S is non-deterministic, then σ ⊨ tot { p } S { ¬q } 		 	 __________ occur.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20233

Illinois Institute of Technology	 Thu 2023-02-09, 16:17	 Practice 9

Solution to Practice 9 (Hoare Triples, pt. 2)

1.	 (a) – (g) are all valid, (h) and (i) are not. The explanations for (d) and (e) are a little subtle.

	 For (d), { ¬p → r } S { ¬q → t } is equivalent to { ¬¬p ∨ r } S { ¬¬q ∨ t }, which is the same as (b).

	 For (e), we already know { p } S { q }, so if we also know { p → r } S { q → t }, then with the help of
modus ponens, we know { p ∧ r } S { q ∧ t }, which is (a).

2.	 (f) F, (a) x₁ = c ∧ x₂ < d, (c) x₁ = c, (g) x₁ ≤ c, (e) x₁ ≤ c ∨ x₂ ≤ d, (b) x₁ ≤ m ∨ x₂ ≤ m ∧ m = max(c, d),
(d) ∃ k ∈ ℕ . x k ≤ m), (h) T

3.	 a. One example is σ = {   x  =  0   } , another is {   x  =  1   } . 
	 b. P (4 * x , x * x * x) ≡ 4 * x  >  x * x * x . 
	 c. This does not hold if x is 0 , 1 , 2 , or x ≤ – 2 .

4.	 (Strongest conditions and if y ≤ 0 then x : = 3 * y else y : = y * y fi)

a.	 y ≤ 0 	 	 	 	 	 	 	 just before x : = 3 * y

b.	 y ≤ 0 ∧ x = 3 * y 		 	 	 just after x : = 3 * y

c.	 y > 0 	 	 	 	 	 	 	 just before y : = y * y

d.	 s q r t (y) > 0 ∧ y = s q r t (y) ² 	 	 just after y : = y * y *

e.	 (b) ∨ (d) 	 	 	 	 	 	 just after the fi

 *	 There are other ways to phrase (d) such as ∃  y ₀ . y ₀ > 0 ∧ y = y ₀ ² , but note we can't
replace y = y ₀ ² with y ₀ = s q r t (y) because s q r t truncates, so saying y ₀ = s q r t (y) makes
us forget 
that y is a perfect square after y : = y * y .

5.	 If y = x * x , then y > 2 * x for all x ≥ 0 except x = 0 , 1 , and 2 . So our test is x > 2 . When x =
0 , 1 , or 2 , we need to set y so that y > 2 * x . The first two that come to mind are y : = x * x +
1 and y : = 5 , but there are any number of more ways. Anyway, one answer is 
	 	 	 	 { x ≥ 0 } if x > 2 then y : = x * x else y : = 5 fi { y  >  2 * x }

6.	 (Set up joining of two statements using backward assignment)

a.	 With Q (x) ≡ x > 1 5 , we can use Q (x * x) ≡ x * x > 1 5 for p in { p } x : = x * x { Q (x) } .

b.	 With S (x) ≡ p (as in part a), we can use S (x – 1) for q in { q } x : = x – 1 { S (x) } . 
Expanding, S (x) ≡ p ≡ x * x > 1 5 , which makes S (x – 1) ≡ (x – 1) * (x – 1) > 1 5 .

7.	 (Repeat #6)

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20234

Illinois Institute of Technology	 Thu 2023-02-09, 16:17	 Practice 9

a.	 With Q (x , y) ≡ x ≥ y * y , we can use Q ((y + 1) * y , y) for p in { p } x : = (y + 1) * y { Q (x , y) } . 
Expanding, p ≡ Q ((y + 1) * y , y) ≡ (y + 1) * y ≥ y * y . (Note (y + 1) * y ≥ y * y ⇔ T , but the
question asked for a syntactic calculation, not a syntactic calculation followed by logical
reduction.)

b.	 With S (y) ≡ p ≡ (y + 1) * y ≥ y * y , we can use q ≡ S (2 * z) in { q } y : = 2 * z { p } .
Expanding, q ≡ S (2 * z) ≡ (2 * z + 1) * 2 * z ≥ (2 * z) * (2 * z) . (Note just saying
2 * z * 2 * z is ok because we're now allowing associativity of * in our notion of ≡ .)

8.	 (Hoare triple properties and relationships)

a-c.	can

d,e	must

f.	 can

g,h	must

i,j	 can

k.	 can't

l.	 must

m.	 can

n.	 must

o.	 can

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20235

