
Illinois Institute of Technology	 Wed 2023-02-01, 13:05	 Practice 7

  Sequential Nondeterminism

  CS 536: Science of Programming, Spring 2023

2023-02-22 p.2

A. Why

• Nondeterminism can help us avoid unnecessary determinism.

• Nondeterminism can help us develop programs without worrying about overlapping cases.

B. Objectives

At the end of these practice questions you should

• Be able to evaluate nondeterministic conditionals and loops.

C. Nondeterminism

1.	 What are the reasons mentioned in the text for why using nondeterminism might be helpful?

2.	 Let IF ≡ if B₁ ➞ S₁ ☐ B₂ ➞ S₂ ☐ … ☐ B n ➞ S n fi and BB ≡ B₁ ∨ B₂ ∨ … B n.

a.	 What property does BB have to have for us to avoid a runtime error when executing IF?

b.	 Does it matter if we reorder the guarded commands? (E.g., if we swap B₁ ➞ S₁ and B₂ ➞ S₂.)

3.	 Let U₁ ≡ if B₁ ➞ S₁ ☐ B₂ ➞ S₂ fi and U₂ ≡ if B₁ then S₁ else if B₂ then S₂ fi fi. 
a.	 Fill in the table below to describe what happens for each combination of B₁ and B₂ being
true or false.

 
b.	 For what kinds of states σ can statements U₁ and U₂ behave differently?

4.	 Let DO ≡ do B₁ ➞ S₁ ☐ B₂ ➞ S₂ ☐ … ☐ B n ➞ S n od and BB ≡ B₁ ∨ B₂ ∨ … B n. What property does BB
have to have for us to avoid an infinite loop when executing DO?

5.	 Consider the loop i := 0; do i < 1000 ➞ S₁; i := i+1 ☐ i < 1000 ➞ S₂; i := i+1 od (where neither S₁ nor
S₂ modifies i). Do we know anything about how many times or in what pattern we will execute
S₁ vs S₂?

6.	 What is M (S, {x = 1}) where S ≡ do x ≤ 20 ➞ x := x*2 ☐ x ≤ 20 ➞ x := x*3 od ?

If σ ⊨ … U₁ U₂

B₁ ∧ B₂  

B₁ ∧ ¬B₂ Executes S₁  

¬B₁ ∧ B₂    

¬B₁ ∧ ¬B₂.    

CS 536: Science of Programming	 – 2 –	 © James Sasaki, 2023

Illinois Institute of Technology	 Wed 2023-02-01, 13:05	 Practice 7

7.	 Consider the loop x := 1; do x ≥ 1 ➞ x := x+1 ☐ x ≥ 2 ➞ x := x-2 od. Can running it lead to an
infinite loop?

8.	 What are the possible final states of this program? (Assume n ≥ 0.)

	 x:= 0; y:= 0; k := 0; aa := 0; bb := 0; 
do k < n → x := x+a; k := k+1; aa := aa+1 
☐ k < n → y := y+b; k := k+1; bb := bb+1 
od

Problems 9 - 11 all refer to the Array Value Matching problem in the notes (Example 10).

9.	 In the notes, we approached the problem by asking "What do we do if b0[k0] < b1[k1] ?" and so
on for the other 5 tests. Another way to approach the problem is to ask "When do we want to
increment k0 ?" and so on for the other 2 indexes. If we take this approach, which of the three
programs 10(a), 10(b), or 10(c) do we wind up with?

10.	With the matching program, we can have an execution sequence that (say) does many
increments of k0, interspersed with occasional increments of k1 and k2. Rewrite the program
so that we do as many increments of k0 as possible for moving on to k1, and so on.

11.	Translate program 10(c) into a deterministic language like C, Java, or whatever.

CS 536: Science of Programming	 – 2 –	 © James Sasaki, 2023

Illinois Institute of Technology	 Wed 2023-02-01, 13:05	 Practice 7

Solution to Activity 7 (Nondeterministic Sequential Programs)

1.	 Nondeterminism makes it easier to (1) Find and combine partial solutions. (2) Delay

considering overlapping cases.

2.	 (Basic properties of nondeterministic if)

a.	 We need σ ⊨ BB, because if σ ⊨ ¬BB, then M (IF, σ) = {⊥e}. (In English: At least one guard
must be true; if none of them are true, we get a runtime error.)

b.	 The order of the guarded commands doesn’t matter: If more than one guard is true, we
nondeterministically choose one element from the set of corresponding statements, and in
a set, the elements aren’t ordered.

3.	 (Deterministic vs nondeterministic conditionals) Recall U₁ ≡ if B₁ ➞ S₁ ☐ B₂ ➞ S₂ fi and U₂ ≡ if B₁ 
then S₁ else if B₂ then S₂ fi.

a.	 Execution of U₁ and U₂:

b.	 U₁ and U₂ behave the same when one of B₁ and B₂ is true and the other is false. When both
are true, U₂ always executes S₁ but U₁ will execute S₁ or S₂. When both of B₁ and B₂ are false,
U₁ yields a runtime error but U₂ does nothing.

4.	 The nondeterministic do-od loop halts if BB is false at the top of the loop; an infinite loop occurs
when BB is always true at the top of the loop.

5.	 Say S₁ is run m times and S₂ is run n times. We know 0 ≤ m, n ≤ 1000 and m+n = 1000, but that’s
all. At each iteration, the choice is nondeterministic (i.e., unpredictable). The choice does not
have to be random (like with a coin flip), and the sequence of choices don’t have to follow an
pattern or distribution or be fair, etc. We can’t even assign a probability to any particular
sequence of choices (like “always choose S₁”).

6.	 [2023-02-22] {{x = 24}, {x = 27}, {x = 32}, {x = 36}, {x = 48}, {x = 54}}.

•	 Since x always has the form 2^n * 3^m, in the last iteration we must have had (for example)
x = 8 and multiplied by 3 to get 24. (Having x = 8 and multiplying by 2 to get 16 wouldn't
have stopped the loop.)

•	 The full possibilities for the last iteration are 8*3 = 24, 16*2 = 32, 16*3 = 48, 12*2 = 24, 12*3
= 36, 18*2 = 36, 18*3 = 54, 9*3 = 27.

•	 So altogether we get that x can be 24, 27, 32, 36, 48, or 54.

•	 The given answers of x = 12, 16, 18, 24, or 27 were the right ones when the test was x ≤ 10,
but I changed the tests to x ≤ 20 and forgot to change the answers, sigh.)

7.	 It’s possible that the loop could run forever. There’s no guaranteed fairness in nondeterministic
choice, so we could increment x by 1 many more times than we decrement it by 2.

8.	 The states are the ones with k = n; 0 ≤ aa ≤ n, 0 ≤ bb ≤ n, aa+bb=n, x = aa*a + bb*b:  
	 	 { {k = n, aa = α, bb = n–α, x = α*a + (n-α)*b} | 0 ≤ α ≤ n} }.

9.	 Program 10(b).

10.	 (Do sequences of same increment)

CS 536: Science of Programming	 – 2 –	 © James Sasaki, 2023

Illinois Institute of Technology	 Wed 2023-02-01, 13:05	 Practice 7

	 do b0[k0] < b1[k1] ➞ k0 := k0+1 od; 
do b1[k1] < b2[k2] ➞ k1 := k1+1 od; 
do b2[k2] < b0[k0] ➞ k2 := k2+1 od

11.	 (Omitted)

CS 536: Science of Programming	 – 2 –	 © James Sasaki, 2023

