Sequential Nondeterminism

CS 536: Science of Programming, Spring 2023
2023-02-22 p. 2
A. Why

- Nondeterminism can help us avoid unnecessary determinism.
- Nondeterminism can help us develop programs without worrying about overlapping cases.

B. Objectives

At the end of these practice questions you should

- Be able to evaluate nondeterministic conditionals and loops.

C. Nondeterminism

1. What are the reasons mentioned in the text for why using nondeterminism might be helpful?
2. Let $I F \equiv$ if $B_{1} \rightarrow S_{1} \square B_{2} \rightarrow S_{2} \square \ldots \square B_{n} \rightarrow S_{n} f i$ and $B B \equiv B_{1} \vee B_{2} \vee \ldots B_{n}$.
a. What property does $B B$ have to have for us to avoid a runtime error when executing IF?
b. Does it matter if we reorder the guarded commands? (E.g., if we swap $B_{1} \rightarrow S_{1}$ and $B_{2} \rightarrow S_{2}$.)
3. Let $U_{1} \equiv$ if $B_{1} \rightarrow S_{1} \square B_{2} \rightarrow S_{2}$ fi and $U_{2} \equiv$ if B_{1} then S_{1} else if B_{2} then S_{2} fi fi.
a. Fill in the table below to describe what happens for each combination of B_{1} and B_{2} being true or false.

If $\sigma \vDash \ldots$	U_{1}	U_{2}
$B_{1} \wedge B_{2}$		
$B_{1} \wedge \neg B_{2}$	Executes S_{1}	
$\neg B_{1} \wedge B_{2}$		
$\neg B_{1} \wedge \neg B_{2}$.		

b. For what kinds of states σ can statements U_{1} and U_{2} behave differently?
4. Let $D O \equiv d o B_{1} \rightarrow S_{1} \square B_{2} \rightarrow S_{2} \square \ldots \square B_{n} \rightarrow S_{n}$ od and $B B \equiv B_{1} \vee B_{2} \vee \ldots B_{n}$. What property does $B B$ have to have for us to avoid an infinite loop when executing $D O$?
5. Consider the loop $i:=0 ;$ do $i<1000 \rightarrow S_{1} ; i:=i+1 \square i<1000 \rightarrow S_{2} i:=i+1$ od (where neither S_{1} nor S_{2} modifies i). Do we know anything about how many times or in what pattern we will execute S_{1} vs S_{2} ?
6. What is $M(S,\{x=1\})$ where $S \equiv d o x \leq 20 \rightarrow x:=x * 2 \square x \leq 20 \rightarrow x:=x * 3$ od ?
7. Consider the loop $x:=1$; do $x \geq 1 \rightarrow x:=x+1 \square x \geq 2 \rightarrow x:=x-2$ od. Can running it lead to an infinite loop?
8. What are the possible final states of this program? (Assume $\mathrm{n} \geq 0$.)

$$
\begin{aligned}
& x:=0 ; y:=0 ; k:=0 ; a a:=0 ; b b:=0 ; \\
& \text { do } k<n \rightarrow x:=x+a ; k:=k+1 ; a a:=a a+1 \\
& \square k<n \rightarrow y:=y+b ; k:=k+1 ; b b:=b b+1 \\
& \text { od }
\end{aligned}
$$

Problems 9-11 all refer to the Array Value Matching problem in the notes (Example 10).
9. In the notes, we approached the problem by asking "What do we do if b0[k0] < b1[k1]?" and so on for the other 5 tests. Another way to approach the problem is to ask "When do we want to increment k0 ?" and so on for the other 2 indexes. If we take this approach, which of the three programs 10(a), 10(b), or 10 (c) do we wind up with?
10. With the matching program, we can have an execution sequence that (say) does many increments of $k 0$, interspersed with occasional increments of $k 1$ and $k 2$. Rewrite the program so that we do as many increments of $k 0$ as possible for moving on to $k 1$, and so on.
11. Translate program 10(c) into a deterministic language like C, Java, or whatever.

Solution to Activity 7 (Nondeterministic Sequential Programs)

1. Nondeterminism makes it easier to (1) Find and combine partial solutions. (2) Delay considering overlapping cases.
2. (Basic properties of nondeterministic if)
a. We need $\sigma \vDash B B$, because if $\sigma \vDash \neg B B$, then $M(I F, \sigma)=\left\{\perp_{e}\right\}$. (In English: At least one guard must be true; if none of them are true, we get a runtime error.)
b. The order of the guarded commands doesn't matter: If more than one guard is true, we nondeterministically choose one element from the set of corresponding statements, and in a set, the elements aren't ordered.
3. (Deterministic vs nondeterministic conditionals) Recall $U_{1} \equiv$ if $B_{1} \rightarrow S_{1} \square B_{2} \rightarrow S_{2}$ fi and $U_{2} \equiv$ if B_{1} then S_{1} else if B_{2} then $S_{2} f i$.
a. Execution of U_{1} and U_{2} :
b. $\quad U_{1}$ and U_{2} behave the same when one of B_{1} and B_{2} is true and the other is false. When both are true, U_{2} always executes S_{1} but U_{1} will execute S_{1} or S_{2}. When both of B_{1} and B_{2} are false, U_{1} yields a runtime error but U_{2} does nothing.
4. The nondeterministic do-od loop halts if $B B$ is false at the top of the loop; an infinite loop occurs when $B B$ is always true at the top of the loop.
5. Say S_{1} is run m times and S_{2} is run n times. We know $0 \leq m, n \leq 1000$ and $m+n=1000$, but that's all. At each iteration, the choice is nondeterministic (i.e., unpredictable). The choice does not have to be random (like with a coin flip), and the sequence of choices don't have to follow an pattern or distribution or be fair, etc. We can't even assign a probability to any particular sequence of choices (like "always choose S_{1} ").
6. [2023-02-22] $\{\{x=24\},\{x=27\},\{x=32\},\{x=36\},\{x=48\},\{x=54\}\}$.

- Since x always has the form $2^{\wedge} n * 3^{\wedge} m$, in the last iteration we must have had (for example) $x=8$ and multiplied by 3 to get 24 . (Having $x=8$ and multiplying by 2 to get 16 wouldn't have stopped the loop.)
- The full possibilities for the last iteration are $8 * 3=24,16 * 2=32,16 * 3=48,12 * 2=24,12 * 3$ $=36,18 * 2=36,18 * 3=54,9 * 3=27$.
- So altogether we get that x can be $24,27,32,36,48$, or 54 .
- The given answers of $x=12,16,18,24$, or 27 were the right ones when the test was $x \leq 10$, but I changed the tests to $x \leq 20$ and forgot to change the answers, sigh.)

7. It's possible that the loop could run forever. There's no guaranteed fairness in nondeterministic choice, so we could increment x by 1 many more times than we decrement it by 2 .
8. The states are the ones with $k=n ; 0 \leq a a \leq n, 0 \leq b b \leq n, a a+b b=n, x=a a * a+b b * b$:

$$
\left.\left\{\left\{k=n, a a=\alpha, b b=n-\alpha, x=\alpha^{*} a+(n-\alpha)^{*} b\right\} \mid 0 \leq \alpha \leq n\right\}\right\} .
$$

9. Program 10(b).
10. (Do sequences of same increment)
```
do b0[k0] < b1[k1] ->k0:= k0+1 od;
do b1[k1] < b2[k2] > k1 := k1+1 od;
do b2[k2] < b0[k0] ->k2 := k2+1 od
```

11. (Omitted)
