Denotational Semantics; Runtime Errors

CS 536: Science of Programming, Spring 2023

A. Why

- Our simple programming language is a model for the kind of constructs seen in actual languages.
- Our programs stand for state transformers.
- Runtime errors cause failure of normal program execution.

B. Outcomes

At the end of today, you should be able to:

- Give the denotational semantics of a program in a state.
- Say when and how evaluation of an expression or program fails due to a runtime error.

C. Problems

Denotational Semantics

Problems 1-4 are the denotational versions of the similar questions from Practice 5.

1. What is
a. $M(x:=x+1,\{x=5\})$?
b. $M(x:=x+1, \sigma)$? (Your answer will be symbolic.)
c. $M(x:=x+1 ; y:=2 * x,\{x=5\})$?
2. Let $I F \equiv$ if $x>0$ then $x:=x+1$ else $y:=2 * x$ fi.
a. Let $\sigma(x)=8$. What is $M(I F, \sigma)$?
b. Repeat, if $\sigma(x)=0$.
c. Repeat, if we don't know what $\sigma(x)$ is. (Your answer will be symbolic and have cases.)
3. Let $I F \equiv$ if $x>0$ then $x:=x / z$ fi.
a. What is $M(I F, \sigma)$ if $\sigma=\{x=8, z=3\}$? (Don't forget, integer division truncates)
b. What is $M(I F,\{x=-2, z=3\})$?
4. Let $W \equiv$ while $x<3$ do S od where $S \equiv x:=x+1 ; y:=y^{*} x$.
a. Evaluate the body S in an arbitrary state τ and give $M(S, \tau)$.
b. What is $M(W, \sigma)$ if $\sigma \vDash x=4 \wedge y=1$?
c. What is $M(W, \sigma)$ if where $\sigma \vDash x=1 \wedge y=1$?
5. Let W be the program from question 4.
a. What (if any) are the states such that $M(W, \sigma)=\{\perp\}$?
b. Let V be the program W except that it uses $x=3$ instead of $x<3$. What (if any) are the states such that $M(V, \sigma)=\{\perp\}$?

Runtime Errors

For Problems 6 and 7, remember that we're using integer division and square root that truncate toward zero. E.g., $2 / 3=0,4 / 3=1, \operatorname{sqrt}(3)=1, \operatorname{sqrt}(8)=2$, sqrt of (15) $=3$, etc.
6. Let $S \equiv x:=y / b[x]$ and let $\sigma=\{b=(3,0,-2,4), x=\beta, y=13\}$. Find all σ such that $M(S, \sigma)=$ $\left\{\perp_{e}\right\}$.
7. Repeat the previous problem on $S \equiv y:=y / \operatorname{sqrt}(b[x])$ and $\sigma=\{b=(0,9,12,-3,4), x=\beta, y=2\}$
8. What are the results of replacing σ below by \perp ? (This is for arbitrary S, S_{1}, S_{2}, β, and τ.)
a. $M(S, \sigma)$
b. $\sigma[x \mapsto \beta]$
c. $M\left(S_{1} ; S_{2}, \tau\right)=M\left(S_{2}, \sigma\right)=\tau_{1}$, where $\sigma=M\left(S_{1}, \tau\right)$.
d. $\sigma \vDash 2<3$
e. $\sigma \nRightarrow 3<1$

Solution to Practice 6 (Denotational Semantics; Runtime Errors)

Denotational Semantics

1. (Calculate meanings of programs)
a. $M(x:=x+1,\{x=5\})=\{\{x=5\}[x \mapsto\{x=5\}(x+1)]\}=\{\{x=6\}\}$
b. $M(x:=x+1, \sigma)=\{\sigma[x \mapsto \sigma(x+1)]\}=\{\sigma[x \mapsto \sigma(x)+1]\}$
c. $M(x:=x+1 ; y:=2 * x,\{x=5\})$
$=M\left(y:=2^{*} x, M(x:=x+1,\{x=5\})\right.$
$=M(y:=2 * x,\{x=6\})$, from part (a)
$=\{\{x=6\}[y \mapsto \beta]\}$ where $\beta=\{x=6\}\left(2^{*} x\right)=12$
$=\{\{x=6, y=12\}\}$
2. Let $I F \equiv$ if $x>0$ then $x:=x+1$ else $y:=2^{*} x$ fi.
a. If $\sigma(x)=8$, then $\sigma(x>0)=T$, so $M(I F, \sigma)=M(x:=x+1, \sigma)=\{\sigma[x \mapsto \sigma(x+1)]\}=\{\sigma[x \mapsto 9]\}$
b. If $\sigma(x)=0$, then $\sigma(x>0)=F$, so $M(I F, \sigma)=M\left(y:=2^{*} x, \sigma\right)=\left\{\sigma\left[y \mapsto \sigma\left(2^{*} x\right)\right]\right\}=\{\sigma[y \mapsto 0]\}$
c. If $\sigma(x)>0$ then $M(S, \sigma)=M(x:=x+1, \sigma)=\{\sigma[x \mapsto \sigma(x)+1]\}$

If $\sigma(x) \leq 0$ then $M(S, \sigma)=M\left(y:=2^{*} x, \sigma\right)=\{\sigma[y \mapsto 2 \times \sigma(x)]\}$
3. Let $I F \equiv$ if $x>0$ then $x:=x / z f i \equiv$ if $x>0$ then $x:=x / z$ else skip fi
a. If $\sigma=\{x=8, z=3\}$, then $\sigma(x>0)=T$, so $M(I F, \sigma)=M(x:=x / z, \sigma)=\{\sigma[x \mapsto \beta]\}$ where $\beta=\sigma(x / z)$ $=\sigma[x \mapsto 8 \div 3]=\sigma[x \mapsto 2]$, since integer division truncates.
b. If $\sigma=\{x=-2, z=3\}$ then $\sigma(x>0)=F$, so $M(I F, \sigma)=M($ skip, $\sigma)=\{\sigma\}$.
4. Let $W \equiv$ while $x<3$ do S od where $S \equiv x:=x+1 ; y:=y^{*} x$.
a. For arbitrary τ,

$$
\begin{aligned}
& M(S, \tau)=M\left(x:=x+1 ; y:=y^{*} x, \tau\right) \\
& \quad=M\left(y:=y^{*} x, \tau[x \mapsto \tau(x)+1]\right) \\
& \quad=\{\tau[x \mapsto \tau(x)+1][y \mapsto \beta]\} \text { where } \beta=\tau[x \mapsto \tau(x)+1]\left(y^{*} x\right)=\tau(y) \times(\tau(x)+1)
\end{aligned}
$$

b. If $\sigma \vDash x=4 \wedge y=1$, then $\sigma(x<3)=F$ so $M(W, \sigma)=\{\sigma\}$.
c. If $\sigma \vDash x=1 \wedge y=1$, then $\sigma(x<3)=T$ so we have at least one iteration to do.

Let $\sigma_{0}=\sigma$, let $\sigma_{1}=M\left(S, \sigma_{0}\right)=\sigma_{0}(y) \times\left(\sigma_{0}(x)+1\right)$, and let $\sigma_{2}=M\left(S, \sigma_{1}\right)=\sigma_{1}(y) \times\left(\sigma_{1}(x)+1\right)$.
Then,

$$
\begin{aligned}
& \sigma_{0}=\sigma[x \mapsto 1][y \mapsto 1] \\
& \sigma_{1}=M\left(S, \sigma_{0}\right)=\sigma_{0}\left[x \mapsto \sigma_{0}(x)+1\right]\left[y \mapsto \sigma_{0}(y) \times\left(\sigma_{0}(x)+1\right)\right]=\sigma[x \mapsto 2][y \mapsto 2] \\
& \sigma_{2}=M\left(S, \sigma_{1}\right)=\sigma_{1}[x \mapsto 2+1][y \mapsto 2 \times(2+1)]=\sigma[x \mapsto 3][y \mapsto 6]
\end{aligned}
$$

Since σ_{0} and $\sigma_{1} \vDash x<3$ but $\sigma_{2} \vDash x \geq 3$, we have $M(W, \sigma)=\left\{\sigma_{2}\right\}=\{\sigma[x \mapsto 3][y \mapsto 6]\}$.
5. We have $W \equiv$ while $x<3$ do S od where $S \equiv x:=x+1 ; y:=y^{*} x$.
a. There are no states such that $M(W, \sigma)=\{\perp\}$. If $\sigma(x) \geq 3$, then W halts immediately and $M(W, \sigma)$ $=\{\sigma\}$. If $\sigma(x)<3$, then W will run until $x=3$, modifying y as appropriate.
b. Let $W \equiv$ while $x=3$ do S od where $S \equiv x:=x+1 ; y:=y^{*} x$. The states that cause $\mathrm{M}(\mathrm{W}, \sigma)=\{\perp\}$ are the ones in which $\sigma(x)>3$; since x only increases, it can never become 3 . On the other hand, if $\sigma(x) \leq 3$, then W will do $3-x$ iterations and halt when $x=3$.

Runtime Errors

6. We have $S \equiv x:=y / b[x]$ and $\sigma=\{b=(3,0,-2,4), x=\beta, y=13\}$, and we want all σ such that $M(S, \sigma)=\left\{\perp_{e}\right\}$.
$M(S, \sigma)=M(x:=y / b[x], \sigma)=\{\sigma[x \mapsto \delta]\}$ where $\delta=\sigma(y / b[x])=13 / \sigma(b)(\beta)$. To get $M(S, \sigma)=\left\{\perp_{e}\right\}$, then, we need $\delta=\perp_{e}$.
So $\delta=\perp_{e}$

$$
\begin{array}{ll}
\text { iff } \sigma(b)(\beta)=\perp_{e} \text { or } \sigma(b)(\beta)=0 & \\
\text { iff }(\beta \text { is out of range for } \sigma(b)) \text { or }(\sigma(b)(\beta)=0) & (b[x] \text { fails if } x \text { is out of range) } \\
\text { iff }(\beta<0 \text { or } \beta \geq 4) \text { or }(\sigma(b)(\beta)=0) & (\sigma(b) \text { has size } 4) \\
\text { iff }(\beta<0 \text { or } \beta \geq 4) \text { or }(\beta=1) & (b[1] \text { is the only element = } 0) \\
\text { iff } \neg(\beta=0,2, \text { or } 3) &
\end{array}
$$

7. Repeat, with $S \equiv y:=y / \operatorname{sqrt}(b[x])$ and $\sigma=\{b=(0,9,12,-3,4), x=\beta, y=2\}$.

We have $M(S, \sigma)=M(y:=y / \operatorname{sqrt}(b[x]), \sigma)=\{\sigma[y \mapsto \beta]\}$ where $\beta=\sigma(y / \operatorname{sqrt}(b[x]))$. Then,
$M(S, \sigma)=\left\{\perp_{e}\right\}$
iff $\sigma[y \mapsto \beta]=\perp_{e}$
iff $\beta=\perp_{e}$ (since $\sigma \neq \perp$)
iff $\beta=\sigma(y / \operatorname{sqrt}(b[x]))=\sigma(y) / \operatorname{sqrt}(\sigma(b)(\sigma(b[x])))=\perp_{e}$
iff $\sigma(b)(\sigma(b[x]))=\perp_{e}$ or $\sigma(b)(\sigma(b[x])) \leq 0$ (to get sqrt(negative number) or division by 0)
iff $\sigma(b[x])$ is out of range for b, or $\sigma(x)=0$ or 3 (since $b[0]=0$ and $b[3]<0$)
iff $\sigma(x)<0$ or >4 or is 0 or is 3
iff $\sigma(x) \leq 0$ or $=3$ or >4
8. (Using \perp as a state) Replacing σ with \perp,
a. $M(S, \perp)=\{\perp\}$
b. $\perp[x \mapsto \beta]=\perp$
c. $M\left(S_{1} ; S_{2}, \tau_{0}\right)=M\left(S_{2}, \perp\right)=\perp$
d. $\perp \not \vDash 2<3$
e. $\perp \not \vDash 3<1$

