Denotational Semantics; Runtime Errors

CS 536: Science of Programming, Spring 2023

A. Why

- Our simple programming language is a model for the kind of constructs seen in actual languages.
- Our programs stand for state transformers.
- Runtime errors cause failure of normal program execution.

B. Outcomes

At the end of today, you should be able to:

- Give the denotational semantics of a program in a state.
- Say when and how evaluation of an expression or program fails due to a runtime error.

C. Problems

Denotational Semantics

Problems 1 – 4 are the denotational versions of the similar questions from Practice 5.

- 1. What is
 - a. $M(x := x+1, \{x = 5\})$?
 - b. $M(x := x+1, \sigma)$? (Your answer will be symbolic.)
 - c. $M(x := x+1; y := 2*x, \{x = 5\})$?
- 2. Let *IF* = *if* x > 0 *then* x := x+1 *else* y := 2*x *fi*.
 - a. Let $\sigma(x) = 8$. What is $M(IF, \sigma)$?
 - b. Repeat, if $\sigma(x) = 0$.
 - c. Repeat, if we don't know what $\sigma(x)$ is. (Your answer will be symbolic and have cases.)
- 3. Let IF = if x > 0 then x := x/z fi.
 - a. What is $M(IF, \sigma)$ if $\sigma = \{x = 8, z = 3\}$? (Don't forget, integer division truncates)
 - b. What is $M(IF, \{x = -2, z = 3\})$?
- 4. Let *W* = *while x* < 3 *do S od* where *S* = *x* := *x*+1; *y* := *y***x*.
 - a. Evaluate the body *S* in an arbitrary state τ and give $M(S, \tau)$.
 - b. What is $M(W, \sigma)$ if $\sigma \models x = 4 \land y = 1$?
 - c. What is $M(W, \sigma)$ if where $\sigma \models x = 1 \land y = 1$?

- 5. Let *W* be the program from question 4.
 - a. What (if any) are the states such that $M(W, \sigma) = \{\bot\}$?
 - b. Let *V* be the program *W* except that it uses x = 3 instead of x < 3. What (if any) are the states such that $M(V, \sigma) = \{ \perp \}$?

Runtime Errors

For Problems 6 and 7, remember that we're using integer division and square root that truncate toward zero. E.g., 2/3 = 0, 4/3 = 1, sqrt(3) = 1, sqrt(8) = 2, sqrt of (15) = 3, etc.

- 6. Let S = x := y / b[x] and let $\sigma = \{b = (3, 0, -2, 4), x = \beta, y = 13\}$. Find all σ such that $M(S, \sigma) = \{\perp_e\}$.
- 7. Repeat the previous problem on S = y := y / sqrt(b[x]) and $\sigma = \{b = (0, 9, 12, -3, 4), x = \beta, y = 2\}$
- 8. What are the results of replacing σ below by \perp ? (This is for arbitrary *S*, *S*₁, *S*₂, β , and τ .)
 - a. $M(S, \sigma)$
 - b. *σ[x*↦β]
 - c. $M(S_1; S_2, \tau) = M(S_2, \sigma) = \tau_1$, where $\sigma = M(S_1, \tau)$.
 - d. $\sigma \models 2 < 3$
 - e. σ ⊭ 3 < 1

Solution to Practice 6 (Denotational Semantics; Runtime Errors)

Denotational Semantics

- 1. (Calculate meanings of programs)
 - a. $M(x := x+1, \{x = 5\}) = \{\{x = 5\} | x \mapsto \{x = 5\}(x+1)\}\} = \{\{x = 6\}\}\$
 - b. $M(x := x+1, \sigma) = \{\sigma[x \mapsto \sigma(x+1)]\} = \{\sigma[x \mapsto \sigma(x)+1]\}$
 - c. $M(x := x+1; y := 2*x, \{x = 5\})$ = $M(y := 2*x, M(x := x+1, \{x = 5\}))$ = $M(y := 2*x, \{x = 6\})$, from part (a) = $\{\{x = 6\}[y \mapsto \beta]\}$ where $\beta = \{x = 6\}(2*x) = 12$ = $\{\{x = 6, y = 12\}\}$
- 2. Let IF = if x > 0 then x := x+1 else $y := 2^*x$ fi.
 - a. If $\sigma(x) = 8$, then $\sigma(x > 0) = T$, so $M(IF, \sigma) = M(x := x+1, \sigma) = \{\sigma[x \mapsto \sigma(x+1)]\} = \{\sigma[x \mapsto 9]\}$
 - b. If $\sigma(x) = 0$, then $\sigma(x > 0) = F$, so $M(IF, \sigma) = M(y := 2*x, \sigma) = \{\sigma[y \mapsto \sigma(2*x)]\} = \{\sigma[y \mapsto 0]\}$
 - c. If $\sigma(x) > 0$ then $M(S, \sigma) = M(x := x+1, \sigma) = \{\sigma[x \mapsto \sigma(x)+1]\}$ If $\sigma(x) \le 0$ then $M(S, \sigma) = M(y := 2*x, \sigma) = \{\sigma[y \mapsto 2 \times \sigma(x)]\}$
- 3. Let IF = if x > 0 then x := x/z fi = if x > 0 then x := x/z else skip fi
 - a. If $\sigma = \{x = 8, z = 3\}$, then $\sigma(x > 0) = T$, so $M(IF, \sigma) = M(x := x/z, \sigma) = \{\sigma[x \mapsto \beta]\}$ where $\beta = \sigma(x/z) = \sigma[x \mapsto 8 \div 3] = \sigma[x \mapsto 2]$, since integer division truncates.
 - b. If $\sigma = \{x = -2, z = 3\}$ then $\sigma(x > 0) = F$, so $M(IF, \sigma) = M(skip, \sigma) = \{\sigma\}$.
- 4. Let W = while x < 3 do S od where S = x := x+1; y := y*x.
 - a. For arbitrary τ , $M(S, \tau) = M(x := x+1; y := y^*x, \tau)$ $= M(y := y^*x, \tau[x \mapsto \tau(x)+1])$ $= \{ \tau[x \mapsto \tau(x)+1][y \mapsto \beta] \}$ where $\beta = \tau[x \mapsto \tau(x)+1](y^*x) = \tau(y) \times (\tau(x)+1)$
 - b. If $\sigma \models x = 4 \land y = 1$, then $\sigma(x < 3) = F$ so $M(W, \sigma) = \{\sigma\}$.

c. If $\sigma \models x = 1 \land y = 1$, then $\sigma(x < 3) = T$ so we have at least one iteration to do. Let $\sigma_0 = \sigma$, let $\sigma_1 = M(S, \sigma_0) = \sigma_0(y) \times (\sigma_0(x)+1)$, and let $\sigma_2 = M(S, \sigma_1) = \sigma_1(y) \times (\sigma_1(x)+1)$. Then,

 $\sigma_0 = \sigma[x \mapsto 1][y \mapsto 1]$ $\sigma_1 = M(S, \sigma_0) = \sigma_0[x \mapsto \sigma_0(x) + 1][y \mapsto \sigma_0(y) \times (\sigma_0(x) + 1)] = \sigma[x \mapsto 2][y \mapsto 2]$ $\sigma_2 = M(S, \sigma_1) = \sigma_1[x \mapsto 2 + 1][y \mapsto 2 \times (2 + 1)] = \sigma[x \mapsto 3][y \mapsto 6]$ Since σ_0 and $\sigma_1 \models x < 3$ but $\sigma_2 \models x \ge 3$, we have $M(W, \sigma) = \{\sigma_2\} = \{\sigma[x \mapsto 3][y \mapsto 6]\}.$

- 5. We have *W* = *while x* < 3 *do S od* where *S* = *x* := *x*+1; *y* := *y***x*.
 - a. There are no states such that $M(W, \sigma) = \{\bot\}$. If $\sigma(x) \ge 3$, then W halts immediately and M(W, σ) = { σ }. If $\sigma(x) < 3$, then W will run until x=3, modifying y as appropriate.
 - b. Let W = while x = 3 do S od where S = x := x+1; y := y*x. The states that cause M(W, σ) = { \perp } are the ones in which $\sigma(x) > 3$; since x only increases, it can never become 3. On the other hand, if $\sigma(x) \le 3$, then W will do 3-x iterations and halt when x = 3.

Runtime Errors

- 6. We have S = x := y / b[x] and $\sigma = \{b = (3, 0, -2, 4), x = \beta, y = 13\}$, and we want all σ such that $M(S, \sigma) = \{\perp_e\}$. $M(S, \sigma) = M(x := y/b[x], \sigma) = \{\sigma[x \mapsto \delta]\}$ where $\delta = \sigma(y/b[x]) = 13/\sigma(b)(\beta)$. To get $M(S, \sigma) = \{\perp_e\}$, then, we need $\delta = \perp_e$. So $\delta = \perp_e$ iff $\sigma(b)(\beta) = \perp_e$ or $\sigma(b)(\beta) = 0$ iff $(\beta \text{ is out of range for } \sigma(b))$ or $(\sigma(b)(\beta) = 0)$ (b[x] fails if x is out of range) iff $(\beta < 0 \text{ or } \beta \ge 4)$ or $(\sigma(b)(\beta) = 0)$ ($\sigma(b)$ has size 4) iff $(\beta < 0 \text{ or } \beta \ge 4)$ or $(\beta = 1)$ (b[1] is the only element = 0) iff $\neg(\beta = 0, 2, \text{ or } 3)$
- 7. Repeat, with S = y := y / sqrt(b[x]) and $\sigma = \{b = (0, 9, 12, -3, 4), x = \beta, y = 2\}$. We have $M(S, \sigma) = M(y := y/sqrt(b[x]), \sigma) = \{\sigma[y \mapsto \beta]\}$ where $\beta = \sigma(y/sqrt(b[x]))$. Then, $M(S, \sigma) = \{\pm_e\}$ iff $\sigma[y \mapsto \beta] = \pm_e$ iff $\beta = \pm_e$ (since $\sigma \neq \pm$) iff $\beta = \sigma(y/sqrt(b[x])) = \sigma(y) / sqrt(\sigma(b)(\sigma(b[x]))) = \pm_e$ iff $\sigma(b)(\sigma(b[x])) = \pm_e$ or $\sigma(b)(\sigma(b[x])) \leq 0$ (to get sqrt(negative number) or division by 0) iff $\sigma(b[x])$ is out of range for b, or $\sigma(x) = 0$ or 3 (since b[0] = 0 and b[3] < 0) iff $\sigma(x) < 0$ or > 4 or is 0 or is 3 iff $\sigma(x) \leq 0$ or = 3 or >4
- 8. (Using \perp as a state) Replacing σ with \perp ,

a.
$$M(S, \perp) = \{\perp\}$$

- b. $\bot[x \mapsto \beta] = \bot$
- c. $M(S_1; S_2, \tau_0) = M(S_2, \bot) = \bot$
- d. ⊥ ⊭ 2 < 3
- e. ⊥ ⊭ 3 < 1