Satisfaction, Validity, and State Updates CS 536: Science of Programming, Fall 2023

A. Why

- A predicate is satisfied or unsatisfied relative to a state.
- A predicate is valid if it is satisfied in all states.
- State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of today, you should

 Know how to check a predicate for satisfaction in a state, how to check a predicate for validity, and know how to update a state.

C. Questions

- 1. Say u and v stand for variables (possibly the same variable) and α and β are values (possibly equal). When is $\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha]$? Hint: There are four cases because maybe u = vand maybe $\alpha = \beta$.
- 2. Let $\sigma(b) = (7, 5, 12, 16)$. Assume out-of-bound indexes cause runtime errors.
 - a. Does $\sigma \models \exists k . 0 \le k \land k+1 < size(b) \land b[k] < b[k+1]$? If so, what was your witness value for k?
 - b. Does $\sigma \models \exists k . 0 \le k \cdot 1 \land k + 1 < size(b) \land b[k \cdot 1] < b[k] < b[k + 1]?$ If so, what was your witness value for k?
 - c. Does $\sigma \models \forall k . 0 \le k \le 4 \rightarrow b[k] > 0$?
 - d. If $\sigma(k) = -5$, then does $\sigma \models \exists k . 0 \le k \le 4 \land b[k] \ge 0$?
- 3. For each of the situations below, fill in the blanks to describe when the situation holds.

Fill in _____1 with "some", "every", or "this" Fill in _____ 2 with "some" or "every" Fill in _____3 with " $\sigma(x)$ must be undefined", " $\sigma(x)$ must be defined and $\sigma \models p$ ", or "nothing of $\sigma(x)''$ Fill in _____ 4 with " $\models p$ " or " $\neq p$ "

a. $\sigma \models (\exists x \in U, p)$ iff for _____1 state σ and _____2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____4

- b. $\sigma \models (\forall x \in U. p)$ iff for _____1 state σ and _____2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____4
- c. $\sigma \models (\exists x \in U. p)$ requires _____3.
- d. $\sigma \models (\forall x \in U. p)$ requires _____ 3.
- e. $\sigma \not\models (\exists x \in U. p)$ iff for _____1 state σ for _____2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____4
- f. $\sigma \nvDash (\forall x \in U. p)$ iff for _____1 state σ for _____2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ ____4
- g. \neq ($\forall x \in U. p$) iff for _____2 state σ , we have σ _____4 ($\forall x \in U. p$).
- h. $\not\models (\exists x \in U. p) \text{ iff for } ___2 \text{ state } \sigma, \text{ we have } \sigma ___4 (\exists x \in U. p).$
- i. $\not\models$ ($\forall x \in U. p$) iff for _____2 state σ , and for _____2 $\alpha \in U$, we have $\sigma[x \mapsto \alpha]$ _____4
- j. $\models (\exists x \in U . (\forall y \in V. p)) \text{ iff for } ___1 \text{ state } \sigma, \text{ for } ___2 \alpha \in U, \text{ and for } ___2 \beta \in V,$ we have $\sigma[x \mapsto \alpha][y \mapsto \beta] ___4$
- k. $\not\models (\exists x \in U . (\forall y \in V . p)) \text{ iff for } ____1 \text{ state } \sigma, \text{ for } ____2 \alpha \in U, \text{ and for } ____2 \beta \in V,$ we have $\sigma[x \mapsto \alpha][y \mapsto \beta] [\models | \models \neg] p.$
- I. $\models (\forall x \in U . (\exists y \in V . p)) \text{ iff for } ___1 \text{ state } \sigma, \text{ for } ___2 \alpha \in U, \text{ and for } ___2 \beta \in V,$ we have $\sigma[x \mapsto \alpha][y \mapsto \beta] \models |= \neg] p$.
- m. $\nvDash (\forall x \in U . (\exists y \in V . p))$ iff for _____1 state σ , for _____2 $\alpha \in U$, and for _____2 $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ _____4
- n. $\sigma \nvDash \exists x \in U$. $(\exists y \in V . p(x, y)) \rightarrow (\exists z \in W . q(x, z))$ iff for _____1 state σ , for _____2 $\alpha \in U$, if for _____2 $\beta \in V$, $\sigma[x \mapsto \alpha][y \mapsto \beta]$ _____4 p(x, y), then for _____2 $\delta \in W$, $\sigma[x \mapsto \alpha][[z \mapsto \delta]$ _____4 q(x, z).
- 4. Let $p = \exists y . \forall x . f(x) > y$, and let $q = \forall x . \exists y . f(x) > y$. (As usual, assume a domain of \mathbb{Z} .)
 - a. Is it the case that for any *f*, if *p* is valid then so is *q*? If so, explain why. If not, give a definition of f(x) and show $\models p$ but $\nvDash q$.
 - b. (The converse.) Is it the case that for any *f*, if *q* is valid then so is *p*? If so, explain why. If not, give a definition of f(x) and show $\models q$ but $\neq p$.

CS 536: Solution to Activity 4 (Satisfaction, Validity, and State Updates)

- 1. $\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha]$ iff $u \neq v$ or $\alpha = \beta$, or more precisely, iff $u \neq v$ or $(u = v \text{ and }) \alpha = \beta$.
- 2. (Quantified statements over arrays) Let $\sigma(b) = (7, 5, 12, 16)$.
 - a. Yes, $\sigma \models \exists k . 0 \le k \land k+1 < size(b) \land b[k] < b[k+1]$ with 1 and 2 as possible witnesses for k.
 - b. Yes, $\sigma \models \exists k . 0 \le k-1 \land k+1 \le size(b) \land b[k-1] \le b[k] \le b[k+1]$ with 2 as the only witness that works.
 - c. Yes, $\sigma \models \forall k . 0 \le k \le 4 \rightarrow b[k] \ge 0$, since b[0], b[1], b[2], and b[3] are all positive in σ . Recall we're looking for an α such that $\sigma[k \mapsto \alpha] \models 0 \le k \le 4 \rightarrow b[k] \ge 0$, and for $\sigma[k \mapsto \alpha]$, it doesn't matter whether $\sigma(k)$ has a value or what that value is.

No: $\sigma \nvDash \forall k . 0 \le k \le 4 \land b[k] \ge 0$ because there are plenty of values for k that are not in the range 0 through 3. (So whether the body uses \rightarrow or \land is extremely important.)

- d. Yes, $\sigma \models \exists k . 0 \le k \le 4 \land b[k] > 0$, with witnesses k = 0, 1, 2, or 3. (Again, $\sigma(k)$ is irrelevant.) Yes (and perhaps surprisingly), $\sigma \models \exists k . 0 \le k < 3 \rightarrow b[k] < 0$ with witness k = 3: $\sigma[k \mapsto 3]$ satisfies $0 \le k < 3 \rightarrow b[k] < 0$ because 3 makes $0 \le k < 3$ false, so the implication is true even though the value of b[3] is positive. (I'm avoiding k outside the range of b because those *b*[*k*] cause runtime errors.)
- 3. (Validity/invalidity of quantified predicates)
 - a. this σ , some α , $\models p$
 - b. this σ , every α , $\models p$
 - c. nothing of $\sigma(x)$
 - d. nothing of $\sigma(x)$
 - e. this σ , every α , $\nvDash p$
 - f. this σ , some α , $\neq p$
 - q. some σ , \nvDash
 - h. some σ , \nvDash
 - i. some σ , some α , $\nvDash p$
 - j. every σ , some α , every β , $\models p$
 - k. some σ , every α , some β , $\neq p$
 - I. every σ , every α , some β , $\models p$
 - m. some σ , some α , every β , $\neq p$
 - n. this σ , every α , some β , $\models q$, every δ , $\neq p$ because the negation of $(\exists x . (\exists y...) \rightarrow (\exists z...)))$ is $(\forall x . ((\exists y ...) \land \neg (\exists z ...))).$

- 4. $(\exists \forall \text{ predicates versus } \forall \exists \text{ predicates, specifically } p = \exists y . \forall x . f(x) > y, \text{ and } q = \forall x . \exists y . f(x) > y)$
 - a. The relation does hold: $\models p$ implies $\models q$. The short explanation is that for satisfaction of q, for each value α for x, we need to find a value β for y that satisfies the body f(x) > y. Now, p says that there's a value that works for every α , so we can use that value for β .

In more detail, assume *p* is valid: for every state σ , there is some value β where for every value α , $\sigma[y \mapsto \beta][x \mapsto \alpha] \models f(x) > y$.

To show that *q* is valid, take an arbitrary state τ with value δ for *x*. We need a witness value for the $\exists y$; since $\tau \models p$, there's a β for the $\exists y$ of *p*, and we'll use that as the witness for the $\exists y$ in *q*. To satisfy *q*, we need $\tau[x \mapsto \delta][y \mapsto \beta] \models f(x) > y$. Since $x \neq y$, it doesn't matter whether we update using *x* and then *y* or vice versa. So it's sufficient to know $\tau[y \mapsto \beta]$ [$x \mapsto \delta$] $\models f(x) > y$, and we know that from $\tau \models p$.

b. The relation does not hold: We can have $\models q$ but $\not\models p$. An easy example is f(x) = x, then validity of p would require us to find a value in \mathbb{Z} for y that is > every value of x in \mathbb{Z} , but no such value exists.

As an aside, if use an arbitrary predicate over *x* and *y* as the body of the $\exists \forall$ and $\forall \exists$ predicates, then the relation holds for some predicates and not for others. For example, $\exists x.\forall y . x \leq y^2$ and $\forall y.\exists x. x \leq y^2$ both hold.