
Illinois Institute of Technology	 Mon Sat 2023-01-23, 13:50	 Practice 4

  Satisfaction, Validity, and State Updates

  CS 536: Science of Programming, Fall 2023

A. Why

• A predicate is satisfied or unsatisfied relative to a state.

• A predicate is valid if it is satisfied in all states.

• State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of today, you should

• Know how to check a predicate for satisfaction in a state, how to check a predicate for validity,
and know how to update a state.

C. Questions

 1.	 Say u and v stand for variables (possibly the same variable) and α and β are values (possibly

equal). When is σ[u ↦ α][v ↦ β] = σ[v ↦ β][u ↦ α]? Hint: There are four cases because maybe u ≡ v

and maybe α = β.

2.	 Let σ(b) = (7, 5, 12, 16). Assume out-of-bound indexes cause runtime errors.

a.	 Does σ ⊨ ∃ k . 0 ≤ k ∧ k+1 < size(b) ∧ b[k] < b[k+1]? If so, what was your witness value for k?

b.	 Does σ ⊨ ∃ k . 0 ≤ k-1 ∧ k+1 < size(b) ∧ b[k-1] < b[k] < b[k+1]? If so, what was your witness

value for k?

c.	 Does σ ⊨ ∀ k . 0 ≤ k < 4 → b[k] > 0?

d.	 If σ(k) = -5, then does σ ⊨ ∃ k . 0 ≤ k < 4 ∧ b[k] > 0?

3.	 For each of the situations below, fill in the blanks to describe when the situation holds.

	 Fill in _____ ₁ with “some”, “every”, or “this” 

Fill in _____ ₂ with “some” or “every” 

Fill in _____ ₃ with “σ(x) must be undefined”, “σ(x) must be defined and σ ⊨ p”, or “nothing

of σ(x)” 

Fill in _____ ₄ with “⊨ p” or “⊭ p”

a.	 σ ⊨ (∃ x ∈ U. p) iff for _____ ₁ state σ and _____ ₂ α ∈ U, σ[x ↦ α] _____ ₄

CS 536: Science of Programming	 – –	 © James Sasaki, 20231

Illinois Institute of Technology	 Mon Sat 2023-01-23, 13:50	 Practice 4

b.	 σ ⊨ (∀ x ∈ U. p) iff for _____ ₁ state σ and _____ ₂ α ∈ U, σ[x ↦ α] _____ ₄

c.	 σ ⊨ (∃ x ∈ U. p) requires _____ ₃ .

d.	 σ ⊨ (∀ x ∈ U. p) requires _____ ₃ .

e.	 σ ⊭ (∃ x ∈ U. p) iff for _____ ₁ state σ for _____ ₂ α ∈ U, σ[x ↦ α] _____ ₄ 

f.	 σ ⊭ (∀ x ∈ U. p) iff for _____ ₁ state σ for _____ ₂ α ∈ U, σ[x ↦ α] _____ ₄ 

g.	 ⊭ (∀ x ∈ U. p) iff for _____ ₂ state σ, we have σ _____ ₄ (∀ x ∈ U. p).

h.	 ⊭ (∃ x ∈ U. p) iff for _____ ₂ state σ, we have σ _____ ₄ (∃ x ∈ U. p).

i.	 ⊭ (∀ x ∈ U. p) iff for _____ ₂ state σ, and for _____ ₂ α ∈ U, we have σ[x ↦ α] _____ ₄ 

j.	 ⊨ (∃ x ∈ U . (∀ y ∈ V . p)) iff for _____ ₁ state σ, for _____ ₂ α ∈ U, and for _____ ₂ β ∈ V, 

we have σ[x ↦ α] [y ↦ β] _____ ₄ 

k.	 ⊭ (∃ x ∈ U . (∀ y ∈ V . p)) iff for _____ ₁ state σ, for _____ ₂ α ∈ U, and for _____ ₂ β ∈ V, 

we have σ[x ↦ α] [y ↦ β] [⊨ | ⊨ ¬] p.

l.	 ⊨ (∀ x ∈ U . (∃ y ∈ V . p)) iff for _____ ₁ state σ, for _____ ₂ α ∈ U, and for _____ ₂ β ∈ V, 

we have σ[x ↦ α] [y ↦ β] [⊨ | ⊨ ¬] p.

m.	 ⊭ (∀ x ∈ U . (∃ y ∈ V . p)) iff for _____ ₁ state σ, for _____ ₂ α ∈ U, and for _____ ₂ β ∈ V, 

we have σ[x ↦ α] [y ↦ β] _____ ₄ 

n.	 σ ⊭ ∃ x ∈ U . (∃ y ∈ V . p(x, y)) → (∃ z ∈ W . q(x, z)) iff for _____ ₁ state σ, for _____ ₂ α ∈ U, if

for _____ ₂ β ∈ V, σ[x ↦ α][y ↦ β] _____ ₄ p(x, y), then for _____ ₂ δ ∈ W, σ[x ↦ α][[z ↦ δ] _____ ₄

q(x, z).

4.	 Let p ≡ ∃ y . ∀ x . f(x) > y, and let q ≡ ∀ x . ∃ y . f(x) > y. (As usual, assume a domain of ℤ.)

a.	 Is it the case that for any f, if p is valid then so is q? If so, explain why. If not, give a

definition of f(x) and show ⊨ p but ⊭ q.

b.	 (The converse.) Is it the case that for any f, if q is valid then so is p? If so, explain why. If

not, give a definition of f(x) and show ⊨ q but ⊭ p.

CS 536: Science of Programming	 – –	 © James Sasaki, 20232

Illinois Institute of Technology	 Mon Sat 2023-01-23, 13:50	 Practice 4

CS 536: Solution to Activity 4 (Satisfaction, Validity, and State Updates)

1.	 σ[u ↦ α] [v ↦ β] = σ[v ↦ β] [u ↦ α] iff u ≢ v or α = β, or more precisely, iff u ≢ v or (u ≡ v and) α = β.

2.	 (Quantified statements over arrays) Let σ(b) = (7, 5, 12, 16).

a.	 Yes, σ ⊨ ∃ k . 0 ≤ k ∧ k+1 < size(b) ∧ b[k] < b[k+1] with 1 and 2 as possible witnesses for k.

b.	 Yes, σ ⊨ ∃ k . 0 ≤ k-1 ∧ k+1 < size(b) ∧ b[k-1] < b[k] < b[k+1] with 2 as the only witness that

works.

c.	 Yes, σ ⊨ ∀ k . 0 ≤ k < 4 → b[k] > 0, since b[0], b[1], b[2], and b[3] are all positive in σ. Recall

we're looking for an α such that σ[k ↦ α] ⊨ 0 ≤ k < 4 → b[k] > 0, and for σ[k ↦ α], it doesn't

matter whether σ(k) has a value or what that value is.

	 No: σ ⊭ ∀ k . 0 ≤ k < 4 ∧ b[k] > 0 because there are plenty of values for k that are not in the

range 0 through 3. (So whether the body uses → or ∧ is extremely important.)

d.	 Yes, σ ⊨ ∃ k . 0 ≤ k < 4 ∧ b[k] > 0, with witnesses k = 0, 1, 2, or 3. (Again, σ(k) is irrelevant.)

	 Yes (and perhaps surprisingly), σ ⊨ ∃ k . 0 ≤ k < 3 → b[k] < 0 with witness k = 3:

σ[k ↦ 3] satisfies  0 ≤ k < 3 → b[k] < 0 because 3 makes 0 ≤ k < 3 false, so the implication is

true even though the value of b[3] is positive. (I'm avoiding k outside the range of b

because those b[k] cause runtime errors.)

3.	 (Validity/invalidity of quantified predicates) 

a.	 this σ, some α, ⊨ p 

b.	 this σ, every α, ⊨ p 

c.	 nothing of σ(x) 

d.	 nothing of σ(x) 

e.	 this σ, every α, ⊭ p 

f.	 this σ, some α, ⊭ p 

g.	 some σ, ⊭ 

h.	 some σ, ⊭  

i.	 some σ, some α, ⊭ p 

j.	 every σ, some α, every β, ⊨ p  

k.	 some σ, every α, some β, ⊭ p  

l.	 every σ, every α, some β, ⊨ p  

m.	 some σ, some α, every β, ⊭ p

n.	 this σ, every α, some β, ⊨q, every δ, ⊭ p because the negation of (∃ x . ((∃ y...) → (∃ z...))) is  
(∀ x . ((∃ y ...) ∧ ¬ (∃ z ...))).

CS 536: Science of Programming	 – –	 © James Sasaki, 20233

Illinois Institute of Technology	 Mon Sat 2023-01-23, 13:50	 Practice 4

4.	 (∃ ∀  predicates versus ∀ ∃  predicates, specifically p ≡ ∃ y . ∀ x . f(x) > y, and q ≡ ∀ x . ∃ y . f(x) > y)

a.	 The relation does hold: ⊨ p implies ⊨ q. The short explanation is that for satisfaction of q,

for each value α for x, we need to find a value β for y that satisfies the body f(x) > y. Now, p

says that there’s a value that works for every α, so we can use that value for β. 

	 In more detail, assume p is valid: for every state σ, there is some value β where for every

value α, σ[y ↦ β] [x ↦ α] ⊨ f(x) > y. 

	 To show that q is valid, take an arbitrary state τ with value δ for x. We need a witness

value for the ∃ y; since τ ⊨ p, there's a β for the ∃ y of p, and we'll use that as the witness for

the ∃ y in q. To satisfy q, we need τ[x ↦ δ] [y ↦ β] ⊨ f(x) > y. Since x ≢ y, it doesn't matter

whether we update using x and then y or vice versa. So it's sufficient to know τ[y ↦ β]

[x ↦ δ] ⊨ f(x) > y, and we know that from τ ⊨ p.

b.	 The relation does not hold: We can have ⊨ q but ⊭ p. An easy example is f(x) = x, then

validity of p would require us to find a value in ℤ for y that is > every value of x in ℤ, but no

such value exists.

	 As an aside, if use an arbitrary predicate over x and y as the body of the ∃ ∀  and ∀ ∃ 

predicates, then the relation holds for some predicates and not for others. For example,

∃ x.∀ y . x ≤ y² and ∀ y.∃ x. x ≤ y² both hold.

CS 536: Science of Programming	 – –	 © James Sasaki, 20234

