Types, Expressions, and States

CS 536: Science of Programming, Spring 2023

ver Sun 2023-01-15, 18:20

A. Why

- Expressions represent values relative to a state.
- Types describe common properties of sets of values.
- The value of an array is a function value from index values to array values.

B. Outcomes

At the end of today, you should

- Be able to read and write expressions we'll be using in our language.
- Be able to read and write states.
- Be able to evaluate an expression relative to a state.
- Be able to handle array names, array indexing expressions, and their values relative to a state.

C. Questions

1. Which of the following expressions are legal or illegal according to the syntax we're using? Assume x, y, z are integer variables and b is an array name.
a. if $x>y$ then x else y fi -- Is it important that x and y have the same type?
b. if $x<y$ then -1 else if $x=y$ then 0 else 1 fi fi
c. if $y=0$ then f else g fi (17)
-- Assume f and g are functions
d. b[0][1]
-- Assume b is 2-dimensional array
e. b
-- Assume b is an array
f. $f(b, b[0])<3$
-- What type for f makes this legal?
g. if $x<3$ then x else $F f i$
2. Which of the following are legal ways to write out a state? (And if not, why not?)
a. $\{x=5, y=2\}$
b. $\{x=$ five, $y=$ one plus one $\}$
c. $\{x=5, y=x$ minus 3$\}$
d. $\{x=a, y=\alpha-3\}$ where $\alpha=5$
e. $\{x=5, y=$ (the value of x in this environment minus 3) $\}$
f. \{\}
g. $\sigma=\{x=5, y=\sigma(x)$ minus 3 $\}$ (How is this different from (c) above?)
3. Consider the state σ_{2} described graphically below.

a. Write a definition for $\sigma_{2}=\{\ldots\}$ using four ways described in the class 3 notes (specifically, Arrays and Their Values).
b. Calculate $\sigma_{2}(e)$ where $e \equiv y \wedge x>b[x / 5]$. Remember, integer division truncates: $\varnothing(5 / 3)=1$
4. Let $\sigma_{3} \equiv\{z=4, b[0]=1, b[1]=5, b[2]=8\}$.
a. Abbreviate this using tuple notation for the value of b (i.e., $b=(\ldots)$).
b. Write out the graphical representation of σ_{3} (a memory diagram as in Problem 2).
c. Calculate $\sigma_{3}(e)$ where $e \equiv$ if $b[b[z-4]]>z$ then $z+2$ else $z-2$ fi (Hint: Give names to parts of e and calculate the values of those parts first.)
5. Let $e_{4} \equiv x=y+1 \wedge y=z^{2}-3 \wedge z=6$. Write out the textual definition of a state σ_{4} in which e_{4} evaluates to true. Use only bindings that map variables to constants. $\sigma_{4}=\{x=34, y=33, z=6\}$
6. Which of the following states are well-formed and also proper for the expression $b[i]+0 * y$? If ill-formed, why? If taking the value might cause a runtime error, why?
a. $\{i=0, b=(3,4,8), y=3, z=5)$
b. $\{i=0, b=(6), y=5)$
c. $\{i=0, b=6, y=5)$
d. $\{i=1, b=(3,4,8))$
e. $\{i=1, i=2, y=0, b=(2,6))\}$
f. $\{i=5, b=(1,2), y=4\}$

CS 536 Solution to Practice 3 (Types, Expressions, and States)

1. (Legal and illegal expressions)
a. if $x>y$ then x else y fi is legal
b. if $x<y$ then -1 else if $x=y$ then 0 else 1 fifi is legal
c. if $y=0$ then f else $g \boldsymbol{f i}(17)$ is illegal because the conditional expression can't yield a function
d. $b[0][1]$ is legal (b must be a 2-dimensional array)
e. b (all by itself) is illegal, since b we've assumed is an array
f. $f(b, b[0])<3$ is legal (the name b is being used as an argument to a function). We infer that f has type (int array) \times int \rightarrow int.
g. if $x<3$ then x else F fi is illegal because x and F have different types. (I.e., the expression doesn't have a fixed type because the types of its arms don't match.)
2. (Legal ways to represent states)
a. $\{x=5, y=2\}$ is legal
b. $\{x=$ five, $y=$ one plus one $\}$ is legal because "five" and "one" etc. refer to semantic objects.
c. $\{x=5, y=x$ minus 3$\}$ is illegal: $x=5$ tells us x is a syntactic variable, but in $y=x$ minus 3 , x has to be a semantic value because the binding is $y=$ some value. This is inconsistent. Said another way, from $x=5$, we know x is a variable that could appear in a program. If we want to say "the value of y is the value of x, minus 3 " Then (g) below is the way to do it.
d. $\{x=a, y=\alpha-3\}$ where $a=5$ - is legal. We infer that symbols x and y are syntactic objects and a names a semantic object, 5.
e. $\{x=5, y=$ (the value of x in this environment, minus 3) $\}$ is legal. Since "the value of x in this environment" is just another name (albeit complicated) for the mathematical object 5, it's legal to use here.
f. $\}$ is legal, since it's just another way to write \varnothing, the empty state.
g. $\quad \sigma=\{x=5, y=\sigma(x)$ minus 3$\}$ is legal - it's the way (c) could be rewritten to be legal.
3. (Graphically defined state)
a. $\sigma_{2}=\{b=\beta, x=12, y=T\}$ where where $\beta=(2,4,3,8)$.
$\sigma_{2}=\{b[0]=2, b[1]=4, b[2]=3, b[3]=8, x=12, y=\mathrm{T}\}$.
$\sigma_{2}=\{b=\beta, x=12, y=T\}$ where $\beta=\{(0,2),(1,4),(2,3),(3,8)\}$.
$\sigma_{2}=\{b=\beta, x=12, y=T\}$ where $\beta(0)=2, \beta(1)=4, \beta(2)=3, \beta(3)=8$.
b. You can write out these kinds of calculations to different levels of detail, but a brief answer is that $\sigma_{2}(e)=\sigma_{2}(y \wedge x>b[x / 5])=\mathrm{T} \wedge 12>3=\mathrm{T}$ You can certainly show intermediate steps:

$$
\sigma_{2}(e)=\sigma_{2}(y) \wedge \sigma_{2}(x)>\sigma_{2}(b)\left(\sigma_{2}(x / 5)\right)
$$

$$
\begin{aligned}
& =T \wedge 12>\sigma_{2}(b)(12 / 5) \\
& =T \wedge 12>\sigma_{2}(b)(2)=T \wedge 12>3=T
\end{aligned}
$$

4. (Alternative ways to represent a state with an array value)
a. $\sigma_{3}=\{z=4, b=(1,5.8)\}$
b.

c. We have $e \equiv$ if $b[b[z-4]]>z$ then $z+2$ else $z-2$. To make this easier to deal with, let's break it down. Let $e \equiv$ if $e_{1}>z$ then $z+2$ else $z-2$ where $e_{1} \equiv b\left[e_{2}\right]$ and $e_{2} \equiv b[z-4]$.

- First, $\sigma_{3}\left(e_{2}\right)=\sigma_{3}(b[z-4])=\left(\sigma_{3}(b)\right)\left(\sigma_{3}(z-4)\right)=\left(\sigma_{3}(b)\right)(4-4)=\left(\sigma_{3}(b)\right)(0)=1$
- \quad So $\sigma_{3}\left(e_{1}\right)=\sigma_{3}\left(b\left[e_{2}\right]\right)=\left(\sigma_{3}(b)\right)\left(\sigma_{3}\left(e_{2}\right)\right)=\left(\sigma_{3}(b)\right)(1)=5$
- Then $\sigma_{3}\left(e_{1}>z\right)=\left(\sigma_{3}\left(e_{1}\right)>\sigma_{3}(z)\right)=5>4=F$
- So $\sigma_{3}(e)=\sigma_{3}$ (if $e_{1}>z$ then $z+2$ else $\left.z-2\right)=\sigma_{3}(z+2)$ because the test $\sigma_{3}\left(e_{1}>z\right)=F$
- So finally, $\sigma_{3}(e)=\sigma_{3}(z+2)=\sigma_{3}(z)+\sigma_{3}(2)=4+2=6$

5. $\sigma_{4}=\{z=6, y=33, x=34\}$
6. (Proper states)
a. (Well-formed and) Proper: The extra binding for z isn't a problem
b. (Well-formed and) Proper: The value of b is an array of length 0 .
c. (Well-formed but) Improper: The value of b can't be an integer.
d. (Well-formed but) Improper: We need a binding for y even though we're multiplying it by zero. [So our semantics uses eager evaluation, not lazy evaluation.]
e. Ill-formed: We have two bindings for i.
f. (Well-formed and) Proper but causes a runtime error, since b has size 2.
