
Illinois Institute of Technology Practice 3

  Types, Expressions, and States
CS 536: Science of Programming, Spring 2023

ver Sun 2023-01-15, 18:20

A. Why
• Expressions represent values relative to a state.

• Types describe common properties of sets of values.

• The value of an array is a function value from index values to array values.

B. Outcomes
At the end of today, you should

• Be able to read and write expressions we'll be using in our language.

• Be able to read and write states.

• Be able to evaluate an expression relative to a state.

• Be able to handle array names, array indexing expressions, and their values relative to a state.

C. Questions
1. Which of the following expressions are legal or illegal according to the syntax we’re using?

Assume x, y, z are integer variables and b is an array name. 
a. if x > y then x else y fi -- Is it important that x and y have the same type? 
b. if x < y then -1 else if x = y then 0 else 1fi fi 
c. if y = 0 then f else g fi (17) -- Assume f and g are functions 
d. b[0][1] -- Assume b is 2-dimensional array 
e. b -- Assume b is an array 
f. f(b, b[0]) < 3 -- What type for f makes this legal? 
g. if x < 3 then x else F fi

2. Which of the following are legal ways to write out a state? (And if not, why not?) 
a. {x = 5, y = 2} 
b. {x = five, y = one plus one} 
c. {x = 5, y = x minus 3} 
d. {x = α, y = α - 3} where α = 5 
e. {x = 5, y = (the value of x in this environment minus 3)} 
f. { }

g. σ = {x = 5, y = σ(x) minus 3} (How is this different from (c) above?)

CS 536: Science of Programming – – © James Sasaki, 20231

Illinois Institute of Technology Practice 3

3. Consider the state σ₂ described graphically below.

a. Write a definition for σ₂ = { … } using four ways described in the class 3 notes (specifically,
Arrays and Their Values).

b. Calculate σ₂(e) where e ≡ y ∧ x > b[x/5]. Remember, integer division truncates: ∅(5/3) = 1

4. Let σ₃ ≡ { z = 4, b[0] = 1, b[1] = 5, b[2] = 8 }.

a. Abbreviate this using tuple notation for the value of b (i.e., b = (…)).

b. Write out the graphical representation of σ₃ (a memory diagram as in Problem 2).

c. Calculate σ₃(e) where e ≡ if b[b[z-4]] > z then z+2 else z-2 fi (Hint: Give names to parts of e
and calculate the values of those parts first.)

5. Let e₄ ≡ x = y+1 ∧ y = z² - 3 ∧ z = 6. Write out the textual definition of a state σ₄ in which e₄
evaluates to true. Use only bindings that map variables to constants. σ₄ = { x = 34, y = 33, z = 6 }

6. Which of the following states are well-formed and also proper for the expression b[i] + 0 * y? If
ill-formed, why? If taking the value might cause a runtime error, why? 
a. {i = 0, b = (3, 4, 8), y = 3, z = 5) 
b. {i = 0, b = (6), y = 5) 
c. {i = 0, b = 6, y = 5) 
d. {i = 1, b = (3, 4, 8)) 
e. {i = 1, i = 2, y = 0, b = (2, 6))} 
f. {i = 5, b = (1, 2), y = 4}

σ₂ 0 1 2 3

x 12 y T b 2 4 3 8

CS 536: Science of Programming – – © James Sasaki, 20232

Illinois Institute of Technology Practice 3

CS 536 Solution to Practice 3 (Types, Expressions, and States)
1. (Legal and illegal expressions)

a. if x > y then x else y fi is legal

b. if x < y then -1 else if x = y then 0 else 1 fi fi is legal

c. if y = 0 then f else g fi (17) is illegal because the conditional expression can’t yield a function

d. b[0][1] is legal (b must be a 2-dimensional array)

e. b (all by itself) is illegal, since b we've assumed is an array

f. f(b, b[0]) < 3 is legal (the name b is being used as an argument to a function). We infer that
f has type (int array) × int → int.

g. if x < 3 then x else F fi is illegal because x and F have different types. (I.e., the expression
doesn’t have a fixed type because the types of its arms don’t match.)

2. (Legal ways to represent states)

a. {x = 5, y = 2} is legal

b. {x = five, y = one plus one} is legal because “five” and “one” etc. refer to semantic objects.

c. {x = 5, y = x minus 3} is illegal: x = 5 tells us x is a syntactic variable, but in y = x minus 3,
x has to be a semantic value because the binding is y = some value. This is inconsistent.
Said another way, from x = 5, we know x is a variable that could appear in a program. If we
want to say “the value of y is the value of x, minus 3” Then (g) below is the way to do it.

d. {x = α, y = α - 3} where α = 5 — is legal. We infer that symbols x and y are syntactic objects
and α names a semantic object, 5.

e. {x = 5, y = (the value of x in this environment, minus 3)} is legal. Since “the value of x in this
environment” is just another name (albeit complicated) for the mathematical object 5, it’s
legal to use here.

f. { } is legal, since it’s just another way to write ∅, the empty state.

g. σ = {x = 5, y = σ(x) minus 3} is legal — it's the way (c) could be rewritten to be legal.

3. (Graphically defined state)

a. σ₂ = {b = β, x = 12, y = T} where where β = (2, 4, 3, 8). 
σ₂ = {b[0] = 2, b[1] = 4, b[2] = 3, b[3] = 8, x = 12, y = T}. 
σ₂ = {b = β, x = 12, y = T} where β = {(0, 2), (1, 4), (2, 3), (3, 8)}. 
σ₂ = {b = β, x = 12, y = T} where β(0) = 2, β(1) = 4, β(2) = 3, β(3) = 8.

b. You can write out these kinds of calculations to different levels of detail, but a brief answer
is that σ₂(e) = σ₂(y ∧ x > b[x/5]) = T ∧ 12 > 3 = T You can certainly show intermediate steps:  
 σ₂(e) = σ₂(y) ∧ σ₂(x) > σ₂(b)(σ₂(x/5)) 

CS 536: Science of Programming – – © James Sasaki, 20233

Illinois Institute of Technology Practice 3

 = T ∧ 12 > σ₂(b)(12/5) 
 = T ∧ 12 > σ₂(b)(2) = T ∧ 12 > 3 = T

4. (Alternative ways to represent a state with an array value)

a. σ₃ = {z = 4, b = (1, 5. 8)}

b.

c. We have e ≡ if b[b[z-4]] > z then z+2 else z-2. To make this easier to deal with, let’s break it
down. Let e ≡ if e₁ > z then z+2 else z-2 where e₁ ≡ b[e₂] and e₂ ≡ b[z-4].

• First, σ₃(e₂) = σ₃(b[z-4]) = (σ₃(b))(σ₃(z-4)) = (σ₃(b))(4–4) = (σ₃(b))(0) = 1

• So σ₃(e₁) = σ₃(b[e₂]) = (σ₃(b))(σ₃(e₂)) = (σ₃(b))(1) = 5

• Then σ₃(e₁ > z) = (σ₃(e₁) > σ₃(z)) = 5 > 4 = F

• So σ₃(e) = σ₃(if e₁ > z then z+2 else z-2) = σ₃(z+2) because the test σ₃(e₁ > z) = F

• So finally, σ₃(e) = σ₃(z+2) = σ₃(z)+ σ₃(2) = 4+2 = 6

5. σ₄ = {z = 6, y = 33, x = 34}

6. (Proper states) 
a. (Well-formed and) Proper: The extra binding for z isn't a problem

b. (Well-formed and) Proper: The value of b is an array of length 0.

c. (Well-formed but) Improper: The value of b can't be an integer.

d. (Well-formed but) Improper: We need a binding for y even though we're multiplying it by
zero. [So our semantics uses eager evaluation, not lazy evaluation.]

e. Ill-formed: We have two bindings for i.

f. (Well-formed and) Proper but causes a runtime error, since b has size 2.

σ₃ 0 1 2

z 4 b 1 5 8

CS 536: Science of Programming – – © James Sasaki, 20234

