
CS 536: Science of Programming Tue 2023-01-10, 15:00 Practice 2

  Propositional and Predicate Logic

  CS 536: Science of Programming, Fall 2023

ver Tue 2023-01-10, 15:00

1. Fill in the missing rule names in the proof below of ¬(p ↔ q) ⇔ (q ∧ ¬p) ∨ (p ∧ ¬q), using the

rules from the class notes. (See page 2.)

 ¬(p ↔ q) 

 ⇔ ¬((p → q) ∧ (q → p)) by defn ↔ 
 ⇔ ¬(p → q) ∨ ¬(q → p) __________________ 

 ⇔ ((p ∧ ¬q) ∨ (q ∧ ¬p) __________________ 

 ⇔ (q ∧ ¬p) ∨ (p ∧ ¬q) __________________

2. Write a formal proof that shows that (p → p ∨ q) is a tautology: i.e., prove (p → p ∨ q) ⇔ T. As a

derived rule, this is often called “(left) ∨-introduction”.

 p → p ∨ q 
 ⇔ __________________ by __________________  

 etc.

3. Which of {x = 4, y = 3}, {x = -2, y = 0}, {x + y = 6}, {y = 4}, { }, {x = 3, x = 8}, and {x = 6, y = x} are
well-formed? Of the ones that are well-formed, which ones are proper for 2+2 ≤ 5, x + y*x,
and x / y? And, of the proper states, do any of them cause an error when we evaluate? 

4. For this problem, we'll prove DeMorgan's laws for bounded quantifiers. You'll need to
transform the bound quantifiers to unbound quantifiers (and vice versa) and you'll need
DeMorgan's laws on unbounded quantifiers. Assume the quantifiers are over variable x.

a. Prove ¬∀ p.q ⇔ ∃ p.¬q.

b. Prove ¬ ∃ p.q ⇔ ∀ p.¬q. (It's easy to prove this using part (a) and double negation, but
for the practice, don't do that.)

5. Some logical rules can be derived from others. Use (only) the rules given with each problem
(not necessarily in that order). You may need to use a rule more than once.

a. Prove the rule of contraposition, (p → q) → (¬q → ¬p) ⇔ T, using (only) Definition of →,
double negation, commutativity of ∨ , and excluded middle.

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20231

CS 536: Science of Programming Tue 2023-01-10, 15:00 Practice 2

b. Prove the rule of transitive contradiction, (p → q) ∧ (q → ¬p) ⇔ ¬p, using defn →, identity,
contradiction, and distributivity.

c. Prove the rule of left ∧ elimination, p ∧ q → p ⇔ T using defn →, distributivity, excluded
middle and DeMorgan's law. (There's a similar rule of right ∧ elimination, by the way.)

d. Prove a rule that combines left and right ∨-introduction, (p → p ∨ q) ∧ (q → p ∨ q) ⇔ T,
using excluded middle, identity, domination, and defn →.

6. Let q(x, y) ≡ x < y → y < z ∧ f(x) = 2. Expand ¬q(x, y) to remove ¬ signs: Use the rules to find a
predicate equivalent to ¬(x < y → y < z ∧ f(x) = 2) that doesn’t use ¬. Hint: Use DeMorgan’s laws
to move the negation “inward” to smaller and smaller subexpressions. Show your reasoning
as a formal proof. (Don't forget the rule names.)

7. What are the minimal and full parenthesizations for 
a. (∀ x  .  ((∃ y  .  x > y) ∧ (∃ y  .  x < y))) 
b. ∀ x.¬(∃ y.p ∧ ∀ z.q) 
c. ∀ x  .  ∀ y  .  ∃ z  .  (x ≠ y  → x ≤ z  ∧ z ≤ y  ∨ x > z  ∧ z ≥ y)

8. In general, if ∀ x.∀ y. p(x, y) is valid, is ∀ y. ∀ x  .  p(x, y) also valid? What about 
∃ x  .  ∃ y  .  p(x, y) and ∃ y  .  ∃ x  .  p(x, y)?

9. Using propositional and predicate proof rules, find a predicate equivalent to ¬(∀ x  .  ∃ y  .  p(x, y))
that has no negation symbols (i.e., ¬), except possibly in front of p(x, y). Write a formal proof
that shows each step needed (don't forget the rule names!). Hint: Use DeMorgan’s laws to
move the negation inward.

10. Repeat the previous question on ¬(∃ y  .  ∀ x  .  p(x, y)).

11. Write the definition of a predicate function Repeats(b,  m) that is true exactly when the first m
elements of b match the second m elements of b: I.e., b[0] = b[m], b[1] = b[m+1], …, b[m-1] = 
b[2*m-1]. (Alternatively, b[0..m-1] and b[m..2*m-1] are pointwise equal.) Example: If b is [1, 3,
5, 1, 3, 5], then Repeats(b, 3) is true but Repeats(b, 2) is false.

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20232

CS 536: Science of Programming Tue 2023-01-10, 15:00 Practice 2

CS 536: Solution to Practice 2 (Propositional and Predicate Logic)
1. DeMorgan's law; Negation of → twice; commutativity of ∨.

2. p → p ∨ q 
⇔ ¬p ∨ (p ∨ q) Defn → 
⇔ (¬ p ∨ p) ∨ q Associativity of ∨ 
⇔ T ∨ q Excluded middle  
⇔ T Domination

3. {x = 4, y = 3} is well-formed, proper for 2+2 ≤ 5, x + y*x and x / y, and all three expressions
evaluate successfully (no runtime error). 
{x = -2, y = 0} is well-formed and proper for the same three expressions, and evaluation is
successful for 2+2 ≤ 5 and x + y*x, but causes division by zero for x / y. 
{y = 4} and { } are both well-formed, proper for 2+2 ≤ 5, and evaluation is success; they're
improper for the other expressions. 
{x = 6, y = x} is ill-formed (we should bind y to a value, like 6, not to the variable x).

4a. (Negation of bounded ∀)

 ¬∀ p.q 
⇔ ¬∀ x. p → q Defn bound ∀ 
⇔ ∃  x. ¬(p → q) DeMorgan's law ¬∀

⇔ ∃  x. ¬(¬p ∨ q) Defn → 
⇔ ∃  x. ¬¬p ∧ ¬q DeMorgan's law ¬∨ 
⇔ ∃  x. p ∧ ¬q Double negation 
⇔ ∃  p.¬q Defn bound ∀

 Note Negation of → is available as a derived rule (see the notes), then you can go directly from
∃ x. ¬(p → q) ⇔ ∃  x. p ∧ ¬q in one line.

4b. (Negation of bounded ∃)

 ¬∃ p.q 
⇔ ¬∃  x. p ∧ q Defn bound ∃ 
⇔ ¬∃ x. ¬¬p ∧ q Double negation 
⇔ ¬∃ x. ¬(¬p ∨ q) DeMorgan's law ¬∧ 
⇔ ¬∃ x. ¬(p → q) Defn → 
⇔ ∀ x. ¬¬(p → q) DeMorgan's law ¬∃

⇔ ∀ x. p → q Double negation 
⇔ ∀ p. q Defn bound ∀

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20233

CS 536: Science of Programming Tue 2023-01-10, 15:00 Practice 2

 The version that uses part (a) takes ¬∃ p.q ⇔ ¬∃ p.¬¬q ⇔ ¬¬∀ p.¬q ⇔ ∀ p.¬q. (If you're
interested.)

 On the off chance that you're interested, the proof that uses part (a) takes ¬∃ p.q ⇔ ¬∃ p.¬¬q
⇔ ¬¬∀ p.¬q ⇔ ∀ p.¬q. 

5a. (Contraposition)

 (p → q) → (¬q → ¬p) 
⇔ (¬p ∨ q) → (¬q → ¬p) Defn → 
⇔ (¬p ∨ q) → (¬¬q ∨ ¬p) Defn → 
⇔ (¬p ∨ q) → (q ∨ ¬p) ¬¬ 
⇔ (¬p ∨ q) → (¬p ∨ q) Comm. of ∨  
⇔ ¬(¬p ∨ q) ∨ (¬¬q ∨ ¬p) Defn → 
⇔ T Excluded middle (on (¬p ∨ q))

5b. (Transitive contradiction)

 (p → q) ∧ (q → ¬p) 
⇔ (¬p ∨ q) ∧ (q → ¬p) Defn → 
⇔ (¬p ∨ q) ∧ (¬q ∨ ¬p) Defn → 
⇔ ¬p ∨ (q ∧ ¬q) Distributivity 
⇔ ¬p ∨ F Contradiction 
⇔ ¬p identity

5c. (Left ∧-elimination)

 p ∧ q → p 
⇔ ¬(p ∧ q) ∨ p Defn → 
⇔ (¬p ∨ ¬q) ∨ p DeMorgan 
⇔ (p ∨ ¬p) ∨ (¬q ∨ p) Distributivity 
⇔ T ∨ (q ∨ ¬q) Excluded middle 
⇔ T Domination 

5d. (Left and right ∨-introduction)

 (p → p ∨ q) ∧ (q → p ∨ q) 
⇔ (¬p ∨ p ∨ q) ∧ (¬q ∨ p ∨ q) Defn → (twice) 
⇔ (T ∨ q) ∧ (T ∨ p) Excluded middle (twice) 
⇔ T ∧ T Domination (twice) 
⇔ T Identity

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20234

CS 536: Science of Programming Tue 2023-01-10, 15:00 Practice 2

6. If q(x, y) ≡ x < y → y < z ∧ f(x) = 2, then

 ¬q(x, y) 
⇔ ¬(x< y → y < z ∧ f(x) = 2) Defn of q 
⇔ x < y ∧ ¬(y < z ∧ f(x) = 2) Negation of → 
⇔ x < y ∧ (¬(y < z) ∨ ¬(f(x) = 2)) DeMorgan's Law 
⇔ x < y ∧ (y ≥ z ∨ f(x) ≠ 2) Negation of comparison, 3 times

7. (Minimal and full parenthesizations)

a. (∀ x  .  ((∃ y  .  x > y) ∧ (∃ y  .  x < y))) 
Minimal: ∀ x  .  (∃ y  .  x > y) ∧ ∃ y  .  x < y 
Full: (∀ x  .  ((∃ y  .  (x > y)) ∧ (∃ y  .  (x < y)))) [I showed the outermost parentheses]

b. ∀ x.¬(∃ y.p ∧ ∀ z.q) (Is already minimal) 
Full: (∀ x. (¬(∃ y. (p ∧ (∀ z.q)))))

c. ∀ x  .  ∀ y  .  ∃ z  . (x ≠ y  → x ≤ z  ∧ z ≤ y  ∨ x > z  ∧ z ≥ y) 
Minimal: ∀ x  .  ∀ y  .  ∃ z  . x ≠ y  → x ≤ z  ∧ z ≤ y  ∨ x > z  ∧ z ≥ y 
Full: (∀ x.(∀ y.(∃ z.((x ≠ y) → (((x ≤ z) ∧ (z ≤ y)) ∨ ((x > z) ∧ (z ≥ y)))))))

8. (Q  x . Q  y versus Q  y  . Q  x) 
a. Yes: (∀ x.∀ y. p(x, y)) is valid if and only if (∀ y.∀ x  .  p(x, y)) is valid 
b. Yes: (∃ x. ∃ y. p(x, y)) is valid if and only if (∃ y. ∃ x  .  p(x, y)) is valid

9. ¬(∀ x  .  ∃ y  .  p(x, y)) 
⇔ ∃ x . ¬ ∃ y . p(x, y) DeMorgan's Law ¬∀  
⇔ ∃ x . ∀ y . ¬ p(x, y) DeMorgan's Law ¬ ∃ 

10. ¬(∃ y  .  ∀ x  .  p(x, y)) 
⇔ ∀ y  .  ¬(∀ x  .  p(x, y)) DeMorgan's Law ¬ ∃  
⇔ ∀ y  .  ∃ x  .  ¬p(x, y) DeMorgan's Law ¬∀ 

11. First, here's a solution that doesn't check for m being too large:

Repeats(b, m) ≡ ∀ j.0 ≤ j < m  → b[j] = b[m+j]

 You can also use a bounded quantifier: Repeats(b, m) ≡ ∀ 0 ≤ j < m  . b[j] = b[m+j].

 To check for m being too large, then assuming ∧ is short-circuiting (like && in C), we can use

Repeats(b, m) ≡ 0 ≤ 2*m < size(b) ∧ ∀ j.(0 ≤ j < m  →  b[j] = b[m+j]).

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20235

