Sequential Nondeterminism

CS 536: Science of Programming, Fall 2021

A. Why

- Nondeterminism can help us avoid unnecessary determinism.
- Nondeterminism can help us develop programs without worrying about overlapping cases.

B. Objectives

At the end of these practice questions you should

- Be able to evaluate nondeterministic conditionals and loops.

C. Nondeterminism

1. Let $IF = if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 \square \ldots \square B_n \rightarrow S_n fi$ and $BB = B_1 \lor B_2 \lor \ldots \lor B_n$.

 a. What property does BB have to have for us to avoid a runtime error when executing IF?

 b. Does it matter if we reorder the guarded commands? (E.g., if we swap $B_1 \rightarrow S_1$ and $B_2 \rightarrow S_2$.)

2. Let $U_1 = if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 fi$ and $U_2 = if B_1 \text{ then } S_1 \text{ else if } B_2 \text{ then } S_2 fi$.

 a. Fill in the table below to describe what happens for each combination of B_1 and B_2 being true or false.

<table>
<thead>
<tr>
<th>If $\sigma \models \ldots$</th>
<th>U_1</th>
<th>U_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_1 \land B_2$</td>
<td>Executes S_1 or S_2</td>
<td></td>
</tr>
<tr>
<td>$B_1 \land \neg B_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg B_1 \land B_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg B_1 \land \neg B_2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 b. For what kinds of states σ can statements U_1 and U_2 behave differently?

3. Let $DO = do B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 \square \ldots \square B_n \rightarrow S_n od$ and $BB = B_1 \lor B_2 \lor \ldots \lor B_n$. What property does BB have to have for us to avoid an infinite loop when executing DO?
4. Consider the loop $i := 0;\ do\ i < 1000 \rightarrow S_1;\ i := i+1 \ if\ i < 1000 \rightarrow S_2;\ i := i+1\ od$ (where neither S_1 nor S_2 modifies i). Do we know anything about how many times or in what pattern we will execute S_1 vs S_2?

5. Consider the loop $x := 1;\ do\ x \geq 1 \rightarrow x := x+1 \ if\ x \geq 2 \rightarrow x := x-2\ od$. Can running it lead to an infinite loop?

6. What are the reasons mentioned in the text for why using nondeterminism might be helpful?

7. What is $M(S, \{x = 1\})$ where $S = do\ x \leq 20 \rightarrow x := x*2 \ if\ x \leq 20 \rightarrow x := x*3\ od$?

Problems 8 - 10 all refer to the Array Value Matching problem in the notes (Example 10).

8. In the notes, we approached the problem by asking "What do we do if $b_0[k_0] < b_1[k_1]$?" and so on for the other 5 tests. Another way to approach the problem is to ask "When do we want to increment k_0?" and so on for the other 2 indexes. If we take this approach, which of the three programs 10(a), 10(b), or 10(c) do we wind up with?

9. Translate program 10(c) into a deterministic language like C, Java, or whatever.

10. Compare the guarded commands

 $b_0[k_0] < b_1[k_1] \rightarrow k_0 := k_0+1$ and

 $b_0[k_0] < b_1[k_1] \rightarrow k_0 := k_0+1;\ do\ b_0[k_0] < b_1[k_1] \rightarrow k_0 := k_0+1\ od$

 Briefly discuss the difference between these commands. What does your translated program 10(b) look like if you start with the second command instead of the first?
Solution to Practice 7 (Nondeterministic Sequential Programs)

1. (Basic properties of nondeterministic if)
 a. We need $\sigma \models BB$, because if $\sigma \models \neg BB$, then $M(IF, \sigma) = \{\bot\}$. (In English: At least one guard must be true; if none of them are true, we get a runtime error.)
 b. The order of the guarded commands doesn't matter: If more than one guard is true, we nondeterministically choose one element from the set of corresponding statements, and in a set, the elements aren't ordered.

2. (Deterministic vs nondeterministic conditionals) Recall $U_1 \equiv if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 fi$ and $U_2 \equiv if B_1 then S_1 else if B_2 then S_2 fi$.
 a. Execution of U_1 and U_2:
 b. U_1 and U_2 behave the same when one of B_1 and B_2 is true and the other is false. When both are true, U_2 always executes S_1 but U_1 will execute S_1 or S_2. When both of B_1 and B_2 are false, U_1 yields a runtime error but U_2 does nothing.

3. The nondeterministic do-od loop halts if BB is false at the top of the loop; an infinite loop occurs when BB is always true at the top of the loop.

4. Say S_1 is run m times and S_2 is run n times. We know $0 \leq m, n \leq 1000$ and $m + n = 1000$, but that's all. At each iteration, the choice is nondeterministic (i.e., unpredictable). The choice does not have to be random (like with a coin flip), and the sequence of choices don't have to follow an pattern or distribution or be fair, etc. We can't even assign a probability to any particular sequence of choices (like “always choose S_1”).

5. It's possible that the loop could run forever. There's no guaranteed fairness in nondeterministic choice, so we could increment x by 1 many more times than we decrement it by 2.

 Reason 2: Nondeterminism Makes it Easy to Ignore Overlapping Cases

7. \{$x = 12$, $x = 16$, $x = 18$, $x = 24$, $x = 27$\}

8. Program 10(b).

9. (Omitted)

10. (Omitted) except that do k0++ while (b0[k0] < b1[k1]) seems useful.