Denotational Semantics; Runtime Errors

CS 536: Science of Programming, Fall 2021

A. Why

• Our simple programming language is a model for the kind of constructs seen in actual languages.
• Our programs stand for state transformers.
• Runtime errors cause failure of normal program execution.

B. Outcomes

At the end of today, you should be able to

• Give the denotational semantics of a program in a state.
• Say when and how evaluation of an expression or program fails due to a runtime error.

C. Problems

Denotational Semantics

Problems 1 – 4 are the denotational versions of the similar questions from Practice 5

1. What is
 a. \(M(x := x+1, \{x = 5\}) \)?
 b. \(M(x := x+1, \sigma) \)? (Your answer will be symbolic.)
 c. \(\langle x := x+1; y := 2^*x, \{x = 5\} \rangle \)?

2. Let \(S = \text{if } x > 0 \text{ then } x := x+1 \text{ else } y := 2^*x \text{ fi.} \)
 a. Let \(\sigma(x) = 8 \). What is \(M(S, \sigma) \)?
 b. Repeat, if \(\sigma(x) = 0 \).
 c. Repeat, if we don't know what \(\sigma(x) \) is. (Your answer will be symbolic.)

3. Let \(S = \text{if } x > 0 \text{ then } x := x/z \text{ fi.} \)
 a. What is \(M(S, \sigma) \) if \(\sigma = \{x = 8, z = 3\} \)? (Don't forget, integer division truncates)
 b. What is \(M(S, \{x = -2, z = 3\}) \)?

4. Let \(W = \text{while } x < 3 \text{ do } S \text{ od} \) where \(S = x := x+1; y := y^*x \).
 a. Evaluate the body \(S \) in an arbitrary state \(\tau \) and give \(M(S, \tau) \).
 b. What is \(M(W, \sigma) \) if \(\sigma = x = 4 \land y = 1 \)?
 c. What is \(M(W, \sigma) \) if where \(\sigma = x = 1 \land y = 1 \)?
Runtime Errors

5. Let $S = x := y/b[x]$ and let $\sigma = \{b = (3, 0, -2, 4), x = \alpha, y = 13\}$. Find all α such that $M(S, \sigma) = \{\bot_e\}$. (Remember, integer division truncates.)

6. Repeat the previous problem on $S = y := y / \sqrt{b[x]}$ and $\sigma = \{b = (-1, 9, 12, 0), x = \alpha, y = 8\}$. Treat $\sqrt{}$ as returning the truncated integer square root of its argument. (I.e., $\sqrt{0} = 0$, $\sqrt{1}$ through 3 are all 1, $\sqrt{4}$ through $8 = 2$, etc.)
Solution to Practice 6 (Denotational Semantics; Runtime Errors)

Denotational Semantics

1. (Calculate meanings of programs)
 a. \(M(x := x+1, \{x = 5\}) = \{\{x=5\}[x \mapsto \{x = 5\}(x+1)]\} = \{\{x = 6\}\} \)
 b. \(M(x := x+1, \sigma) = \{\sigma[x \mapsto \sigma(x+1)]\} = \{\sigma[x \mapsto \sigma(x)+1]\} \)
 c. \(M(x := x+1; y := 2*x, \{x = 5\}) \)
 \[M(y := 2*x, M(x := x+1, \{x = 5\}) \]
 \[= M(y := 2*x, M(x := x+1, \{x = 5\}) \]
 \[= \{\{x=6\}[y \mapsto \beta]\} \quad \text{where} \quad \beta = \{x = 6\}(2*x) = 12 \]
 \[= \{\{x = 6, y = 12\}\} \]

2. Let \(S = \text{if } x > 0 \text{ then } x := x+1 \text{ else } y := 2*x \text{ fi}. \)
 a. If \(\sigma(x) = 8 \), then \(\sigma(x > 0) = T \), so \(M(S, \sigma) = M(x := x+1, \sigma) = \{\sigma[x \mapsto \sigma(x+1)]\} = \{\sigma[x \mapsto 9]\} \)
 b. If \(\sigma(x) = 0 \), then \(\sigma(x > 0) = F \), so \(M(S, \sigma) = M(y := 2*x, \sigma) = \{\sigma[y \mapsto \sigma(2*x)]\} = \{\sigma[y \mapsto 0]\} \)
 c. If \(\sigma(x) > 0 \) then \(M(S, \sigma) = M(x := x+1, \sigma) = \{\sigma[x \mapsto \sigma(x)+1]\} \)
 If \(\sigma(x) \leq 0 \) then \(M(S, \sigma) = M(y := 2*x, \sigma) = \{\sigma[y \mapsto 2 \times \sigma(x)]\} \)

3. Let \(S = \text{if } x > 0 \text{ then } x := x/z \text{ fi} = \text{if } x > 0 \text{ then } x := x/z \text{ else skip fi} \)
 a. If \(\sigma = \{x = 8, z = 3\} \), then \(\sigma(x > 0) = T \), so \(M(S, \sigma) = M(x := x/z, \sigma) = \{\sigma[x \mapsto \alpha]\} \) where \(\alpha = \sigma(x/z) \)
 \[= \sigma[x \mapsto 8/3] = \sigma[x \mapsto 2] \], since integer division truncates.
 b. If \(\sigma = \{x = -2, z = 3\} \) then \(\sigma(x > 0) = F \), so \(M(S, \sigma) = M(\text{skip}, \sigma) = \{\sigma\} \).

4. Let \(W = \text{while } x < 3 \text{ do } S \text{ od} \) where \(S = x := x+1; y := y*x. \)
 a. For arbitrary \(\tau \),
 \[M(S, \tau) = M(x := x+1; y := y*x, \tau) \]
 \[= M(y := y*x, \tau[x \mapsto \tau(x)+1]) \]
 \[= \{\tau[x \mapsto \tau(x)+1][y \mapsto a]\} \quad \text{where} \quad a = \tau[x \mapsto \tau(x)+1](y*x) = \tau(y) \times (\tau(x)+1) \]
 b. If \(\sigma \models x = 4 \land y = 1 \), then \(\sigma(x < 3) = F \) so \(M(W, \sigma) = \{\sigma\} \).
 c. If \(\sigma \models x = 1 \land y = 1 \), then \(\sigma(x < 3) = T \) so we have at least one iteration to do. Let \(\sigma_0 = \sigma \),
 let \(\sigma_1 = M(S, \sigma_0) = \sigma_0(y) \times (\sigma_0(x)+1) \), and let \(\sigma_2 = M(S, \sigma_1) = \sigma_1(y) \times (\sigma_1(x)+1) \). Then
 \[\sigma_0 = \sigma[x \mapsto 1][y \mapsto 1] \]
 \[\sigma_1 = M(S, \sigma_0) = \sigma_0[x \mapsto \sigma_0(x)+1][y \mapsto \sigma_0(y) \times (\sigma_0(x)+1)] = \sigma[x \mapsto 2][y \mapsto 2] \]
 \[\sigma_2 = M(S, \sigma_1) = \sigma_1[x \mapsto 2+1][y \mapsto 2 \times (2+1)] = \sigma[x \mapsto 3][y \mapsto 6] \]
 Since \(\sigma_0 \) and \(\sigma_1 \models x < 3 \) but \(\sigma_2 \models x \geq 3 \), we have \(M(W, \sigma) = \{\sigma_2\} = \{\sigma[x \mapsto 3][y \mapsto 6]\}. \)
Runtime Errors

5. \(M(S, \sigma) = M(x := y/b[x], \sigma) = \{ \sigma[x \mapsto y] \} \) where \(y = \sigma(y/b[x]) = 13/\sigma(b)(a) = \bot_e \)

 \(\text{iff } \sigma(b)(a) = \bot_e \) or \(\sigma(b)(a) = 0 \)

 \(\text{iff } (a \text{ is out of range for } \sigma(b)) \) or \((\sigma(b)(a) = 0) \)

 \(\) (\(b[x] \) fails if \(x \) is out of range)

 \(\text{iff } (a < 0 \text{ or } a \geq 4) \) or \((\sigma(b)(a) = 0) \)

 \(\) (\(\sigma(b) \) has size 4)

 \(\text{iff } (a < 0 \text{ or } a \geq 4) \) or \((\alpha = 1) \)

 \(\) (\(b[1] \) is the only element = 0)

\(\text{iff } \neg(a = 0, 2, \text{ or } 3) \)

6. \(M(S, \sigma) = M(y := y/sqrt(b[x]), \sigma) = \{ \sigma[y \mapsto \beta] \} \) where \(\beta = (\sigma(y)/sqrt(y)) = (8/sqrt(y)) \) and \(y = \sigma(b)(a) = \sigma(b)(a) \).

 \(\) So \(\beta = \bot_e \) and thus \(M(S, \sigma) = \{ \sigma[y \mapsto \bot_e] \} = \{ \bot_e \} \)

 \(\text{iff } y = \bot_e \) or \(y < 0 \) or \(sqrt(y) = 0 \)

 \(\) (\(b[x] \) fails, \(b[x] < 0 \), or \(sqrt(b[x]) = 0 \))

 \(\text{iff } (a \text{ out of range for } \sigma(b)) \) or \(y < 0 \) or \(sqrt(y) = 0 \)

 \(\) (\(y = \bot_e \) iff \(b[x] \) has a bad index)

 \(\text{iff } (a < 0 \text{ or } a \geq 4) \) or \(y = \sigma(b)(a) < 0 \) or \(sqrt(y) = 0 \)

 \(\) (\(\sigma(b) \) is of size 4)

 \(\text{iff } (a < 0 \text{ or } a \geq 4) \) or \((\alpha = 0) \) or \(sqrt(y) = 0 \)

 \(\) (only \(b[0] < 0 \))

 \(\text{iff } (a < 0 \text{ or } a \geq 4) \) or \((\alpha = 0) \) or \((\alpha = 3) \)

 \(\) (only \(sqrt(b[3]) = sqrt(0) = 0 \))

 \(\text{iff } (a \leq 0 \text{ or } \geq 3) \)

 \(\) (combining terms)