A. Why

• A predicate is satisfied or unsatisfied relative to a state.
• A predicate is valid if it is satisfied in all states.
• State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of today, you should

• Know how to check a predicate for satisfaction in a state, how to check a predicate for validity, and know how to update a state.

C. Questions

1. Say u and v stand for variables (possibly the same variable) and α and β are values (possibly equal). When is \(\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha] \)? Hint: There are four cases because maybe \(u \equiv v \) and maybe \(\alpha = \beta \).

2. Let \(\sigma(b) = (7, 5, 12, 16) \). Assume out-of-bound indexes cause runtime errors.
 a. Does \(\sigma \models \exists k . 0 \leq k \land k + 1 < \text{size}(b) \land b[k] < b[k + 1] \)? If so, what was your witness value for \(k \)?
 b. Does \(\sigma \models \exists k . 0 \leq k - 1 \land k + 1 < \text{size}(b) \land b[k - 1] < b[k] < b[k + 1] \)? If so, what was your witness value for \(k \)?
 c. Does \(\sigma \models \forall k . 0 \leq k < 4 \rightarrow b[k] > 0 ? \)
 d. If \(\sigma(k) = -5 \), then does \(\sigma \models \exists k . b[k] > 0 ? \)

3. For each of the situations below, fill in the blanks to describe when the situation holds.
 Fill in _____ ₁ with “some”, “every”, or “this”
 Fill in _____ ₂ with “some” or “every”
 Fill in _____ ₃ with “\(\sigma(x) \) must be undefined”, “\(\sigma(x) \) must be defined and \(\sigma \models p \)”, or “nothing of \(\sigma(x) \)”
 Fill in _____ ₄ with “\(\models p \)” or “\(\not\models p \)”
 a. \(\sigma \models (\exists x \in U. p) \) iff for _____ ₁ state \(\sigma \) and _____ ₂ \(\alpha \in U, \sigma[x \mapsto \alpha] _____ ₄ \)
 b. \(\sigma \models (\forall x \in U. p) \) iff for _____ ₁ state \(\sigma \) and _____ ₂ \(\alpha \in U, \sigma[x \mapsto \alpha] _____ ₄ \)
 c. \(\sigma \models (\exists x \in U. p) \) requires _____ ₃ .
 d. \(\sigma \models (\forall x \in U. p) \) requires _____ ₃ .
 e. \(\sigma \not\models (\exists x \in U. p) \) iff for _____ ₁ state \(\sigma \) for _____ ₂ \(\alpha \in U, \sigma[x \mapsto \alpha] _____ ₄ \)

© James Sasaki, 2021
f. \(\sigma \not\models (\forall x \in U. p) \) iff for \(\alpha \in U \), \(\sigma[x \mapsto \alpha] \) __________

g. \(\not\models (\forall x \in U. p) \) iff for \(\alpha \in U \), we have \(\sigma \) __________ \((\forall x \in U. p) \).

h. \(\not\models (\exists x \in U. p) \) iff for \(\alpha \in U \), we have \(\sigma \) __________ \((\exists x \in U. p) \).

i. \(\not\models (\forall x \in U. p) \) iff for \(\alpha \in U \), and for \(\alpha \in U \), we have \(\sigma[x \mapsto \alpha] \) __________

j. \((\exists x \in U. (\forall y \in V. p)) \) iff for \(\alpha \in U \), and for \(\beta \in V \), we have \(\sigma \) __________ \((\forall x \in U. p) \).

k. \(\not\models (\exists x \in U. (\forall y \in V. p)) \) iff for \(\alpha \in U \), and for \(\beta \in V \), we have \(\sigma \) __________ \((\forall x \in U. p) \).

l. \((\forall x \in U. (\exists y \in V. p)) \) iff for \(\alpha \in U \), and for \(\beta \in V \), we have \(\sigma \) __________ \((\exists y \in V. p) \).

m. \(\not\models (\forall x \in U. (\exists y \in V. p)) \) iff for \(\alpha \in U \), and for \(\beta \in V \), we have \(\sigma \) __________

4. Let \(p = \exists y. \forall x. f(x) > y \) and \(q = \forall x. \exists y. f(x) > y \). (As usual, assume a domain of \(\mathbb{Z} \).)

a. Is it the case that (regardless of the definition of \(f \)), if \(p \) is valid then so is \(q \)? If so, explain why. If not, give a definition of \(f(x) \) and show \(\models p \) but \(\not\models q \).

b. (The converse.) Is it the case that (regardless of the definition of \(f \)), if \(q \) is valid then so is \(p \)? If so, explain why. If not, give a definition of \(f(x) \) and show \(\models q \) but \(\not\models p \).
CS 536: Solution to Activity 4 (Satisfaction, Validity, and State Updates)

1. \(\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha] \) iff \(u \neq v \) or \(u = v \) and \(\alpha = \beta \). Another way to phrase this is \(\alpha = \beta \) or \(u \neq v \)

2. (Quantified statements over arrays) Let \(\sigma(b) = (7, 5, 12, 16) \).
 a. Yes, \(\sigma \models \exists k . 0 \leq k \land k+1 < \text{size}(b) \land b[k] < b[k+1] \) with 1 and 2 as possible witnesses for \(k \).
 b. Yes, \(\sigma \models \exists k . 0 \leq k-1 \land k+1 < \text{size}(b) \land b[k-1] < b[k] < b[k+1] \) with 2 as the only witness that works.
 c. Yes, \(\sigma \models \forall k . b[k] > 0 \)
 d. Yes, if \(\sigma(k) = -5 \), we still have \(\sigma \models \exists k . b[k] > 0 \), with witnesses 0, 1, 2, 3. The key is that for \(\sigma \) to satisfy the existential with witness call it \(\alpha \), then we need \(\sigma[k \mapsto \alpha] = b[k] > 0 \), which doesn't depend on \(\sigma(k) \) because the update of \(\sigma \) uses \(k = \alpha \), not \(k = \) whatever \(\sigma(k) \) happens to be.

 Here's a step-by-step explanation (this is way too much detail for appearing on a test):

 \[
 \begin{align*}
 \sigma[k \mapsto \alpha] &= b[k] > 0 \\
 \text{iff } \sigma[k \mapsto \alpha](b[k]) &= \sigma[k \mapsto \alpha](0) & \text{defn state } \models \text{ relational test} \\
 \text{iff } (\sigma[k \mapsto \alpha](b))(\sigma[k \mapsto \alpha](k)) &= 0 & \text{the value of 0 is zero} \\
 \text{iff } (\sigma(b))(\sigma[k \mapsto \alpha](k)) &= 0 & \sigma[k \mapsto \alpha](b) = \sigma(b) \text{ because } b \neq k \\
 \text{iff } (\sigma(b))(\alpha) &= 0 & \sigma[k \mapsto \alpha](k)) = \alpha \\
 \text{iff } 7, 5, 12, \text{or } 16 &= 0 & \text{depending on } \alpha = 0, 1, 2, \text{or } 3
 \end{align*}
 \]

3. (Validity/invalidity of quantified predicates)
 a. this \(\sigma \), some \(\alpha \), \(\models p \)
 b. this \(\sigma \), every \(\alpha \), \(\models p \)
 c. nothing of \(\sigma(x) \)
 d. nothing of \(\sigma(x) \)
 e. this \(\sigma \), every \(\alpha \), \(\not\models p \)
 f. this \(\sigma \), some \(\alpha \), \(\not\models p \)
 g. some \(\sigma \), \(\not\models \forall x \in U. \ p \)
 h. some \(\sigma \), every \(\alpha \), \(\not\models p \)
 i. some \(\sigma \), some \(\alpha \), \(\not\models p \)
 j. every \(\sigma \), some \(\alpha \), every \(\beta \), \(\models p \)
 k. some \(\sigma \), every \(\alpha \), some \(\beta \), \(\not\models p \)
 l. every \(\sigma \), every \(\alpha \), some \(\beta \), \(\models p \)
 m. some \(\sigma \), some \(\alpha \), every \(\beta \), \(\not\models p \)
4. (∃ ∀ predicates versus ∀ ∃ predicates, specifically \(p = \exists y \ . \forall x \ . f(x) > y \), and \(q = \forall x \ . \exists y \ . f(x) > y \))

 a. The relation does hold: \(\models p \) implies \(\models q \). The short explanation is that for each value \(\alpha \) for \(x \), we need to find a value \(\beta \) for \(y \) that satisfies the body, but \(p \) says that there's a value that works for every \(\alpha \), so we can use that value for \(\beta \). In more detail, assume \(p \) is valid: for every state \(\sigma \), there is some value \(\beta \) where for every value \(\alpha \), \(\sigma[y \rightarrow \beta][x \rightarrow \alpha] \models f(x) > y \). To show that \(q \) is valid, take an arbitrary state \(\tau \) with value \(\alpha \) for \(x \). We need a witness value for the \(\exists y \); using \(p \) with \(\tau \) for \(\sigma \), we get a \(\beta \) for the \(\exists y \) of \(p \) and use that as the witness for the \(\exists y \) in \(q \). So then we need \(\tau[x \rightarrow \alpha][y \rightarrow \beta] \models f(x) > y \). Substituting \(\sigma \) for \(\tau \) and swapping the order of the updates, we need \(\sigma[y \rightarrow \beta][x \rightarrow \alpha] \models f(x) > y \). But that's exactly what \(p \) provided.

 b. The relation does not hold: We can have \(\models q \) but \(\not\models p \). The easiest example is \(f(x) = x \), then validity of \(p \) would require us to find an integer value for \(y \) that is > every possible integer value of \(x \), but no such value exists.

 As an aside, you can use an arbitrary predicate over \(x \) and \(y \) instead of \(f(x) > y \) as the body of the \(\exists ∀ \) and \(∀ ∃ \) predicates. I use \(f(x) > y \) here just because it's nice and concrete.