Satisfaction, Validity, and State Updates

CS 536: Science of Programming, Fall 2021

A. Why

• A predicate is satisfied or unsatisfied relative to a state.
• A predicate is valid if it is satisfied in all states.
• State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of today, you should

• Know how to check a predicate for satisfaction in a state, how to check a predicate for validity, and know how to update a state.

C. Questions

1. Say u and v stand for variables (possibly the same variable) and α and β are values (possibly equal). When is \(\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha] \)? Hint: There are four cases because maybe \(u \equiv v \) and maybe \(\alpha = \beta \).

2. Let \(\sigma(b) = (7, 5, 12, 16) \). Assume out-of-bound indexes cause runtime errors.
 a. Does \(\sigma \models \exists k . 0 \leq k \land k+1 < \text{size}(b) \land b[k] < b[k+1] \)? If so, what was your witness value for \(k \)?
 b. Does \(\sigma \models \exists k . 0 \leq k-1 \land k+1 < \text{size}(b) \land b[k-1] < b[k] < b[k+1] \)? If so, what was your witness value for \(k \)?
 c. Does \(\sigma \models \forall k . 0 \leq k < 4 \rightarrow b[k] > 0 \)?
 d. If \(\sigma(k) = -5 \), then does \(\sigma \models \exists k . b[k] > 0 \)?

3. For each of the situations below, fill in the blanks to describe when the situation holds.
 Fill in \(____ 1 \) with “some”, “every”, or “this”
 Fill in \(____ 2 \) with “some” or “every”
 Fill in \(____ 3 \) with “\(\sigma(x) \) must be undefined”, “\(\sigma(x) \) must be defined and \(\sigma \models p \)”, or “nothing of \(\sigma(x) \)”
 Fill in \(____ 4 \) with “\(\models p \)” or “\(\not\models p \)”
 a. \(\sigma \models (\exists x \in U. p) \) iff for \(____ \) state \(\sigma \) and \(____ \) \(\alpha \in U, \sigma[x \mapsto \alpha] \) \(____ \)
 b. \(\sigma \models (\forall x \in U. p) \) iff for \(____ \) state \(\sigma \) and \(____ \) \(\alpha \in U, \sigma[x \mapsto \alpha] \) \(____ \)
 c. \(\sigma \models (\exists x \in U. p) \) requires \(____ \).
 d. \(\sigma \models (\forall x \in U. p) \) requires \(____ \).
 e. \(\sigma \not\models (\exists x \in U. p) \) iff for \(____ \) state \(\sigma \) for \(____ \) \(\alpha \in U, \sigma[x \mapsto \alpha] \) \(____ \)
f. $\sigma \not\models (\forall x \in U. \ p)$ iff for _____, state σ for _____ $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____ 4

g. $\not\models (\forall x \in U. \ p)$ iff for _____ state σ, we have σ _____ ($\forall x \in U. \ p$).

h. $\not\models (\exists x \in U. \ p)$ iff for _____ state σ, we have σ _____ ($\exists x \in U. \ p$).

i. $\not\models (\forall x \in U. \ p)$ iff for _____ state σ, and for _____ $\alpha \in U$, we have $\sigma[x \mapsto \alpha]$ _____ 4

j. $\models (\exists x \in U. (\forall y \in V. \ p))$ iff for _____ state σ, for _____ $\alpha \in U$, and for _____ $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ _____ 4

k. $\not\models (\exists x \in U. (\forall y \in V. \ p))$ iff for _____ state σ, for _____ $\alpha \in U$, and for _____ $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta] [\models | \models] p$.

l. $\models (\forall x \in U. (\exists y \in V. \ p))$ iff for _____ state σ, for _____ $\alpha \in U$, and for _____ $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta] [\models | \models] p$.

m. $\not\models (\forall x \in U. (\exists y \in V. \ p))$ iff for _____ state σ, for _____ $\alpha \in U$, and for _____ $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ _____ 4

4. Let $p = \exists y . \forall x . f(x) > y$, and let $q = \forall x . \exists y . f(x) > y$. (As usual, assume a domain of \mathbb{Z}.)

a. Is it the case that (regardless of the definition of f), if p is valid then so is q? If so, explain why. If not, give a definition of $f(x)$ and show $\models p$ but $\not\models q$.

b. (The converse.) Is it the case that (regardless of the definition of f), if q is valid then so is p? If so, explain why. If not, give a definition of $f(x)$ and show $\models q$ but $\not\models p$.