Finding Invariants; Array Assignments*

CS 536: Science of Programming, Spring 2023

Due Wed Apr 26, 11:59 pm

2023-04-25 p.1, 2023-04-26 p.1, 2023-04-29: pp. 2,3

A. Why?

- The hardest part of programming is finding good loop invariants.
- There are heuristics for finding them but no algorithms that work in all cases.
- Array assignments aren't like assignments to plain variables because the actual item to change can't be determined until runtime.

B. Outcomes

After this homework, you should be able to

- Describe the strength connections among the conditions of $\{p_0\} S_0 \{inv p\}$ while B do S od $\{q\}$.
- Describe and use the invariant-finding heuristics "Replace a constant by a variable", "Drop a conjunct" and "Add a disjunct".
- Be able to perform textual substitution to replace an array element.
- Be able to calculate the *wp* of an array element assignment.

C. Problems [60 points total]

Classes 19 & 20: Finding Invariants [24 points]

- 1. [3 points] Say we have a postcondition *q* and are looking for a compatible loop invariant *p* and test *B*. Briefly, does *p* need to be weaker or stronger than *q*? How does *B* fit in? How about initialization?
- 2. [9 points] Take the postcondition $(0 \le x \land y \le m \land (b \rightarrow x \le m))$ and list all of the candidate invariant/while header combinations you can get using the technique Replace a Constant by a Variable? Assume b, x, and y are a variables and *m* is a constant. [2023-04-25]
- 3. [9 points] Using the same postcondition, List all of the candidate invariant/while header combinations you can get using the technique Delete a Conjunct.

^{*} This is the last assignment! For the Final Exam, be sure to study the practices for Classes 22 & up.

4. [3 points] Take the candidate invariant/while headers of the previous problem and explain briefly why they can all also be viewed as instances of the technique Add a Disjunct.

Class 21: Array Assignments [36 points]

For these problems, simplify as you go (it will make life easier).

- 5. [9 points] Calculate $wp(b[x]:=y, b[y] \ge b[n])$. Show your calculations.
- 6. [9 points] Calculate wp(b[n]:=b[x], b[y] > b[n]). Show your calculations.
- 7. [18 points] Is the triple {b[m] < b[n]} b[b[n]]:=b[m]{b[m]≤b[n]} valid? I.e., does (b[m] < b[n]) → wp(b[b[n]]:=b[m], b[m]≤b[n])? Show your calculations.
 [2023-04-26]

Solution to Homework 9

Classes 19 & 20: Finding Invariants

- 1. *p* needs to be weaker than *q* because we need to satisfy *p* before entering the loop (and satisfying *q* is hard). We need initialization to establish *p*, preferably with some simple code that sets the loop variables. Obviously *B* needs to be testable but more generally, $p \land B$ needs to be stronger than *q* so that $p \land B \rightarrow q$.
- 2. { $inv (z \le x \land y < m \land (b \rightarrow x < m))$ } while $z \ne 0$ [2023-04-29] { $inv (0 \le x \land y < z \land (b \rightarrow x < m))$ } while $z \ne m$ { $inv (0 \le x \land y < m \land (b \rightarrow x < z))$ } while $z \ne m$
- 3. { $inv (y < m \land (b \rightarrow x < m))$ } while 0 > x{ $inv (0 \le x \land (b \rightarrow x < m))$ } while $y \ge m$ { $inv (0 \le x \land y < m)$ } while $\neg (b \rightarrow x < m)$) or the equivalent while $b \land x \ge m$.

Class 21: Array Assignments

5. (Calculate the wp of an array assignment)
 wp(b[x]:=y, b[y]≥b[n])

 $= (b[y])[y/b[x]] \ge (b[n])[y/b[x]]$ $= if y = x then y else b[y] fi \ge if n = x then y else b[n] fi [2023-04-29]$ Has no obviously good simplification [2023-04-29] $= if y = x then b[y] \ge b[y] else b[y] \ge b[x] fi$ $\Rightarrow y = x \lor b[y] \ge b[x]$

6. (Calculate the wp of an array assignment)

 $wp(b[n]:=b[x], b[y] \ge b[n]) \qquad [2023-04-29]$ $\equiv (b[y])[b[x]/b[n]] \ge (b[n])[b[x]/b[n]]$ $\equiv if y = n then b[x] else b[n] fi \ge b[x]$ $\Leftrightarrow y = n \lor b[n] \ge b[x]$ $\Leftrightarrow b[x] \ge if y = n then b[x] else b[y] fi$ $\Leftrightarrow if y = n then b[x] \ge b[x] else b[x] \ge b[y] fi$ $\Leftrightarrow y = n \lor b[x] \ge b[y]$

7. (Is {b[m] < b[n]} b[b[n]]:=b[m] {b[m] ≤ b[n]} valid?)
It's sufficient to show that the precondition implies the *wp* of the assignment and postcondition. I.e.,

 $(b[m] < b[n]) \rightarrow wp(b[b[n]]:=b[m], b[m] \le b[m])$

First let's calculate the wp: $wp(b[b[n]]:=b[m], b[m] \le b[n])$ $\equiv (b[m] \le b[n])[b[m]/b[b[n]]]$ $\equiv (b[m])[b[m]/b[b[n]]] \le (b[n])[b[m]/b[b[n]]]$ $\equiv if m = b[n] then b[m] else b[m] fi$ $\Leftrightarrow b[m] \le if n = b[n] then b[m] else b[n] fi$ $\Leftrightarrow if n = b[n] then b[m] \le b[m] else b[m] \le b[n] fi$ $\Leftrightarrow if n = b[n] then T else b[m] \le b[n] fi$ $\Leftrightarrow n = b[n] \lor b[m] \le b[n] or$ $\Leftrightarrow n = b[n] \lor b[m] \le b[n] (they're equivalent)$ Now that we know the wp, we can our say triple is valid if $(b[m] \le b[n]) \rightarrow wp(b[b[n]]:=b[m], b[m] \le b[m])$ $\Leftrightarrow (b[m] \le b[n]) \rightarrow (n = b[n] \lor b[m] \le b[n])$

which is true.