Finding Invariants; Array Assignments*
 CS 536: Science of Programming, Spring 2023

 Due Wed Apr 26, 11:59 pm

 Due Wed Apr 26, 11:59 pm}

2023-04-25 p.1, 2023-04-26 p.1, 2023-04-29: pp. 2,3

A. Why?

- The hardest part of programming is finding good loop invariants.
- There are heuristics for finding them but no algorithms that work in all cases.
- Array assignments aren't like assignments to plain variables because the actual item to change can't be determined until runtime.

B. Outcomes

After this homework, you should be able to

- Describe the strength connections among the conditions of $\left\{p_{0}\right\} S_{0}\{\operatorname{inv} p\}$ while B do S od $\{q\}$.
- Describe and use the invariant-finding heuristics "Replace a constant by a variable", "Drop a conjunct" and "Add a disjunct".
- Be able to perform textual substitution to replace an array element.
- Be able to calculate the $w p$ of an array element assignment.

C. Problems [60 points total]

Classes 19 \& 20: Finding Invariants [24 points]

1. [3 points] Say we have a postcondition q and are looking for a compatible loop invariant p and test B. Briefly, does p need to be weaker or stronger than q ? How does B fit in? How about initialization?
2. [9 points] Take the postcondition ($0 \leq x \wedge y<m \wedge(b \rightarrow x<m)$) and list all of the candidate invariant/while header combinations you can get using the technique Replace a Constant by a Variable? Assume b, x, and y are a variables and m is a constant. [2023-04-25]
3. [9 points] Using the same postcondition, List all of the candidate invariant/while header combinations you can get using the technique Delete a Conjunct.

[^0]4. [3 points] Take the candidate invariant/while headers of the previous problem and explain briefly why they can all also be viewed as instances of the technique Add a Disjunct.

Class 21: Array Assignments [36 points]

For these problems, simplify as you go (it will make life easier).
5. [9 points] Calculate $w p(b[x]:=y, b[y] \geq b[n])$. Show your calculations.
6. [9 points] Calculate $w p(b[n]:=b[x], b[y]>b[n])$. Show your calculations.
7. [18 points] Is the triple $\{b[m]<b[n]\} b[b[n]]:=b[m]\{b[m] \leq b[n]\}$ valid? I.e., does $(b[m]<b[n]) \rightarrow w p(b[b[n]]:=b[m], b[m] \leq b[n])$? Show your calculations. [2023-04-26]

Solution to Homework 9

Classes 19 \& 20: Finding Invariants

1. $\quad p$ needs to be weaker than q because we need to satisfy p before entering the loop (and satisfying q is hard). We need initialization to establish p, preferably with some simple code that sets the loop variables. Obviously B needs to be testable but more generally, $p \wedge B$ needs to be stronger than q so that $p \wedge B \rightarrow q$.
2. $\{\operatorname{inv}(z \leq x \wedge y<m \wedge(b \rightarrow x<m))\}$ while $z \neq 0 \quad$ [2023-04-29]
$\{\operatorname{inv}(0 \leq x \wedge y<z \wedge(b \rightarrow x<m))\}$ while $z \neq m$
$\{\operatorname{inv}(0 \leq x \wedge y<m \wedge(b \rightarrow x<z))\}$ while $z \neq m$
3. $\{\operatorname{inv}(y<m \wedge(b \rightarrow x<m)))\}$ while $0>x$
$\{\operatorname{inv}(0 \leq x \wedge(b \rightarrow x<m)))\}$ while $y \geq m$
$\{\operatorname{inv}(0 \leq x \wedge y<m)\}$ while $\neg(b \rightarrow x<m))$ or the equivalent while $b \wedge x \geq m$.

Class 21: Array Assignments

5. (Calculate the wp of an array assignment)
$w p(b[x]:=y, b[y] \geq b[n])$
$\equiv(b[y])[y / b[x]] \geq(b[n])[y / b[x]]$
\equiv if $y=x$ then y else $b[y]$ fi \geq if $n=x$ then y else $b[n]$ fi [2023-04-29]
Has no obviously good simplification [2023-04-29]
三if $y=x$ then $b[y] \geq b[y]$ else $b[y] \geq b[x]$ fi
$\Leftrightarrow y-x \vee b[y] \geq b[x]$
6. (Calculate the wp of an array assignment)
```
wp(b[n]:=b[x],b[y]\geqb[n]) [2023-04-29]
\equiv(b[y])[b[x]/b[n]] \geq(b[n])[b[x]/b[n]]
\equiv if y=n then b[x] else b[n] fi\geqb[x]
\Leftrightarrowy=n v b[n]\geqb[x]
```



```
&ify-n then b[x]\geqb[x] else b[x]\geqb[y] fi
\Leftrightarrowy=n \vee b[x]\geqb[y]
```

7. (Is $\{b[m]<b[n]\} b[b[n]]:=b[m]\{b[m] \leq b[n]\}$ valid?)

It's sufficient to show that the precondition implies the $w p$ of the assignment and postcondition. I.e.,

$$
(b[m]<b[n]) \rightarrow w p(b[b[n]]:=b[m], b[m] \leq b[m])
$$

First let's calculate the $w p$:

$$
\begin{aligned}
w p & (b[b[n]]:=b[m], b[m] \leq b[n]) \\
\equiv & (b[m] \leq b[n])[b[m] / b[b[n]]] \\
\equiv & (b[m])[b[m] / b[b[n]]] \leq(b[n])[b[m] / b[b[n]]] \\
\equiv & \text { if } m=b[n] \text { then } b[m] \text { else } b[m] f i \\
& \leq \text { if } n=b[n] \text { then } b[m] \text { else } b[n] \text { fi } \\
\Leftrightarrow & b[m] \leq \text { if } n=b[n] \text { then } b[m] \text { else } b[n] f i \\
\Leftrightarrow & \text { if } n=b[n] \text { then } b[m] \leq b[m] \text { else } b[m] \leq b[n] f i \\
\Leftrightarrow & \text { if } n=b[n] \text { then } T \text { else } b[m] \leq b[n] f i \\
\Leftrightarrow & \text { if }(n=b[n]) \wedge T) \vee(n \neq b[n]) \wedge(b[m] \leq b[n]) f i \\
\Leftrightarrow & n=b[n] \vee b[m] \leq b[n] \text { or } \\
\Leftrightarrow & n \neq b[n] \rightarrow b[m] \leq b[n] \text { (they're equivalent) }
\end{aligned}
$$

Now that we know the $w p$, we can our say triple is valid if

$$
\begin{aligned}
& (b[m]<b[n]) \rightarrow w p(b[b[n]]:=b[m], b[m] \leq b[m]) \\
& \Leftrightarrow(b[m]<b[n]) \rightarrow(n=b[n] \vee b[m] \leq b[n])
\end{aligned}
$$

which is true.

[^0]: * This is the last assignment! For the Final Exam, be sure to study the practices for Classes 22 \& up.

