
Illinois Institute of Technology	 Sat 2023-04-29, 13:39	 HW 9: Classes 19-21

Finding Invariants; Array Assignments
*

CS 536: Science of Programming, Spring 2023

Due Wed Apr 26, 11:59 pm

2023-04-25 p.1, 2023-04-26 p.1, 2023-04-29: pp. 2,3

A. Why?

• The hardest part of programming is finding good loop invariants.

• There are heuristics for finding them but no algorithms that work in all cases.

• Array assignments aren’t like assignments to plain variables because the actual item to change
can’t be determined until runtime.

B. Outcomes

After this homework, you should be able to

• Describe the strength connections among the conditions of { p₀ } S₀ { inv p } while B do S od { q }.

• Describe and use the invariant-finding heuristics "Replace a constant by a variable", “Drop a
conjunct” and “Add a disjunct”.

• Be able to perform textual substitution to replace an array element.

• Be able to calculate the wp of an array element assignment.

C. Problems [60 points total]

Classes 19 & 20: Finding Invariants [24 points]

1.	 [3 points] Say we have a postcondition q and are looking for a compatible loop invariant p and
test B. Briefly, does p need to be weaker or stronger than q? How does B fit in? How about
initialization?

2.	 [9 points] Take the postcondition (0 ≤ x ∧ y < m ∧ (b→ x < m)) and list all of the candidate in-
variant/while header combinations you can get using the technique Replace a Constant by a
Variable? Assume b, x, and y are a variables and m is a constant. [2023-04-25]

3.	 [9 points] Using the same postcondition, List all of the candidate invariant/while header com-
binations you can get using the technique Delete a Conjunct.

 This is the last assignment! For the Final Exam, be sure to study the practices for Classes 22 & up.*

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20231

Illinois Institute of Technology	 Sat 2023-04-29, 13:39	 HW 9: Classes 19-21

4.	 [3 points] Take the candidate invariant/while headers of the previous problem and explain
briefly why they can all also be viewed as instances of the technique Add a Disjunct.

Class 21: Array Assignments [36 points]

For these problems, simplify as you go (it will make life easier).

5.	 [9 points] Calculate wp (b [x] : = y, b [y] ≥ b [n]) . Show your calculations.

6.	 [9 points] Calculate wp (b [n] : = b [x] , b [y] > b [n]) . Show your calculations.

7.	 [18 points] Is the triple { b [m] < b [n] } b [b [n]] : = b [m] { b [m] ≤ b [n] } valid? I.e., does
(b [m] < b [n])→wp (b [b [n]] : = b [m] , b [m] ≤ b [n]) ? Show your calculations.

	 [2023-04-26]

Solution to Homework 9

Classes 19 & 20: Finding Invariants

1.	 p needs to be weaker than q because we need to satisfy p before entering the loop (and satisfy-
ing q is hard). We need initialization to establish p, preferably with some simple code that sets
the loop variables. Obviously B needs to be testable but more generally, p ∧ B needs to be
stronger than q so that p ∧ B→ q.

2.	 { inv (z ≤ x ∧ y < m ∧ (b → x < m)) } while z ≠ 0 	 [2023-04-29]

{ inv (0 ≤ x ∧ y < z ∧ (b → x < m)) } while z ≠ m

{ inv (0 ≤ x ∧ y < m ∧ (b → x < z)) } while z ≠ m

3.	 { inv (y < m ∧ (b → x < m))) } while 0 > x

{ inv (0 ≤ x ∧ (b → x < m))) } while y ≥ m

{ inv (0 ≤ x ∧ y < m) } while ¬ (b → x < m)) or the equivalent while b ∧ x ≥ m.

Class 21: Array Assignments

5.	 (Calculate the wp of an array assignment)

wp (b [x] : = y, b [y] ≥ b [n])

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20232

Illinois Institute of Technology	 Sat 2023-04-29, 13:39	 HW 9: Classes 19-21

≡ (b [y]) [y / b [x]] ≥ (b [n]) [y / b [x]]

≡ if y = x then y else b [y] f ≥ if n= x then y else b [n] f 	[2023-04-29]

Has no obviously good simplification [2023-04-29]

≡if y=x then b[y]≥b[y] else b[y]≥b[x] fi

⇔y=x ∨ b[y]≥b[x]

6.	 (Calculate the wp of an array assignment)

wp (b [n] : = b [x] , b [y] ≥ b [n])		 [2023-04-29]

≡ (b [y]) [b [x] / b [n]] ≥ (b [n]) [b [x] / b [n]]

≡ if y = n then b [x] else b [n] f ≥ b [x]

⇔ y = n ∨ b [n] ≥ b [x]

⇔b[x] ≥ if y=n then b[x] else b[y] fi

⇔ if y=n then b[x] ≥b[x] else b[x]≥b[y] fi

⇔y=n ∨ b[x]≥b[y]

7.	 (Is { b [m] < b [n] } b [b [n]] : = b [m] { b [m] ≤ b [n] } valid?)

	 It’s sufficient to show that the precondition implies the wp of the assignment and postcondi-
tion. I.e.,

	 (b [m] < b [n])→ wp (b [b [n]] := b [m] , b [m] ≤ b [m])

First let's calculate the wp :

wp (b [b [n]] : = b [m] , b [m] ≤ b [n])

	 ≡ (b [m] ≤ b [n]) [b [m] ⧸ b [b [n]]]

	 ≡ (b [m]) [b [m] ⧸ b [b [n]]] ≤ (b [n]) [b [m] ⧸ b [b [n]]]

	 ≡ if m = b [n] then b [m] else b [m] f

	 	 ≤ if n = b [n] then b [m] else b [n] f

	 ⇔ b [m] ≤ if n = b [n] then b [m] else b [n] f

	 ⇔ if n = b [n] then b [m] ≤ b [m] else b [m] ≤ b [n] f

	 ⇔ if n = b [n] then T else b [m] ≤ b [n] f

	 ⇔if (n = b [n]) ∧ T) ∨ (n ≠ b [n]) ∧ (b [m] ≤ b [n]) f

	 ⇔ n = b [n] ∨ b [m] ≤ b [n] or

	 ⇔ n ≠ b [n]→ b [m] ≤ b [n] (they're equivalent)

Now that we know the wp, we can our say triple is valid if

	 (b [m] < b [n])→wp (b [b [n]] : = b [m] , b [m] ≤ b [m])

	 ⇔ (b [m] < b [n])→ (n = b [n] ∨ b [m] ≤ b [n])

which is true.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20233

