Proof Outlines; Total Correctness

CS 536: Science of Programming, Spring 2023

Due Wed Apr 5 aton Apr 3, 11:59 pm

2023-04-03 p.3, 2023-04-14: pp. 1, 3, 4.

A. Why?

- A formal proof lets us write out in detail the reasons for believing that something is valid.
- Proof outlines condense the same information as a proof.
- Total correctness takes correct results and adds avoidance of runtime errors and divergence.

B. Outcomes

- After this homework, you should be able to
- Translate between full proof outlines and formal proofs of partial correctness.
- Translate between a full proof outline and a minimal proof outline.
- Check an outline for convergence and avoidance of runtime errors.

C. Problems [60 points total]

Classes 16 \&17: Proof Outlines [25 points]

1. [15 points] Show the full outline derived from the full proof.
2. $\{n>0\} k:=n-1\{n>0 \wedge k=n-1\}$
3. $\quad\{n>0 \wedge k=n-1\} x:=n\{n>0 \wedge k=n-1 \wedge x=n\}$
4. $n>0 \wedge k=n-1 \wedge x=n \rightarrow p$ (where $p \equiv 1 \leq k \leq n \wedge x=n!/ k!)$
5. $\{n>0 \wedge k=n-1\} x:=n\{p\}$
6. $\{n>0\} k:=n-1 ; x:=n\{p\}$
7. $\left\{p\left[x^{*} k / x\right]\right\} x:=x^{*} k\{p\}$
8. $\left\{p\left[x^{*} k / x\right][k-1 / k]\right\} k:=k-1\left\{p\left[x^{*} k / x\right]\right\}$
9. $p \wedge k>1 \rightarrow p\left[x^{*} k / x\right][k-1 / k]$
10. $\{p \wedge k>1\} k:=k-1\left\{p\left[x^{*} k / x\right]\right\}$
11. $\{p \wedge k>1\} k:=k-1 ; x:=x^{*} k\{p\}$
12. $\{\operatorname{inv} p\} W\{p \wedge k \leq 1\}$ // where $W \equiv$ while $k>1$ do $k:=k-1 ; x:=x^{*} k$ od
13. $\{n>0\} k:=n-1 ; x:=n\{\operatorname{inv} p\} W\{p \wedge k \leq 1\}$
14. $p \wedge k \leq 1 \rightarrow x=n$!
15. $\{n>0\} k:=n-1 ; x:=n\{$ inv $p\} W\{x=n!\}$
assignment (fwd)
assignment (fwd)
predicate logic
postcond. weak. 2, 3
sequence 1, 4
assignment (bwd)
assignment (bwd)
predicate logic
precondition str. 8, 7
sequence 9, 6
while loop 10
sequence 5, 11
predicate logic [2023-04-14]
postcond. weak. 12, 13

Expanded substitutions: (You don't have to re-include this with your outline)

- $p \equiv 1 \leq k \leq n \wedge x=n!/ k$!
- $p\left[x^{*} k / x\right] \equiv 1 \leq k \leq n \wedge x^{*} k=n!/ k$!
- $p\left[x^{*} k / x\right][k-1 / k] \equiv 1 \leq k-1 \leq n \wedge x^{*}(k-1)=n!/(k-1)$!

2. [10 points] Give a full proof outline obtained by expansion of the partial proof outline below. Work backward though the program (use $w p$ on the four assignments). Show the results of substitutions somewhere.

$$
\begin{aligned}
& \{y \geq 1\} x:=0 ; r:=1 \text {; } \\
& \left\{\text { inv } p \equiv 1 \leq r=2^{\wedge} x \leq y\right\} \\
& \text { while } 2^{*} r \leq y \text { do } \\
& \quad r:=2^{*} r ; x:=x+1 \\
& \text { od } \\
& \left\{r=2^{\wedge} x \leq y \leq 2^{\wedge}(x+1)\right\}
\end{aligned}
$$

Class 18: Total Correctness: Errors and Divergence [35 points total] Convergence [14 points]

3. [6 points] For $\{\operatorname{inv} p\}\{\boldsymbol{b d} t\}$ while B do S od $\{p \wedge \neg B\}$, for each of the following properties, in order to get convergence, must the property hold? If not, can it hold? Must it never hold? Briefly discuss each answer.
a. $\left\{p \wedge B \wedge t>t_{0}\right\} S\left\{t=t_{0}\right\}$
b. $p \wedge t=0 \rightarrow \neg B$
c. $p \wedge t>0 \rightarrow B$
d. $p \wedge \neg B \rightarrow t=0$
e. $\left(p \wedge B \wedge t=t_{0}\right) \rightarrow w p\left(S, t<t_{0}\right)$
f. $\quad s p\left(p \wedge B \wedge t=t_{0}, S\right) \rightarrow t<t_{0}$
4. [$8=4 * 2$ points] Consider the loop $\{\boldsymbol{i n v} p\}\{\boldsymbol{b d} t\}$ while $k \leq n$ do ... $k:=k+1$ od.

Assume $p \rightarrow(n \geq 0 \wedge 0<C \leq k \leq n+C)$ where C is a named constant, not necessarily ≥ 0. For each of the following expressions, say whether or not it can be used as the bound expression t above (if not, briefly explain why).
a. $n-k$
b. $n-k+C$
c. $n+k+C$
d. $2 \wedge(n+C) / 2^{\wedge} k$

Runtime Errors and Convergence [21 points]

5. [21=7*3 points] The program below is outlined for partial correctness, with initial values given for the predicates and for the bound function t. Rewrite the outline for total correctness. This will entail a number of steps:
a. Fix t (Hint: the initial value is too small). Give your new t as the answer to this part.
b. Fix p to make it safe: Calculate $D(p)$ and redefine p as the old $p \wedge D(p)$. Give $D(p)$ and the new p.
c. Fix p_{0} : Make it safe and make $p_{0} \wedge k=1$ imply p. Give the new p_{0}.
d. Verify that p_{3} is safe: Calculate $D\left(p_{3}\right)$ and make sure $p_{3} \Rightarrow D(p)$. If it isn't, modify p_{3} (i.e., modify p and/or t) and go back to (a) or (b) as necessary. Give $D\left(p_{3}\right)$.
e. Calculate p_{2} as the $w p$ of the loop body and p_{3}, then verify that p_{2} is safe and that $p_{1} \Rightarrow p_{2}$. If not, fix p_{1} or p_{2} as appropriate. Give p_{2}.
f. Fix q by making it safe: Calculate $D(q)$ and redefine q as the old $q \wedge D(q)$. We should have $p_{4} \Rightarrow q$. If not, something's wrong with p_{4} or p or q. Give $D(q)$ and the new q.
g. Let $B \equiv \operatorname{sqrt}(k)<x / y$ (the loop test). Calculate $D(B)$ and verify that B doesn't imply $D(B)$. We could modify the program to use while $\downarrow B$, but do we need to? If not, explain why, briefly.
In the program below, the definitions of p_{0}, p, t, and q will change (which is why they're "initial"). The definitions of p_{1}, p_{2}, and p_{3} will change only because p and t change.

$$
\begin{aligned}
& \left\{p_{0}\right\} \quad / / \text { initial } p_{0} \equiv T \\
& k:=1 \text {; } \\
& \left\{p_{0} \wedge k=1\right\} \\
& \{\text { inv } p\} \quad / / \text { initial } p \equiv \operatorname{sqrt}(k-1) \leq x / y \quad[2023-04-14:<\text { is correct]* } \\
& \{\boldsymbol{b} \boldsymbol{d} t\} \quad / / \text { initial } t \equiv(x / y)^{2}-k\left[t \equiv(x / y)^{2}-(k-1) \text { is the final } t\right. \text {. } \\
& \text { while sqrt }(k)<x / y \text { do Explain why }(x / y)^{2}-k \text { is bad } \\
& \left.\left\{p_{1}\right\} \quad / / p_{1} \equiv p \wedge \operatorname{sqrt}(k)<x / y \wedge t=t_{0} \quad \text { and }(x / y)^{2}-(k-1) \text { is right }\right] \\
& \left\{p_{2}\right\} \quad / / p_{2} \equiv w p\left(k:=k+1, p_{3}\right) \\
& k:=k+1 \\
& \left\{p_{3}\right\} \quad / / p_{3} \equiv p \wedge t<t_{0} \\
& \text { od } \\
& \left\{p_{4} \equiv p \wedge \neg \text { test }\right\} \text { [2023-04-14] } \\
& \{q\} \quad / / \text { initial } q \equiv \operatorname{sqrt}(k-1)<x / y \leq \operatorname{sqrt}(k)
\end{aligned}
$$

[2023-04-14] To get p, we dropped the second conjunct of $q \equiv \operatorname{sqrt}(k-1)<x / y \leq \operatorname{sqrt}(k)$. So p is the part of q that's left, namely $\operatorname{sqrt}(k-1)<x / y$, and the while test is $\neg(x / y \leq \operatorname{sqrt}(k))$.

Solution to Homework 8

Classes 16 \& 17: Proof Outlines

1. (Full outline from formal proof)
```
{n>0}
k:=n-1;{n>0^k=n-1}
x:=n;{n>0^k=n-1^x=n}
{inv p} while k>1 do // where p\equiv1\leqk\leqn\wedgex=n!/k!
    {p\wedgek>1}
    {p[\mp@subsup{x}{}{*}k/x][k-1/k]}k:=k-1;
    {p[x*k/x]}x:= x*k
    {p}
od
{p^k\leq1}
{x=n!}\Leftarrow to get this line we needed lines 13 and 14 in the formal proof. [2023-04-14]
```

2. (Expand partial outline)
```
{y\geq1}
{p[1/r][0/x]} x:=0; |
{p[1/r]}r:=1; // p[1/r]\equiv1\leq1=2^x\leqy
{inv p\equiv1\leqr=2^x\leqy}
while 2*}r\leqy d
    {p\wedge2*r\leqy}
    {p[x+1/x][2*r/r]}r:=2*r; |
    {p[x+1/x]}x:=x+1 |p[x+1/x]\equiv1\leqr=2^(x+1)\leqy
    {p}
od
{p\wedge2*r>y}
{r=2^x\leqy\leq2^(x+1)}
```


Class 18: Total Correctness

3. (Convergence of $\{\operatorname{inv} p\}\{\boldsymbol{b d} t\}$ while B do S od $\{p \wedge \neg B\}$)
a. Must be true: $\left\{p \wedge B \wedge t>t_{0}\right\} S\left\{t=t_{0}\right\}$. Whatever t is at the end of the iteration; it needed to be larger at the start of the iteration.
b. Must be true: $p \wedge t=0 \rightarrow \neg B$. If $t=0$ at the start of an iteration, decreasing it would make t negative at the end of the iteration.
c. Can be false: $p \wedge t>0 \rightarrow B$. We can have $t>0$ on loop termination.
d. Can be false: $p \wedge \neg B \rightarrow t=0$. Again, $t>0$ at loop termination is allowed.
e. Must be true: $\left(p \wedge B \wedge t=t_{0}\right) \rightarrow w p\left(S, t<t_{0}\right)$. This guarantees that S reduces t.
f. Must be true: $s p\left(p \wedge B \wedge t=t_{0}, S\right) \rightarrow t<t_{0}$. This also guarantees that S reduces t.
4. (Possible bound functions for $\{\operatorname{inv} p\}\{b \boldsymbol{b} t\}$ while $k \leq n$ do $\ldots k:=k+1$ od, where we have $p \rightarrow(n \geq 0 \wedge 0<C \leq k \leq n+C$, for constant C (which can be $<,=$, or >0).
a. $(n-k)$: Is decreased by incrementing k, but it can't be a bound function because it can be negative. Since $k \leq n+C$, we can subtract $C+k$ from both sides and get $k-(C+k) \leq n+C-$ $(C+k)$, which simplifies to $-C \leq n-k$.
b. $n-k+C$: Can be a bound function. Since $k \leq n+C$, we know $0 \leq n-k+C$, so it's nonnegative, and incrementing k decreases $n-k+C$.
c. $n+k+C$: Cannot be a bound function because increasing k makes $n+k+C$ larger, not smaller. (It's nonnegative, however: $0<C \leq k \leq n+C \Rightarrow 0<n+C \Rightarrow k<n+k+C$.)
d. $2 \wedge(n+C) / 2 \wedge k$: Can be a bound function. It's decreased by incrementing k, and it's nonnegative because $0 \leq k \leq n+C \Rightarrow 2^{\wedge} k \leq 2^{\wedge}(n+C) \Rightarrow 2^{\wedge}(n+C) / 2^{\wedge} k \geq 1$.
5. (Runtime errors and convergence)
a. The problem is that $(x / y)^{2}-k$ is negative if $x / y=0$ and $k=1$. Change t by adding 1 so that now, $t \equiv(x / y)^{2}-k+1 .{ }^{1}$
b. If $p \equiv \operatorname{sqrt}(k-1)<x / y$ then $D(p) \Leftrightarrow y \neq 0 \wedge k \geq 1$. Redefine $p \equiv y \neq 0 \wedge k \geq 1 \wedge \operatorname{sqrt}(k-1)<x / y$
c. Change p_{0} to $y \neq 0$ so that $p_{0} \wedge k=1 \Rightarrow p$: I.e., $(y \neq 0 \wedge k=1) \Rightarrow y \neq 0 \wedge k \geq 1 \wedge \operatorname{sqrt}(k-1)<x / y$.
d. We calculate $p_{3} \equiv p \wedge t<t_{0} \equiv(y \neq 0 \wedge k \geq 1 \wedge \operatorname{sqrt}(k-1)<x / y) \wedge\left((x / y)^{2}-k+1\right)<t_{0}$. Since $D\left(p_{3}\right) \Leftrightarrow k \geq 1 \wedge y \neq 0$ and $p_{3} \Rightarrow D\left(p_{3}\right), p_{3}$ is safe.
e. $\quad p_{2} \equiv w p\left(k:=k+1, p_{3}\right) \equiv p_{3}[k+1 / k] \equiv(y \neq 0 \wedge k+1 \geq 1 \wedge \operatorname{sqrt}(k+1-1)<x / y) \wedge\left((x / y)^{2}-\right.$ $(k+1)+1)<t_{0}$. Since $D\left(p_{2}\right) \Leftrightarrow[2023-04-14] y \neq 0 \wedge k \geq 0$ and $p_{2} \Rightarrow D\left(p_{2}\right)$, so p_{2} is safe.
f. With $q \equiv \operatorname{sqrt}(k-1)<x / y \leq \operatorname{sqrt}(k)$, We have $D(q) \Leftrightarrow k \geq 1 \wedge y \neq 0$, but q doesn't imply $D(q)$, so we'll redefine q to be the old ($q \wedge D(q)$), which makes the new q safe. The implication $p_{4} \Rightarrow q$ does hold, so the predicate logic obligation is met.
(If you want details for $p_{4} \Rightarrow q$, we have $p_{4} \equiv p \wedge \operatorname{sqrt}(k) \geq x / y$ and $q \equiv \operatorname{sqrt}(k-1)<x / y$ $\leq \operatorname{sqrt}(k) \wedge k \geq 1 \wedge y \neq 0$. (1) Most of q holds because $p_{4} \Rightarrow p$, and p includes $k \geq 1, y \neq 0$, and $\operatorname{sqrt}(k-1)<x / y$. (2) The remainder of q is $x / y \leq \operatorname{sqrt}(k)$, which is included in p_{4}.)
g. The loop test $B \equiv \operatorname{sqrt}(k)<x / y$, so $D(B) \Leftrightarrow k \geq 0 \wedge y \neq 0$, and B doesn't imply $D(B)$. This makes $\downarrow B \Leftrightarrow k \geq 0 \wedge y \neq 0 \wedge \operatorname{sqrt}(k)<x / y$. We could change the program to use while $\downarrow B$, but the invariant implies $k \geq 0 \wedge y \neq 0$, so adding it to the loop test is redundant.
[^0]
[^0]: ${ }^{1}$ Just a side mention: We can't use $x / y-s q r t(k)$ as a bound function because it's not always reduced by incrementing k (because of truncation). E.g., $\operatorname{sqrt}(4)=\operatorname{sqrt}(5)=2$.

