Proof Outlines; Total Correctness

CS 536: Science of Programming, Spring 2023

Due Wed Apr 5 моп Арг 3, 11:59 pm

2023-04-03 p.3, 2023-04-14: pp. 1, 3, 4.

A. Why?

- A formal proof lets us write out in detail the reasons for believing that something is valid.
- Proof outlines condense the same information as a proof.
- Total correctness takes correct results and adds avoidance of runtime errors and divergence.

B. Outcomes

- After this homework, you should be able to
- Translate between full proof outlines and formal proofs of partial correctness.
- Translate between a full proof outline and a minimal proof outline.
- Check an outline for convergence and avoidance of runtime errors.

C. Problems [60 points total]

Classes 16 &17: Proof Outlines [25 points]

1. [15 points] Show the full outline derived from the full proof.

1.	${n > 0} k := n-1 {n > 0 \land k = n-1}$	assignment (fwd)
2.	${n > 0 \land k = n-1} x := n {n > 0 \land k = n-1 \land x = n}$	assignment (fwd)
3.	$n > 0 \land k = n-1 \land x = n \rightarrow p$ (where $p \equiv 1 \le k \le n \land x = n!/k!$)	predicate logic
4.	${n > 0 \land k = n-1} x := n {p}$	postcond. weak. 2, 3
5.	${n > 0} k := n-1; x := n {p}$	sequence 1, 4
6.	${p[x^{*}k/x]}x := x^{*}k{p}$	assignment (bwd)
7.	{ <i>p</i> [<i>x*k</i> / <i>x</i>][<i>k</i> -1/ <i>k</i>]} <i>k</i> := <i>k</i> -1{ <i>p</i> [<i>x*k</i> / <i>x</i>]}	assignment (bwd)
8.	$p \wedge k > 1 \rightarrow p[x^*k/x][k-1/k]$	predicate logic
9.	$\{p \land k > 1\}k := k-1\{p[x*k/x]\}$	precondition str. 8, 7
10.	${p \land k > 1} k := k-1; x := x*k {p}$	sequence 9, 6
11.	$\{inv \ p\} W\{p \land k \le 1\}$	while loop 10
	// where <i>W</i> ≡ <i>while k</i> > 1 <i>do k</i> := <i>k</i> −1 ; <i>x</i> := <i>x</i> * <i>k od</i>	
12.	${n > 0} k := n-1; x := n {inv } p W {p \land k \le 1}$	sequence 5, 11
13.	$p \wedge k \leq 1 \rightarrow x = n!$	predicate logic [2023-04-14]
14.	${n > 0} k := n-1; x := n {inv p} W {x = n!}$	postcond. weak. 12, 13
Expanded	l substitutions: (You don't have to re-include this with your	outline)

• $p \equiv 1 \leq k \leq n \wedge x = n!/k!$

- $p[x^{*}k/x] \equiv 1 \le k \le n \land x^{*}k = n!/k!$
- $p[x^{k/x}][k-1/k] \equiv 1 \le k-1 \le n \land x^{*}(k-1) = n!/(k-1)!$
- 2. [10 points] Give a full proof outline obtained by expansion of the partial proof outline below. Work backward though the program (use *wp* on the four assignments). Show the results of substitutions somewhere.

```
\{y \ge 1\} x := 0; r := 1;

\{inv \ p \equiv 1 \le r = 2 \land x \le y\}

while 2 * r \le y do

r := 2 * r; x := x+1

od

\{r = 2 \land x \le y \le 2 \land (x+1)\}
```

Class 18: Total Correctness: Errors and Divergence [35 points total]

Convergence [14 points]

- 3. [6 points] For { *inv* p } { *bd* t } *while* B *do* S *od* { p ∧ ¬B }, for each of the following properties, in order to get convergence, must the property hold? If not, can it hold? Must it never hold? Briefly discuss each answer.
 - a. $\{p \land B \land t > t_0\} S\{t = t_0\}$
 - b. $p \wedge t = 0 \rightarrow \neg B$
 - c. $p \wedge t > 0 \rightarrow B$
 - d. $p \land \neg B \rightarrow t = 0$
 - e. $(p \land B \land t = t_0) \rightarrow wp(S, t < t_0)$
 - f. $sp(p \land B \land t = t_0, S) \rightarrow t < t_0$
- 4. [8 = 4 * 2 points] Consider the loop { *inv* p } { *bd* t } *while* $k \le n$ *do* ... k := k+1 *od*.

Assume $p \rightarrow (n \ge 0 \land 0 < C \le k \le n+C)$ where *C* is a named constant, not necessarily ≥ 0 . For each of the following expressions, say whether or not it can be used as the bound expression *t* above (if not, briefly explain why).

- a. *n–k*
- b. *n*–*k* + *C*
- c. n+k+C
- d. $2^{(n+C)/2^k}$

Runtime Errors and Convergence [21 points]

5. [21=7*3 points] The program below is outlined for partial correctness, with initial values given for the predicates and for the bound function *t*. Rewrite the outline for total correctness. This will entail a number of steps:

- a. Fix *t* (Hint: the initial value is too small). Give your new *t* as the answer to this part.
- b. Fix p to make it safe: Calculate D(p) and redefine p as the old $p \wedge D(p)$. Give D(p) and the new p.
- c. Fix p_0 : Make it safe and make $p_0 \land k=1$ imply p. Give the new p_0 .
- d. Verify that p_3 is safe: Calculate $D(p_3)$ and make sure $p_3 \Rightarrow D(p)$. If it isn't, modify p_3 (i.e., modify p and/or t) and go back to (a) or (b) as necessary. Give $D(p_3)$.
- e. Calculate p_2 as the wp of the loop body and p_3 , then verify that p_2 is safe and that $p_1 \Rightarrow p_2$. If not, fix p_1 or p_2 as appropriate. Give p_2 .
- f. Fix *q* by making it safe: Calculate D(q) and redefine *q* as the old $q \land D(q)$. We should have $p_4 \Rightarrow q$. If not, something's wrong with p_4 or *p* or *q*. Give D(q) and the new *q*.
- g. Let $B \equiv sqrt(k) < x/y$ (the loop test). Calculate D(B) and verify that B doesn't imply D(B). We could modify the program to use **while** $\downarrow B$, but do we need to? If not, explain why, briefly.

In the program below, the definitions of p_0 , p, t, and q will change (which is why they're "initial"). The definitions of p_1 , p_2 , and p_3 will change only because p and t change.

 $\{p_0\}$ // initial $p_0 \equiv T$ k := 1; $\{p_0 \land k = 1\}$ { **inv** p } // initial $p \equiv sqrt(k-1) \le x/y$ [2023-04-14: < is correct]* {**bd** t} // initial $t \equiv (x/y)^2 - k$ [$t \equiv (x/y)^2 - (k-1)$ is the final t. while sqrt(k) < x/y do Explain why $(x/y)^2 - k$ is bad $|| p_1 \equiv p \land sqrt(k) < x/y \land t = t_0$ and $(x/y)^2 - (k-1)$ is right] ${p_1}$ $\{p_2\}$ $|| p_2 \equiv wp(k := k+1, p_3)$ k := k + 1 ${p_{3}}$ $|| p_3 \equiv p \land t < t_0$ od ${p_4 \equiv p \land \neg test}$ [2023-04-14] *{q}* // initial $q \equiv sqrt(k-1) < x/y \le sqrt(k)$

[2023-04-14] To get *p*, we dropped the second conjunct of $q \equiv sqrt(k-1) < x/y \le sqrt(k)$. So *p* is the part of *q* that's left, namely sqrt(k-1) < x/y, and the while test is $\neg (x/y \le sqrt(k))$.

Solution to Homework 8

Classes 16 & 17: Proof Outlines

```
1. (Full outline from formal proof)

\{n > 0\}

k := n-1; \{n > 0 \land k = n-1\}

x := n; \{n > 0 \land k = n-1 \land x = n\}

\{inv \ p\} while k > 1 do // where p \equiv 1 \le k \le n \land x = n!/k!

\{p \land k > 1\}

\{p \land k > 1\}

\{p [x^*k/x][k-1/k]\}k := k-1;

\{p [x^*k/x]]x := x^*k

\{p\}

od

\{p \land k \le 1\}

\{x = n!\} \leftarrow to get this line we needed lines 13 and 14 in the formal proof. [2023-04-14]
```

2. (Expand partial outline)

```
 \{y \ge 1\} 
 \{p[1/r][0/x]\} x:=0; \qquad ||p[1/r][0/x]=1 \le 1=2 \land 0 \le y 
 \{p[1/r]\} r:=1; \qquad ||p[1/r]=1 \le 1=2 \land x \le y 
 \{inv \ p=1 \le r=2 \land x \le y\} 
 while \ 2^*r \le y \ do 
 \{p \land 2^*r \le y\} 
 \{p[x+1/x][2^*r/r]\} r:=2^*r; \qquad ||p[x+1/x][2^*r/r]=1 \le 2^*r=2 \land (x+1) \le y 
 \{p\} 
 od 
 \{p \land 2^*r > y\} 
 \{r=2 \land x \le y \le 2 \land (x+1)\}
```

Class 18: Total Correctness

- 3. (Convergence of $\{inv p\} \{bd t\}$ while $B do S od \{p \land \neg B\}$)
 - a. Must be true: $\{p \land B \land t > t_0\} S \{t = t_0\}$. Whatever *t* is at the end of the iteration; it needed to be larger at the start of the iteration.
 - b. Must be true: $p \land t = 0 \rightarrow \neg B$. If t = 0 at the start of an iteration, decreasing it would make t negative at the end of the iteration.
 - c. Can be false: $p \land t > 0 \rightarrow B$. We can have t > 0 on loop termination.
 - d. Can be false: $p \land \neg B \rightarrow t = 0$. Again, t > 0 at loop termination is allowed.

- e. Must be true: $(p \land B \land t = t_0) \rightarrow wp(S, t < t_0)$. This guarantees that S reduces t.
- f. Must be true: $sp(p \land B \land t = t_0, S) \rightarrow t < t_0$. This also guarantees that S reduces t.
- 4. (Possible bound functions for { *inv* p } { *bd* t } *while* $k \le n$ *do* ... k := k+1 *od*, where we have $p \rightarrow (n \ge 0 \land 0 < C \le k \le n + C$, for constant C (which can be <, =, or > 0).
 - a. (n-k): Is decreased by incrementing k, but it can't be a bound function because it can be negative. Since $k \le n + C$, we can subtract C+k from both sides and get $k-(C+k) \le n + C-(C+k)$, which simplifies to $-C \le n-k$.
 - b. n-k+C: Can be a bound function. Since $k \le n+C$, we know $0 \le n-k+C$, so it's nonnegative, and incrementing k decreases n-k+C.
 - c. n+k+C: Cannot be a bound function because increasing k makes n+k+C larger, not smaller. (It's nonnegative, however: $0 < C \le k \le n+C \Rightarrow 0 < n+C \Rightarrow k < n+k+C$.)
 - d. $2 \wedge (n+C)/2 \wedge k$: Can be a bound function. It's decreased by incrementing k, and it's non-negative because $0 \le k \le n+C \Rightarrow 2 \wedge k \le 2 \wedge (n+C) \Rightarrow 2 \wedge (n+C)/2 \wedge k \ge 1$.
- 5. (Runtime errors and convergence)
 - a. The problem is that $(x/y)^2 k$ is negative if x/y = 0 and k=1. Change *t* by adding 1 so that now, $t \equiv (x/y)^2 k+1$.¹
 - b. If $p \equiv sqrt(k-1) < x/y$ then $D(p) \Leftrightarrow y \neq 0 \land k \ge 1$. Redefine $p \equiv y \neq 0 \land k \ge 1 \land sqrt(k-1) < x/y$
 - c. Change p_0 to $y \neq 0$ so that $p_0 \land k = 1 \Rightarrow p$: I.e., $(y \neq 0 \land k = 1) \Rightarrow y \neq 0 \land k \ge 1 \land sqrt(k-1) < x/y$.
 - d. We calculate $p_3 \equiv p \land t < t_0 \equiv (y \neq 0 \land k \ge 1 \land sqrt(k-1) < x/y) \land ((x/y)^2 k+1) < t_0$. Since $D(p_3) \Leftrightarrow k \ge 1 \land y \neq 0$ and $p_3 \Rightarrow D(p_3), p_3$ is safe.
 - e. $p_2 \equiv wp(k:=k+1, p_3) \equiv p_3[k+1/k] \equiv (y \neq 0 \land k+1 \ge 1 \land sqrt(k+1-1) < x/y) \land ((x/y)^2 (k+1)+1) < t_0$. Since $D(p_2) \Leftrightarrow [2023-04-14] y \neq 0 \land k \ge 0$ and $p_2 \Rightarrow D(p_2)$, so p_2 is safe.
 - f. With $q \equiv sqrt(k-1) < x/y \le sqrt(k)$, We have $D(q) \Leftrightarrow k \ge 1 \land y \ne 0$, but q doesn't imply D(q), so we'll redefine q to be the old $(q \land D(q))$, which makes the new q safe. The implication $p_4 \Rightarrow q$ does hold, so the predicate logic obligation is met.

(If you want details for $p_4 \Rightarrow q$, we have $p_4 \equiv p \land sqrt(k) \ge x/y$ and $q \equiv sqrt(k-1) < x/y \le sqrt(k) \land k \ge 1 \land y \ne 0$. (1) Most of q holds because $p_4 \Rightarrow p$, and p includes $k \ge 1$, $y \ne 0$, and sqrt(k-1) < x/y. (2) The remainder of q is $x/y \le sqrt(k)$, which is included in p_4 .)

g. The loop test $B \equiv sqrt(k) < x/y$, so $D(B) \Leftrightarrow k \ge 0 \land y \ne 0$, and *B* doesn't imply D(B). This makes $\downarrow B \Leftrightarrow k \ge 0 \land y \ne 0 \land sqrt(k) < x/y$. We could change the program to use *while* $\downarrow B$, but the invariant implies $k \ge 0 \land y \ne 0$, so adding it to the loop test is redundant.

¹ Just a side mention: We can't use x/y - sqrt(k) as a bound function because it's not always reduced by incrementing k (because of truncation). E.g., sqrt(4) = sqrt(5) = 2.