
Illinois Institute of Technology Fri 2023-04-14, 17:50 HW 8: Classes 16–18

Proof Outlines; Total Correctness
CS 536: Science of Programming, Spring 2023

Due Wed Apr 5 Mon Apr 3, 11:59 pm
2023-04-03 p.3, 2023-04-14: pp. 1, 3, 4.

A. Why?

• A formal proof lets us write out in detail the reasons for believing that something is valid.

• Proof outlines condense the same information as a proof.

• Total correctness takes correct results and adds avoidance of runtime errors and divergence.

B. Outcomes

• After this homework, you should be able to

• Translate between full proof outlines and formal proofs of partial correctness.

• Translate between a full proof outline and a minimal proof outline.

• Check an outline for convergence and avoidance of runtime errors.

C. Problems [60 points total]

Classes 16 &17: Proof Outlines [25 points]

1. [15 points] Show the full outline derived from the full proof.

1. { n > 0 } k := n–1 { n > 0 ∧ k = n–1 } assignment (fwd)
2. { n > 0 ∧ k = n–1 } x := n { n > 0 ∧ k = n–1 ∧ x = n } assignment (fwd)
3. n > 0 ∧ k = n–1 ∧ x = n→ p (where p ≡ 1 ≤ k ≤ n ∧ x = n! / k!) predicate logic
4. { n > 0 ∧ k = n–1 } x := n { p } postcond. weak. 2, 3
5. { n > 0 } k := n–1 ; x := n { p } sequence 1, 4
6. { p [x*k / x] } x := x*k { p } assignment (bwd)
7. { p [x*k / x] [k–1 / k] } k := k–1 { p [x*k / x] } assignment (bwd)
8. p ∧ k > 1→ p [x*k / x] [k–1 / k] predicate logic
9. { p ∧ k > 1 } k := k–1 { p [x*k / x] } precondition str. 8, 7
10. { p ∧ k > 1 } k := k–1 ; x := x*k { p } sequence 9, 6
11. { inv p } W { p ∧ k ≤ 1 } while loop 10
 // where W ≡ while k > 1 do k := k–1 ; x := x*k od
12. { n > 0 } k := n–1 ; x := n { inv p } W { p ∧ k ≤ 1 } sequence 5, 11

13. p ∧ k ≤ 1 → x = n ! predicate logic [2023-04-14]

14. { n > 0 } k := n – 1 ; x : = n { inv p } W { x = n ! } postcond. weak. 12, 13

Expanded substitutions: (You don't have to re-include this with your outline)

• p ≡ 1 ≤ k ≤ n ∧ x = n ! / k !

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20231

Illinois Institute of Technology Fri 2023-04-14, 17:50 HW 8: Classes 16–18

• p [x*k / x] ≡ 1 ≤ k ≤ n ∧ x*k = n ! / k !

• p [x*k / x] [k–1 / k] ≡ 1 ≤ k - 1 ≤ n ∧ x*(k - 1) = n ! / (k - 1) !

2. [10 points] Give a full proof outline obtained by expansion of the partial proof outline below.
Work backward though the program (use wp on the four assignments). Show the results of
substitutions somewhere.

 { y ≥ 1 } x := 0 ; r := 1 ;
{ inv p ≡ 1 ≤ r = 2 ^ x ≤ y }
while 2*r ≤ y do
 r := 2*r ; x := x+1
od
{ r = 2 ^ x ≤ y ≤ 2 ^ (x+1) }

Class 18: Total Correctness: Errors and Divergence [35 points total]

Convergence [14 points]

3. [6 points] For { inv p } { bd t } while B do S od { p ∧ ¬ B }, for each of the following properties, in
order to get convergence, must the property hold? If not, can it hold? Must it never hold?
Briefly discuss each answer.
a. { p ∧ B ∧ t > t₀ } S { t = t₀ }
b. p ∧ t = 0→ ¬ B
c. p ∧ t > 0→ B
d. p ∧ ¬ B→ t = 0
e. (p ∧ B ∧ t = t₀)→wp (S , t < t₀)
f. sp (p ∧ B ∧ t = t₀ , S)→ t < t₀

4. [8 = 4 * 2 points] Consider the loop { inv p } { bd t } while k ≤ n do … k := k+1 od.

 Assume p→ (n ≥ 0 ∧ 0 < C ≤ k ≤ n+C) where C is a named constant, not necessarily ≥ 0. For each
of the following expressions, say whether or not it can be used as the bound expression t
above (if not, briefly explain why).

 a. n–k
b. n–k + C
c. n + k + C
d. 2 ^ (n + C) / 2 ^ k

Runtime Errors and Convergence [21 points]

5. [21=7*3 points] The program below is outlined for partial correctness, with initial values giv-
en for the predicates and for the bound function t. Rewrite the outline for total correctness.
This will entail a number of steps:

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20232

Illinois Institute of Technology Fri 2023-04-14, 17:50 HW 8: Classes 16–18

a. Fix t (Hint: the initial value is too small). Give your new t as the answer to this part.

b. Fix p to make it safe: Calculate D (p) and redefine p as the old p ∧D (p). Give D (p) and
the new p.

c. Fix p₀: Make it safe and make p₀ ∧ k=1 imply p. Give the new p₀.
d. Verify that p₃ is safe: Calculate D (p₃) and make sure p₃⇒D (p) . If it isn't, modify p₃ (i.e.,

modify p and/or t) and go back to (a) or (b) as necessary. Give D (p₃).

e. Calculate p₂ as the wp of the loop body and p₃, then verify that p₂ is safe and that p₁⇒ p₂.
If not, fix p₁ or p₂ as appropriate. Give p₂.

f. Fix q by making it safe: Calculate D (q) and redefine q as the old q ∧D (q) . We should
have p₄⇒ q. If not, something's wrong with p₄ or p or q. Give D (q) and the new q.

g. Let B ≡ sqrt (k) < x / y (the loop test). Calculate D (B) and verify that B doesn't imply
D (B). We could modify the program to use while ↓B, but do we need to? If not, explain
why, briefly.

 In the program below, the definitions of p₀, p, t, and q will change (which is why they're "ini-
tial"). The definitions of p₁, p₂, and p₃ will change only because p and t change.

{ p₀ } // initial p₀ ≡ T
k := 1 ;
{ p₀ ∧ k = 1 }
{ inv p } // initial p ≡ sqrt (k–1) ≤ x / y [2023-04-14: < is correct]*
{ bd t } // initial t ≡ (x / y) ² – k [t ≡ (x / y) ² – (k – 1) is the final t .
while sqrt (k) < x / y do Explain why (x / y) ² – k is bad
 { p₁ } // p₁ ≡ p ∧ sqrt (k) < x / y ∧ t = t₀ and (x / y) ² – (k – 1) is right]
 { p₂ } // p₂ ≡ wp (k := k+1 , p₃)
 k := k+1
 { p₃ } // p₃ ≡ p ∧ t < t₀
od 
{p₄ ≡ p ∧ ¬test} [2023-04-14] 
{ q } // initial q ≡ sqrt (k–1) < x / y ≤ sqrt (k)

[2023-04-14] To get p, we dropped the second conjunct of q ≡ sqrt (k - 1) < x / y ≤ sqrt (k). So p is the
part of q that's left, namely sqrt (k - 1) < x / y , and the while test is ¬ (x / y ≤ sqrt (k)).

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20233

Illinois Institute of Technology Fri 2023-04-14, 17:50 HW 8: Classes 16–18

Solution to Homework 8

Classes 16 & 17: Proof Outlines

1. (Full outline from formal proof)

 { n > 0 }
k := n–1 ; { n > 0 ∧ k = n–1 }
x := n ; { n > 0 ∧ k = n–1 ∧ x = n }
{ inv p } while k > 1 do // where p ≡ 1 ≤ k ≤ n ∧ x = n ! / k !
 { p ∧ k > 1 }
 { p [x*k / x] [k–1 / k] } k := k–1 ;
 { p [x*k / x] } x := x*k
 { p }
od
{ p ∧ k ≤ 1 }
{ x = n ! } ⇐ to get this line we needed lines 13 and 14 in the formal proof. [2023-04-14]

2. (Expand partial outline)

 { y ≥ 1 }
{ p [1 / r] [0 / x] } x := 0 ; // p [1 / r] [0 / x] ≡ 1 ≤ 1 = 2 ^ 0 ≤ y
{ p [1 / r] } r := 1 ; // p [1 / r] ≡ 1 ≤ 1 = 2 ^ x ≤ y
{ inv p ≡ 1 ≤ r = 2 ^ x ≤ y }
while 2*r ≤ y do
 { p ∧ 2 * r ≤ y }
 { p [x+1 / x] [2*r / r] } r := 2*r ; // p [x+1 / x] [2*r / r] ≡ 1 ≤ 2*r = 2 ^ (x+1) ≤ y
 { p [x+1 / x] } x := x+1 // p [x+1 / x] ≡ 1 ≤ r = 2 ^ (x+1) ≤ y
 { p }
od
{ p ∧ 2*r > y }
{ r = 2 ^ x ≤ y ≤ 2 ^ (x+1) }

Class 18: Total Correctness

3. (Convergence of { inv p } { bd t } while B do S od { p ∧ ¬ B })

a. Must be true: { p ∧ B ∧ t > t₀ } S { t = t₀ }. Whatever t is at the end of the iteration; it needed
to be larger at the start of the iteration.

b. Must be true: p ∧ t = 0→ ¬ B. If t = 0 at the start of an iteration, decreasing it would make t
negative at the end of the iteration.

c. Can be false: p ∧ t > 0→ B . We can have t > 0 on loop termination.

d. Can be false: p ∧ ¬ B→ t = 0 . Again, t > 0 at loop termination is allowed.

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20234

Illinois Institute of Technology Fri 2023-04-14, 17:50 HW 8: Classes 16–18

e. Must be true: (p ∧ B ∧ t = t₀)→wp (S , t < t₀) . This guarantees that S reduces t.

f. Must be true: sp (p ∧ B ∧ t = t₀ , S)→ t < t₀ . This also guarantees that S reduces t.

4. (Possible bound functions for { inv p } { bd t } while k ≤ n do … k := k+1 od, where we have
 p→ (n ≥ 0 ∧ 0 < C ≤ k ≤ n + C, for constant C (which can be <, =, or > 0).

a. (n–k) : Is decreased by incrementing k, but it can't be a bound function because it can be
negative. Since k ≤ n + C, we can subtract C+k from both sides and get k – (C+k) ≤ n + C–
(C+k) , which simplifies to – C ≤ n–k.

b. n–k+C : Can be a bound function. Since k ≤ n + C, we know 0 ≤ n–k+C , so it's nonnegative,
and incrementing k decreases n–k+C.

c. n+k+C : Cannot be a bound function because increasing k makes n+k+C larger, not small-
er. (It's nonnegative, however: 0 < C ≤ k ≤ n+C⇒ 0 < n+C⇒ k < n+k+C .)

d. 2 ^ (n+C) / 2 ^ k : Can be a bound function. It's decreased by incrementing k, and it's non-
negative because 0 ≤ k ≤ n+C ⇒ 2 ^ k ≤ 2 ^ (n+C) ⇒ 2 ^ (n+C) / 2 ^ k ≥ 1 .

5. (Runtime errors and convergence)

a. The problem is that (x / y) ² –k is negative if x / y = 0 and k=1. Change t by adding 1 so that
now, t ≡ (x / y) ² –k+1. 1

b. If p ≡ sqrt (k–1) < x / y then D (p)⇔ y ≠ 0 ∧ k ≥ 1. Redefine p ≡ y ≠ 0 ∧ k ≥ 1 ∧ sqrt (k–1) < x / y

c. Change p₀ to y≠0 so that p₀ ∧ k = 1⇒ p : I.e., (y ≠ 0 ∧ k = 1)⇒y ≠ 0 ∧ k ≥ 1 ∧ sqrt (k–1) < x / y.

d. We calculate p₃ ≡ p ∧ t < t₀ ≡ (y ≠ 0 ∧ k ≥ 1 ∧ sqrt (k–1) < x / y) ∧ ((x / y) ² –k+1) < t₀. Since
D (p₃)⇔ k ≥ 1 ∧ y ≠ 0 and p₃⇒D (p₃), p₃ is safe.

e. p₂ ≡ wp (k := k+1 , p₃) ≡ p₃ [k+1 / k] ≡ (y ≠ 0 ∧ k + 1 ≥ 1 ∧ sqrt (k +1–1) < x / y) ∧ ((x / y) ² –
(k+1) +1) < t₀ . Since D (p₂)⇔ [2023-04-14] y ≠ 0 ∧ k ≥ 0 and p₂⇒D (p₂), so p₂ is safe.

f. With q ≡ sqrt (k–1) < x / y ≤ sqrt (k) , We have D (q)⇔ k ≥ 1 ∧ y ≠ 0 , but q doesn't imply
D (q), so we'll redefine q to be the old (q ∧D (q)), which makes the new q safe. The impli-
cation p₄⇒ q does hold, so the predicate logic obligation is met.

 (If you want details for p₄⇒ q, we have p₄ ≡ p ∧ sqrt (k) ≥ x / y and q ≡ sqrt (k–1) < x / y

≤ sqrt (k) ∧ k ≥ 1 ∧ y ≠ 0 . (1) Most of q holds because p₄⇒ p , and p includes k ≥ 1 , y ≠ 0 ,
and sqrt (k–1) < x / y . (2) The remainder of q is x / y ≤ sqrt (k) , which is included in
p₄ .)

g. The loop test B ≡ sqrt (k) < x / y , so D (B)⇔ k ≥ 0 ∧ y ≠ 0, and B doesn't imply D (B). This
makes ↓ B⇔ k ≥ 0 ∧ y ≠ 0 ∧ sqrt (k) < x / y . We could change the program to use while ↓ B,
but the invariant implies k ≥ 0 ∧ y ≠ 0 , so adding it to the loop test is redundant.

 Just a side mention: We can't use x / y – sqrt (k) as a bound function because it's not always re1 -
duced by incrementing k (because of truncation). E.g., sqrt (4) = sqrt (5) = 2 .

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20235

