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Proof Outlines; Total Correctness 
CS 536: Science of Programming, Spring 2023 

Due Wed Apr 5 Mon Apr 3, 11:59 pm 
2023-04-03 p.3, 2023-04-14: pp. 1, 3, 4. 

A. Why? 

• A formal proof lets us write out in detail the reasons for believing that something is valid. 

• Proof outlines condense the same information as a proof. 

• Total correctness takes correct results and adds avoidance of runtime errors and divergence. 

B. Outcomes  

• After this homework, you should be able to 

• Translate between full proof outlines and formal proofs of partial correctness. 

• Translate between a full proof outline and a minimal proof outline. 

• Check an outline for convergence and avoidance of runtime errors. 

C. Problems [60 points total] 

Classes 16 &17: Proof Outlines [25 points] 

1. [15 points]  Show the full outline derived from the full proof. 

1. { n > 0 } k := n–1 { n > 0 ∧ k = n–1 }      assignment (fwd) 
2. { n > 0 ∧ k = n–1 } x := n { n > 0 ∧ k = n–1 ∧ x = n }    assignment (fwd) 
3. n > 0 ∧ k = n–1 ∧ x = n→ p  ( where p ≡ 1 ≤ k ≤ n ∧ x = n! / k! )  predicate logic 
4. { n > 0 ∧ k = n–1 } x := n { p }        postcond. weak. 2, 3 
5. { n > 0 } k := n–1 ; x := n { p }       sequence 1, 4 
6. { p [ x*k / x ] } x := x*k { p }        assignment (bwd) 
7. { p [ x*k / x ] [ k–1 / k ] } k := k–1 { p [ x*k / x ] }    assignment (bwd) 
8. p ∧ k > 1→ p [ x*k / x ] [ k–1 / k ]       predicate logic 
9. { p ∧ k > 1 } k := k–1 { p [ x*k / x ] }      precondition str. 8, 7 
10. { p ∧ k > 1 } k := k–1 ; x := x*k { p }      sequence 9, 6 
11. { inv p } W { p ∧ k ≤ 1 }        while loop 10 
  // where W ≡ while k > 1 do k := k–1 ; x := x*k  od 
12. { n > 0 } k := n–1 ; x := n  { inv p } W { p ∧ k ≤ 1 }    sequence 5, 11 

13. p ∧ k  ≤  1 → x = n !         predicate logic [2023-04-14] 

14. { n > 0 } k := n – 1 ; x : = n { inv p } W { x = n ! }    postcond. weak. 12, 13 

Expanded substitutions: (You don't have to re-include this with your outline) 

• p ≡ 1 ≤ k ≤ n ∧ x = n ! / k !  
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• p [ x*k / x ] ≡ 1 ≤ k ≤ n ∧ x*k = n ! / k ! 

• p [ x*k / x ] [ k–1 / k ] ≡ 1 ≤ k - 1 ≤ n ∧ x*( k - 1 ) = n ! / ( k - 1 ) !  

2. [10 points]  Give a full proof outline obtained by expansion of the partial proof outline below.  
Work backward though the program (use wp on the four assignments).  Show the results of 
substitutions somewhere. 

 { y ≥ 1 } x := 0 ; r := 1 ;  
{ inv p ≡ 1 ≤ r = 2 ^ x ≤ y }  
while 2*r ≤ y  do 
 r := 2*r ; x := x+1  
od 
{ r = 2 ^ x ≤ y ≤ 2 ^ ( x+1 ) }  

Class 18: Total Correctness: Errors and Divergence [35 points total] 

Convergence [14 points] 

3. [6 points]  For { inv p } { bd t }  while B do S od { p ∧ ¬ B }, for each of the following properties, in 
order to get convergence, must the property hold?  If not, can it hold?  Must it never hold?  
Briefly discuss each answer. 
a. { p ∧ B ∧ t > t₀ } S { t = t₀ }  
b. p ∧ t = 0→ ¬ B  
c. p ∧ t > 0→ B  
d. p ∧ ¬ B→ t = 0    
e. ( p ∧ B ∧ t = t₀ )→wp ( S , t < t₀ )  
f. sp ( p ∧ B ∧ t = t₀ , S )→ t < t₀ 

4. [8 = 4 * 2 points]  Consider the loop { inv p } { bd t } while k ≤ n do … k := k+1 od. 

 Assume p→ ( n ≥ 0 ∧ 0 < C ≤ k ≤ n+C ) where C is a named constant, not necessarily ≥ 0.  For each 
of the following expressions, say whether or not it can be used as the bound expression t 
above (if not, briefly explain why). 

 a. n–k   
b. n–k + C  
c.  n + k + C  
d. 2 ^ ( n + C ) / 2 ^ k   

Runtime Errors and Convergence [21 points] 

5. [21=7*3 points]  The program below is outlined for partial correctness, with initial values giv-
en for the predicates and for the bound function t.  Rewrite the outline for total correctness.  
This will entail a number of steps: 
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a. Fix t (Hint: the initial value is too small).  Give your new t as the answer to this part. 

b. Fix p to make it safe: Calculate D ( p ) and redefine p as the old p ∧D ( p ).  Give D ( p ) and 
the new p. 

c. Fix p₀: Make it safe and make p₀ ∧ k=1  imply p.  Give the new p₀. 
d. Verify that p₃ is safe: Calculate D ( p₃ ) and make sure p₃⇒D ( p ) .  If it isn't, modify p₃ (i.e., 

modify p and/or t) and go back to (a) or (b) as necessary.  Give D ( p₃ ). 

e. Calculate p₂ as the wp of the loop body and p₃, then verify that p₂ is safe and that p₁⇒ p₂.  
If not, fix p₁ or p₂ as appropriate.  Give p₂. 

f. Fix q by making it safe: Calculate D ( q ) and redefine q as the old q ∧D ( q ) .  We should 
have p₄⇒ q.  If not, something's wrong with p₄ or p or q.  Give D ( q ) and the new q. 

g. Let B ≡  sqrt ( k ) < x / y  (the loop test).  Calculate D ( B ) and verify that B doesn't imply 
D ( B ).  We could modify the program to use while ↓B, but do we need to?  If not, explain 
why, briefly. 

 In the program below, the definitions of p₀, p, t, and q will change (which is why they're "ini-
tial").  The definitions of p₁, p₂, and p₃ will change only because p and t change. 

{ p₀ }       // initial p₀ ≡ T  
k := 1 ;  
{ p₀ ∧ k = 1 }  
{ inv p }      // initial p ≡ sqrt ( k–1 ) ≤ x / y   [2023-04-14: < is correct]* 
{ bd t }       // initial t ≡ ( x / y ) ² – k  [ t ≡ ( x / y ) ² – ( k – 1 )  is the final t . 
while sqrt ( k ) < x / y  do        Explain why ( x / y ) ² – k  is bad 
 { p₁ }      // p₁ ≡ p ∧ sqrt ( k ) < x / y ∧ t = t₀  and ( x / y ) ² – ( k – 1 )  is right] 
 { p₂ }      // p₂ ≡ wp ( k := k+1 , p₃ )  
 k := k+1  
 { p₃ }      // p₃ ≡ p ∧ t < t₀  
od 
{p₄ ≡ p ∧ ¬test} [2023-04-14] 
{ q }       // initial q ≡ sqrt ( k–1 ) < x / y ≤ sqrt ( k )  

[2023-04-14] To get p, we dropped the second conjunct of q ≡ sqrt ( k - 1 ) < x / y ≤ sqrt ( k ). So p is the 
part of q that's left, namely sqrt ( k - 1 ) < x / y , and the while test is ¬ ( x / y ≤ sqrt ( k ) ). 
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Solution to Homework 8 

Classes 16 & 17: Proof Outlines 

1. (Full outline from formal proof)  

 { n > 0 }  
k := n–1 ; { n > 0 ∧ k = n–1 }  
x := n ; { n > 0 ∧ k = n–1 ∧ x = n }  
{ inv p } while k > 1 do  // where p ≡ 1 ≤ k ≤ n ∧ x = n ! / k !  
 { p ∧ k > 1 }  
 { p [ x*k / x ] [ k–1 / k ] } k := k–1 ;  
 { p [ x*k / x ] } x := x*k  
 { p }  
od 
{ p ∧ k ≤ 1 }  
{ x = n ! }  ⇐ to get this line we needed lines 13 and 14 in the formal proof. [2023-04-14] 

2. (Expand partial outline)  

 { y ≥ 1 }  
{ p [ 1 / r ] [ 0 / x ] }  x := 0 ;      // p [ 1 / r ] [ 0 / x ] ≡ 1 ≤ 1 = 2 ^ 0 ≤ y  
{ p [ 1 / r ] }  r := 1 ;        // p [ 1 / r ] ≡ 1 ≤ 1 = 2 ^ x ≤ y  
{ inv p ≡ 1 ≤ r = 2 ^ x ≤ y }  
while 2*r ≤ y  do 
 { p ∧ 2 * r ≤ y }  
 { p [ x+1 / x ] [ 2*r / r ] }  r := 2*r ;   // p [ x+1 / x ] [ 2*r / r ] ≡ 1 ≤ 2*r = 2 ^ ( x+1 ) ≤ y  
 { p [ x+1 / x ] }  x := x+1      // p [ x+1 / x ] ≡ 1 ≤ r = 2 ^ ( x+1 ) ≤ y  
 { p }  
od 
{ p ∧ 2*r > y }  
{ r = 2 ^ x ≤ y ≤ 2 ^ ( x+1 ) }  

Class 18: Total Correctness 

3. (Convergence of { inv p } { bd t }  while B do S od { p ∧ ¬ B } )  

a. Must be true: { p ∧ B ∧ t > t₀ } S { t = t₀ }.  Whatever t is at the end of the iteration; it needed 
to be larger at the start of the iteration. 

b. Must be true: p ∧ t = 0→ ¬ B.  If t = 0 at the start of an iteration, decreasing it would make t 
negative at the end of the iteration. 

c. Can be false: p ∧ t > 0→ B .  We can have t > 0 on loop termination. 

d. Can be false: p ∧ ¬ B→ t = 0 . Again, t > 0 at loop termination is allowed. 
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e. Must be true: ( p ∧ B ∧ t = t₀ )→wp ( S , t < t₀ ) .  This guarantees that S reduces t. 

f. Must be true: sp ( p ∧ B ∧ t = t₀ , S )→ t < t₀ .  This also guarantees that S reduces t. 

4. (Possible bound functions for { inv p } { bd t } while k ≤ n do … k := k+1  od, where we have 
 p→ ( n ≥ 0 ∧ 0 < C ≤ k ≤ n + C, for constant C (which can be <, =, or > 0). 

a. ( n–k ) : Is decreased by incrementing k, but it can't be a bound function because it can be 
negative.  Since k ≤ n + C, we can subtract C+k  from both sides and get k – ( C+k ) ≤ n + C–
( C+k ) , which simplifies to – C ≤ n–k. 

b. n–k+C : Can be a bound function.  Since k ≤ n + C, we know 0 ≤ n–k+C , so it's nonnegative, 
and incrementing k decreases n–k+C. 

c.  n+k+C : Cannot be a bound function because increasing k makes n+k+C larger, not small-
er.  (It's nonnegative, however: 0 < C ≤ k ≤ n+C⇒ 0 < n+C⇒ k < n+k+C .) 

d. 2 ^ ( n+C ) / 2 ^ k :  Can be a bound function.  It's decreased by incrementing k, and it's non-
negative because 0 ≤ k ≤ n+C  ⇒  2 ^ k ≤ 2 ^ ( n+C )  ⇒  2 ^ ( n+C ) / 2 ^ k ≥ 1 . 

5. (Runtime errors and convergence) 

a. The problem is that ( x / y ) ² –k is negative if x / y = 0 and k=1.  Change t by adding 1 so that 
now, t ≡ ( x / y ) ² –k+1.  1

b. If p ≡ sqrt ( k–1 ) < x / y  then D ( p )⇔ y ≠ 0 ∧ k ≥ 1.  Redefine p ≡ y ≠ 0 ∧ k ≥ 1 ∧ sqrt ( k–1 ) < x / y   

c. Change p₀ to y≠0 so that p₀ ∧ k = 1⇒ p :  I.e., (y ≠ 0 ∧ k = 1 )⇒y ≠ 0 ∧ k ≥ 1 ∧ sqrt ( k–1 ) < x / y. 

d. We calculate p₃ ≡ p ∧ t < t₀ ≡ ( y ≠ 0 ∧ k ≥ 1 ∧ sqrt ( k–1 ) < x / y ) ∧ ( ( x / y ) ² –k+1) < t₀.  Since 
D ( p₃ )⇔ k ≥ 1 ∧ y ≠ 0 and p₃⇒D ( p₃ ), p₃ is safe. 

e. p₂ ≡ wp ( k := k+1 , p₃ ) ≡ p₃ [ k+1 / k ] ≡ ( y ≠ 0 ∧ k + 1 ≥ 1 ∧ sqrt ( k +1–1 ) < x / y ) ∧ ( ( x / y ) ² –
( k+1) +1 ) < t₀ .  Since D ( p₂ )⇔ [2023-04-14] y ≠ 0 ∧ k ≥ 0  and p₂⇒D ( p₂ ), so p₂ is safe. 

f. With q ≡ sqrt ( k–1 ) < x / y ≤ sqrt ( k ) , We have D ( q )⇔ k ≥ 1 ∧ y ≠ 0 , but q doesn't imply 
D ( q ), so we'll redefine q to be the old ( q ∧D ( q ) ), which makes the new q safe.  The impli-
cation p₄⇒ q  does hold, so the predicate logic obligation is met. 

 (If you want details for p₄⇒ q, we have p₄ ≡ p ∧ sqrt ( k ) ≥ x / y  and q ≡ sqrt ( k–1 ) < x / y  

≤ sqrt ( k ) ∧ k ≥ 1 ∧ y ≠ 0 .  (1) Most of q holds because p₄⇒ p , and p includes k ≥ 1 , y ≠ 0 , 
and sqrt ( k–1 ) < x / y .  (2) The remainder of q is x / y  ≤ sqrt ( k ) , which is included in 
p₄ .) 

g. The loop test B ≡ sqrt ( k ) < x / y , so D ( B )⇔ k ≥ 0 ∧ y ≠ 0, and B doesn't imply D ( B ).  This 
makes ↓ B⇔ k ≥ 0 ∧ y ≠ 0 ∧ sqrt ( k ) < x / y . We could change the program to use while ↓ B, 
but the invariant implies k ≥ 0 ∧ y ≠ 0 , so adding it to the loop test is redundant.

 Just a side mention: We can't use x / y – sqrt ( k ) as a bound function because it's not always re1 -
duced by incrementing k (because of truncation).  E.g., sqrt ( 4) = sqrt ( 5 ) = 2 .
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