Illinois Institute of Technology Fri2023-04-14, 17:50 HW 8: Classes 16-18

Proof Outlines; Total Correctness

CS 536: Science of Programming, Spring 2023

Due Wed Apr 5 monaprs3, 11:59 pm
2023-04-03 p.3, 2023-04-14: pp. 1, 3, 4.

A. Why?

« A formal prooflets us write out in detail the reasons for believing that something is valid.

« Proof outlines condense the same information as a proof.

« Total correctness takes correct results and adds avoidance of runtime errors and divergence.
B. Outcomes

« After this homework, you should be able to
+ Translate between full proof outlines and formal proofs of partial correctness.
« Translate between a full proof outline and a minimal proof outline.

+ Check an outline for convergence and avoidance of runtime errors.
C. Problems [60 points total]
Classes 16 &17: Proof Outlines [25 points]

1. [15 points] Show the full outline derived from the full proof.

1. {n>0}k:=n-1{n>0nk=n-1} assignment (fwd)
2. {n>0nk=n-1}x:=n{n>0ak=n-1ax=n} assignment (fwd)
3. n>0ank=n-1ax=n—-p (wherep=1<k<nax=n!/k!) predicate logic
4. {n>0ak=n-1}x:=n{p} postcond. weak. 2, 3
5. {n>0}k:=n-1;x:=n{p} sequence 1, 4
6. {pl[x*k/x]}x:=x*k{p} assignment (bwd)
7. Apl[x*k/x][k-1/k]}k:=k-1{p[x*k/x]} assignment (bwd)
8. pak>1—-p[x*k/x][k-1/k] predicate logic
9. {pak>1}k:=k-1{p[x*k/x]} precondition str. 8, 7
10. {pak>1}k:=k-1;x:=x*k{p} sequence 9, 6
11. {invp}W{pnrk<1} while loop 10
/| where W=while k>1 do k:=k-1; x:=x*k od
12. {n>0}k:=n-1;x:=n{invp}W{pnak<1} sequence 5, 11
13. pak < 1-x=n! predicate logic [2023-04-14]
14. {n>0}k:=n-1;x:=n{invp}W{x=n!} postcond. weak. 12, 13

Expanded substitutions: (You don't have to re-include this with your outline)

e p=1<ks<nax=nl!/k!

CS Dept, Illinois Institute of Technology -1- © James Sasaki, 2023

Illinois Institute of Technology Fri2023-04-14, 17:50 HW 8: Classes 16-18

e plx*k/x]=1<k<nax*k=n!/k!
o p[x*k/x][k-1/k]=1<k-1<nax*(k-1)=n!/(k-1)!

2. [10 points] Give a full proof outline obtained by expansion of the partial proof outline below.
Work backward though the program (use wp on the four assignments). Show the results of
substitutions somewhere.

{y>21}x:=0;r:=1;
{inv p=1<r=2-x<y}
while 2*r <y do

r:=2%r; x:=x+1
od
{r=2Ax<y<2n(x+1)}

Class 18: Total Correctness: Errors and Divergence [35 points total]

Convergence [14 points]

3. [6points] For {invp}{bdt} while B do S od {p » - B}, for each of the following properties, in
order to get convergence, must the property hold? If not, can it hold? Must it never hold?
Briefly discuss each answer.

(paBat=ty)—=wp(S,t<ty)
Sp(pAaBat=ty,S)—=t<t

a. {paBat>to}S{t=to}
b. pat=0—--B

c. pat>0—B

d. pa-B—t=0

e.

f.

4. [8=4*2points] Consider the loop {invp}{bdt} while k<ndo ... k:=k+1 od.
Assume p - (n=0a0<C<k<n+C) where C is a named constant, not necessarily > 0. For each
of the following expressions, say whether or not it can be used as the bound expression ¢
above (if not, briefly explain why).

a. n-k

b. n-k+C

c. n+tk+C

d 2A(n+C)/27k

Runtime Errors and Convergence [21 points]

5. [21=7*3 points] The program below is outlined for partial correctness, with initial values giv-
en for the predicates and for the bound function t. Rewrite the outline for total correctness.
This will entail a number of steps:

CS Dept, Illinois Institute of Technology -2- © James Sasaki, 2023

Illinois Institute of Technology Fri2023-04-14, 17:50 HW 8: Classes 16-18

a. Fixt (Hint: the initial value is too small). Give your new t as the answer to this part.
Fix p to make it safe: Calculate D (p) and redefine p asthe old pAD(p). Give D(p) and
the new p.

c. Fix po: Make it safe and make p, A k=1 imply p. Give the new p,.

d. Verify that p; is safe: Calculate D (p;) and make sure p;=D(p). Ifitisn't, modify p; (i.e.,
modify p and/or t) and go back to (a) or (b) as necessary. Give D (ps).

e. Calculate p, as the wp of the loop body and ps, then verify that p, is safe and that p; = p..
If not, fix p, or p, as appropriate. Give p,.

f. Fix q by making it safe: Calculate D (q) and redefine q as the old g A D (q). We should
have p,=>q. If not, something's wrong with p, or p or q. Give D (q) and the new q.

g. LetB= sqrt(k)<x/y (theloop test). Calculate D (B) and verify that B doesn't imply
D (B). We could modify the program to use while | B, but do we need to? If not, explain
why, briefly.

In the program below, the definitions of p, p, t, and g will change (which is why they're "ini-

tial"). The definitions of p;, p,, and p; will change only because p and ¢ change.

{Dpo} /[initial po=T
k:=1;
{ponk=1}
{invp} /[initial p=sqrt(k-1)<x/y [2023-04-14: < is correct]*
{bhdt} /linitial t=(x/y)2-k [t=(x/y)2-(k-1) is the finalt.
while sqrt (k) <x/y do Explain why (x/y)2-k is bad
{pi} /Ip1=pAasqrt(k)<x/yat=to and (x/y)?-(k-1) isright]
{p2} /I p2=wp (k:=k+1,ps)
k:=k+1
{ps} IIPs=pat<to
od
{pa =p A -test} [2023-04-14]
{q} /[initial g =sqrt (k-1)<x/y <sqrt(k)

[2023-04-14] To get p, we dropped the second conjunct of g=sqrt(k-1)<x/y<sqrt(k).So p is the
part of g that's left, namely sqrt (k-1)<x/y, and the while testis - (x/y <sqrt(k)).

CS Dept, Illinois Institute of Technology -3- © James Sasaki, 2023

Illinois Institute of Technology Fri2023-04-14, 17:50 HW 8: Classes 16-18

Solution to Homework 8

Classes 16 & 17: Proof Outlines

1. (Full outline from formal proof)

{n>0}

k:=n-1;{n>0nk=n-1}

x:=n;{n>0ak=n-1arx=n}

{inv p } while k>1 do //wherep=1<k<nax=n!/k!
{pank>1}
{p[x*k/x]1[k-1/k]}k:=k-1;
{p[x*k/x]}x:=x*k
{p}

od

{pank<1}

{x=n!} < to get this line we needed lines 13 and 14 in the formal proof. [2023-04-14]

2. (Expand partial outline)

{yz1}
{pl1/r][0/x]} x:=0; Ip[1/r][0/x]=1<1=2A0<y
{pl1/r]} r:=1; IIp[1/r]=1<1=27x<y

{inv ps1<r=2-rx<y}
while 2*r<y do

{pr2*r<y}
{p[x+1/x][2%r/r]} r:=2%r; Ip[x+1/x][2%r/r]=1<2%r=2A(x+1)<y
{pl[x+1/x]} x:=x+1 Ip[x+1/x]=1<r=27(x+1)<y
{p}
od
{pa2¥r>y}

{r=2Ax<y<27(x+1)}

Class 18: Total Correctness

3. (Convergence of {invp}{bdt} while BdoSod{pr-B})

a. Mustbetrue:{paBat>to}S{t=ty,}. Whatever t is at the end of the iteration; it needed
to be larger at the start of the iteration.

b. Must be true: p A t=0—-B. If t=0 at the start of an iteration, decreasing it would make ¢
negative at the end of the iteration.

c. Canbefalse:pat>0—B. We can have t >0 on loop termination.

d. Canbe false:par-B—t=0.Again, t >0 at loop termination is allowed.

CS Dept, Illinois Institute of Technology -4- © James Sasaki, 2023

Illinois Institute of Technology Fri2023-04-14, 17:50 HW 8: Classes 16-18

e.

f.

Must be true: (paBat=ty) =wp (S, t<t,). This guarantees that S reduces t.
Must be true: sp(paBat=ty,S)—t<t,. This also guarantees that S reduces t.

4. (Possible bound functions for {invp } { bd t } while k<n do ... k:=k+1 od, where we have

p—(n>20ar0<C<k<n+C,for constant C (which can be <, =, or > 0).

(n-k):Is decreased by incrementing k, but it can't be a bound function because it can be
negative. Since k<n+ C, we can subtract C+k from both sides and get k- (C+k)<n+C-
(C+k), which simplifies to - C < n-k.

n-k+C: Can be a bound function. Since k<n + C, we know 0 <n-k+C, so it's nonnegative,
and incrementing k decreases n—-k+C.

n+k+C: Cannot be a bound function because increasing k makes n+k+C larger, not small-
er. (It's nonnegative, however: 0<C<k<n+C=0<n+C=k<n+k+C.)

2A(n+C)/27k: Can be a bound function. It's decreased by incrementing k, and it's non-
negative because 0 <k<n+C = 27 k<27 (n+C) = 2~ (n+C)/2 k>1.

5. (Runtime errors and convergence)

a.

The problem is that (x/y)2-k is negative if x/y =0 and k=1. Change t by adding 1 so that
now, t=(x/y)2-k+1.1
Ifp=sqri(k-1)<x/y thenD(p)<y*0rk>1. Redefinep=y*0ak>1nasqrt(k-1)<x/y
Change potoy+0 sothatpoak=1=p: le.,(y*0ak=1)=y+0nk21rsqrt(k-1)<x/y.
We calculate ps=pat<to=(y*0ak21asqri(k-1)<x/y)a((x/y)2-k+1)<t,. Since
D(ps)<k>21ary+0andps;=D(ps3), ps is safe.
p2=wp(k:=k+1,p3)=ps3[k+1/k]=(y+0rk+121asqrt(k+1-1)<x/y)a((x/y)?-
(k+1)+1)<to. Since D(p,)<[2023-04-14] y#0Ar k>0 and p,=>D (p.), so p, is safe.
With g=sqrt(k-1)<x/y<sqrt(k),WehaveD(q)< k>1ay=*0,but q doesn't imply
D (q), so we'll redefine ¢q to be the old (g A D (q)), which makes the new ¢ safe. The impli-
cation p, = q does hold, so the predicate logic obligation is met.
(If you want details for p, = q, we have ps=p asqrt(k)>2x/y and q=sqrt (k-1)<x/y
<sqrt(k)ak>=1ay#0. (1) Most of g holds because p,=>p,and p includes k>1,y+0,
and sqrt(k-1)<x/y. (2) The remainder of q is x/y <sqrt(k), which is included in
pPa.)
The loop test B=sqrt(k)<x/y,soD(B) < k>0Ay*0, and B doesn't imply D (B). This
makes I B« k>0Ay#0Asqrt(k)<x/y.We could change the program to use while | B,
but the invariant implies k>0 Ay # 0, so adding it to the loop test is redundant.

1 Just a side mention: We can't use x/y—sqrt (k) as a bound function because it's not always re-
duced by incrementing k (because of truncation). E.g., sqrt(4)=sqrt(5)=2.

CS Dept, Illinois Institute of Technology -5- © James Sasaki, 2023

