Weakest Preconditions 1 & 2; Domain Predicates CS 536: Science of Programming, Spring 2023 Due Mon Feb 27, 11:59 pm

Problems [60 points total]

Class 10: Weakest Preconditions part 1 [27 points]

- 1. [3 points] Let $IF \equiv if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 fi$ and let $w_1 \Leftrightarrow wlp(S_1, q)$ and $w_2 \Leftrightarrow wlp(S_2, q)$. Question: Why is $wlp(IF,q) \Leftrightarrow (B_1 \rightarrow w_1) \land (B_2 \rightarrow w_2)$ but not $(B_1 \land w_1) \lor (B_2 \land w_2)$.
- 2. [4 points] Which of the following statements behave differently depending on whether S is deterministic or nondeterministic? Explain briefly.
 - $wp(S, p \lor q) \rightarrow wp(S, p) \lor wp(S, q)$
 - $wp(S,p) \lor wp(S,q) \rightarrow wp(S,p \lor q)$
 - $wp(S, p \land q) \rightarrow wp(S, p) \land wp(S, q)$
 - $wp(S,p) \land wp(S,q) \rightarrow wp(S,p \land q)$
- 3. [20=5*4 points] Consider the statement $\sigma \models \{w lp(S,q)\} S\{q\}$. If σ satisfies the precondition, then $\sigma \models \{ wlp(S,q) \} S \{q\}$ is satisfied when
 - $M(S,\sigma) \perp \models q$ (description using meaning functions)
 - For all $\tau \in M(S, \sigma), \tau = \bot$ or $\tau \models q$ (equivalent description using states/logic)

(Note the description is correct whether *S* is deterministic or nondeterministic.)

For each of the statements below, assume σ satisfies the precondition and give the meaning function requirement and the equivalent logical description. If not specified, S could be deterministic or nondeterministic. If S is deterministic, it could be helpful to use the phrase $M(S,\sigma) = \{\tau\}.$

- a. $\sigma \not\models \{wlp(S,q)\}S\{q\}$
- b. $\sigma \models_{tot} \{\neg wlp(S,q)\} S\{\neg q\}$, if S is deterministic
- c. $\sigma \models_{tot} \{wp(S,q)\} S\{q\}$
- d. $\sigma \not\models_{\text{tot}} \{ wp(S,q) \} S \{ q \}$
- e. $\sigma \models \{\neg wp(S,q)\} S \{\neg q\}$, if S is deterministic

Class 11: Weakest Preconditions part 2 [9 points]

- 4. [9 points] Calculate wlp (*if* x < 0 *then* x := -x *fi*, $x^2 \ge x$). (Don't forget the implicit "*else skip*" clause.) You can omit intermediate calculations but they might be worth partial credit. After syntactically calculating the wlp, logically simplify the result. (Textual simplifications like $p \land p \equiv p$ are always allowed.)
 - a. [3 points] Calculate the *wlp* of the true branch
 - b. [2 points] Calculate the *wlp* of the false branch
 - c. [2 points] Calculate the overall *wlp*.
 - d. [2 points] Give the result after logical/arithmetic simplification.

Class 11: Domain Predicates [24 points]

Calculate the *wp* 's below. Show your intermediate calculations. You can logically simplify your answer as you go and/or at the end or not at all (your preference). (Textual simplifications like $p \land p \equiv p$ are always allowed.)

- 5. [12=4*3 points] wp(S,q) where $S \equiv y := y/x$ and $q \equiv sqrt(y) < x$.
 - a. Calculate D(S).
 - b. Calculate $w \equiv wlp(S,q)$.
 - c. Calculate *D(w)*.
 - d. Calculate wp(S,q) (it's $\Leftrightarrow D(S) \land w \land D(w)$).
- 6. [12=4*3 points] wp(S,q) where $S \equiv if y \ge 0$ then x := y/x else x := -x/y fi and $q \equiv r < x \le y$.
 - a. Calculate D(S).
 - b. Calculate $w \equiv wlp(S, q)$.
 - c. Calculate D(w).
 - d. Calculate wp(S,q).