Weakest Preconditions 1 \& 2; Domain Predicates

 CS 536: Science of Programming, Spring 2023
Due Mon Feb 27, 11:59 pm

Problems [60 points total]

Class 10: Weakest Preconditions part 1 [27 points]

1. [3 points] Let $I F \equiv$ if $B_{1} \rightarrow S_{1} \square B_{2} \rightarrow S_{2} f i$ and let $w_{1} \Leftrightarrow w l p\left(S_{1}, q\right)$ and $w_{2} \Leftrightarrow w l p\left(S_{2}, q\right)$. Question: Why is $w l p(I F, q) \Leftrightarrow\left(B_{1} \rightarrow w_{1}\right) \wedge\left(B_{2} \rightarrow w_{2}\right)$ but $\operatorname{not}\left(B_{1} \wedge w_{1}\right) \vee\left(B_{2} \wedge w_{2}\right)$.
2. [4 points] Which of the following statements behave differently depending on whether S is deterministic or nondeterministic? Explain briefly.

- $w p(S, p \vee q) \rightarrow w p(S, p) \vee w p(S, q)$
- $w p(S, p) \vee w p(S, q) \rightarrow w p(S, p \vee q)$
- $w p(S, p \wedge q) \rightarrow w p(S, p) \wedge w p(S, q)$
- $w p(S, p) \wedge w p(S, q) \rightarrow w p(S, p \wedge q)$

3. [20 $=5 * 4$ points] Consider the statement $\sigma \models\{w l p(S, q)\} S\{q\}$. If σ satisfies the precondition, then $\sigma \vDash\{w l p(S, q)\} S\{q\}$ is satisfied when

- $M(S, \sigma)-\perp \vDash q$ (description using meaning functions)
- For all $\tau \in M(S, \sigma), \tau=\perp$ or $\tau \vDash q \quad$ (equivalent description using states/logic)
(Note the description is correct whether S is deterministic or nondeterministic.)
For each of the statements below, assume σ satisfies the precondition and give the meaning function requirement and the equivalent logical description. If not specified, S could be deterministic or nondeterministic. If S is deterministic, it could be helpful to use the phrase $M(S, \sigma)=\{\tau\}$.
a. $\sigma \notin\{w l p(S, q)\} S\{q\}$
b. $\sigma \not{ }_{\text {tot }}\{\neg w l p(S, q)\} S\{\neg q\}$, if S is deterministic
c. $\sigma \vDash_{\text {tot }}\{w p(S, q)\} S\{q\}$
d. $\sigma \not \#_{\text {tot }}\{w p(S, q)\} S\{q\}$
e. $\sigma \vDash\{\neg w p(S, q)\} S\{\neg q\}$, if S is deterministic

Class 11: Weakest Preconditions part 2 [9 points]

4. [9 points] Calculate wlp (if $x<0$ then $x:=-x$ fi, $x^{2} \geq x$). (Don't forget the implicit "else skip" clause.) You can omit intermediate calculations but they might be worth partial credit. After syntactically calculating the $w l p$, logically simplify the result. (Textual simplifications like $p \wedge p \equiv p$ are always allowed.)
a. [3 points] Calculate the wlp of the true branch
b. [2 points] Calculate the wlp of the false branch
c. [2 points] Calculate the overall wlp.
d. [2 points] Give the result after logical/arithmetic simplification.

Class 11: Domain Predicates [24 points]

Calculate the $w p$'s below. Show your intermediate calculations. You can logically simplify your answer as you go and/or at the end or not at all (your preference). (Textual simplifications like $p \wedge p \equiv p$ are always allowed.)
5. $[12=4 * 3$ points] $w p(S, q)$ where $S \equiv y:=y / x$ and $q \equiv \operatorname{sqrt}(y)<x$.
a. Calculate $D(S)$.
b. Calculate $w \equiv w l p(S, q)$.
c. Calculate $D(w)$.
d. Calculate $w p(S, q)$ (it's $\Leftrightarrow D(S) \wedge w \wedge D(w)$).
6. [12 $=4^{*} 3$ points] $w p(S, q)$ where $S \equiv$ if $y \geq 0$ then $x:=y / x$ else $x:=-x / y$ fi and $q \equiv r<x \leq y$.
a. Calculate $D(S)$.
b. Calculate $w \equiv w l p(S, q)$.
c. Calculate $D(w)$.
d. Calculate $w p(S, q)$.

