Sequential Nondeterminism, Hoare Triples 1 \& 2

CS 536: Science of Programming, Spring 2023

Due Thu Feb 16, 11:59 pm [not Sep 16]

2023-02-13: p.1; 2023-02-15: p. 2

A. Problems [60 points total]

Class 7: Sequential Nondeterminism

1. [12 $=2 * 6$ points] Let $D O$ be the nondeterministic loop [2023-02-13 do/od keywords]
do $x \neq 0 \rightarrow x:=x-1 ; y:=y+1 \square x \neq 0 \rightarrow x:=x-1 ; y:=y+2$ od
a. First, let's work on what what a typical loop iteration does over an arbitrary state $\sigma=\{x=\beta, y=\delta\}$. Assume $\beta \geq 2$ and calculate the two states we can be in after a single iteration of the loop. I.e., what are the τ where $\langle D O, \sigma\rangle \rightarrow^{3}\langle D O, \tau\rangle$?
b. Extend part (a) to do κ iterations where $1<\kappa \leq \beta$. What is the set of final states Σ^{\prime} we can reach in 3κ iterations? I.e., what is $\Sigma^{\prime}=\left\{\tau \in \Sigma \mid\langle D O, \sigma\rangle \rightarrow^{3 \kappa}\langle D O, \tau\rangle\right\}$?

Classes 8 \& 9: Hoare Triples, pt 1 \& 2

2. [16 $=4 * 4$ points]
a. Using backward assignment, what can we use for precondition p_{1} in the triple $\left\{p_{1}\right\} b:=b+b\left\{b^{*} c \leq d-b\right\}$? (Mild hint: Be careful with parenthesization)
b. Using backward assignment, what can we use for p_{2} in $\left\{p_{2}\right\} x:=m\{1 \leq x * y \leq n * m\}$?
c. Using backward assignment, what can we use for p_{3} in $\left\{p_{3}\right\} y:=n\left\{p_{2}\right\}$?
d. Joining parts (b) and (c), what can we use for p_{4} in $\left\{p_{4}\right\} y:=n ; x:=m\{1 \leq x * y \leq n * m\}$?
3. [6 $=2 * 3$ points] Let $p_{0} \rightarrow p, p \rightarrow p_{1}, q_{0} \rightarrow q$, and $q \rightarrow q_{1}$ all be valid. From $\{p\} S\{q\}$, there are four triples of the form $\left\{p_{i}\right\} S\left\{q_{j}\right\}$ that get by replacing p by p_{0} or p_{1} and q by q_{0} or q_{1}.
a. If $\sigma \vDash\{p\} S\{q\}$, which of the four triples $\sigma \vDash\left\{p_{i}\right\} S\left\{q_{j}\right\}$ is/are also satisfied by σ under \vDash ? Briefly justify.
b. Repeat part (a) but under total correctness.
4. [8=2*4 points] Say $\sigma \vDash\left\{p_{1}\right\} S\left\{q_{1}\right\}$ and $\sigma \vDash\left\{p_{2}\right\} S\left\{q_{2}\right\}$.
a. Does $\sigma \vDash\left\{p_{1} \wedge p_{2}\right\} S\left\{q_{1} \vee q_{2}\right\}$? Justify briefly.
b. Does $\sigma \vDash\left\{p_{1} \vee p_{2}\right\} S\left\{q_{1} \wedge q_{2}\right\}$? Justify briefly.
5. [10 points] Answer the following questions below about the relationships between or variations of correctness triples. Assume $\sigma \neq \perp$ and S is deterministic.
For (a) and (b), the four statements are $\sigma \models\{p\} S\{q\}, \sigma \vDash\{p\} S\{\neg q\}, \sigma \nLeftarrow\{p\} S\{q\}, \sigma \nLeftarrow\{p\} S\{\neg q\}$
a. [4 points] There are four statements of the form $\sigma(\vDash$ or $\not \vDash)\{p\} S\{q$ or $\neg q\}$. Which (if any) of them are implied by $\sigma \models_{\text {tot }}\{p\} S\{q\}$?
b. [4 points] There are [2023-02-15] four statements of the form σ (\vDash or $\not \vDash$) $\{p\} S\{q$ or $\neg q\}$. Which (if any) of them are implied by $\sigma \models_{\text {tot }}\{T\} S\{q\}$?
For (a) and (c), the four statements are $\sigma \models\{p\} S\{q\}, \sigma \models\{p\} S\{\neg q\}, \sigma \vDash\{\neg p\} S\{q\}, \sigma \vDash\{\neg p\} S\{\neg q\}$
c. [2 points] There are four statements of the form $\sigma \vDash\{p$ or $\neg p\} S\{q$ or $\neg q\}$. When can all four of them be satisfied at the same time, or is it impossible?

Definitions

" Σ_{0} partly $\vDash p$ " means there is a $\tau \in \Sigma_{0}$ with $\tau \vDash p$.
" Σ_{0} partly $\not \not \not p$ " means there is a $\tau \in \Sigma_{0}$ with $\tau \models \neg p$.
6. [$8=2 * 4$ points] Now assume that $\sigma \neq \perp$ and S is nondeterministic and answer the following questions.
a. There are four statements of the form σ partly (\vDash or $\not \vDash$) $\{p\} S\{q$ or $\neg q\}$. If $\perp \notin M(S, \sigma)$, then which (if any) of them are implied by $\sigma \not \vDash\{p\} S\{q\}$?
b. Continuing, which (if any) of the remaining statements can occur (but might not) when $\sigma \nLeftarrow\{p\} S\{q\}$?

