Sequential Nondeterminism, Hoare Triples 1 & 2

CS 536: Science of Programming, Spring 2023

Due Thu Feb 16, 11:59 pm [not Sep 16]

2023-02-13: p.1; 2023-02-15: p.2

A. Problems [60 points total]

Class 7: Sequential Nondeterminism

- 1. [12=2*6 points] Let *DO* be the nondeterministic loop [2023-02-13 do/od keywords] do $x \neq 0 \rightarrow x := x - 1; y := y + 1 \square x \neq 0 \rightarrow x := x - 1; y := y + 2 od$
 - a. First, let's work on what what a typical loop iteration does over an arbitrary state $\sigma = \{x = \beta, y = \delta\}$. Assume $\beta \ge 2$ and calculate the two states we can be in after a single iteration of the loop. I.e., what are the τ where $\langle DO, \sigma \rangle \rightarrow {}^{3} \langle DO, \tau \rangle$?
 - b. Extend part (a) to do κ iterations where $1 < \kappa \leq \beta$. What is the set of final states Σ' we can reach in 3κ iterations? I.e., what is $\Sigma' = \{\tau \in \Sigma \mid \langle DO, \sigma \rangle \rightarrow {}^{3\kappa} \langle DO, \tau \rangle \}$?

Classes 8 & 9: Hoare Triples, pt 1 & 2

- 2. [16 = 4 * 4 points]
 - a. Using backward assignment, what can we use for precondition p_1 in the triple $\{p_1\} b := b + b \{b * c \le d - b\}$? (Mild hint: Be careful with parenthesization)
 - b. Using backward assignment, what can we use for p_2 in $\{p_2\}x := m\{1 \le x \ge n \le m\}$?
 - c. Using backward assignment, what can we use for p_3 in $\{p_3\}y := n \{p_2\}$?
 - d. Joining parts (b) and (c), what can we use for p_4 in $\{p_4\}y := n$; $x := m\{1 \le x * y \le n * m\}$?
- 3. [6=2*3 points] Let $p_0 \rightarrow p$, $p \rightarrow p_1$, $q_0 \rightarrow q$, and $q \rightarrow q_1$ all be valid. From $\{p\} S\{q\}$, there are four triples of the form $\{p_i\} S \{q_i\}$ that get by replacing p by p_0 or p_1 and q by q_0 or q_1 .
 - a. If $\sigma \models \{p\} S \{q\}$, which of the four triples $\sigma \models \{p_i\} S \{q_i\}$ is/are also satisfied by σ under \models ? Briefly justify.
 - b. Repeat part (a) but under total correctness.
- 4. [8=2*4 points] Say $\sigma \models \{p_1\} S\{q_1\}$ and $\sigma \models \{p_2\} S\{q_2\}$.
 - a. Does $\sigma \models \{p_1 \land p_2\} S\{q_1 \lor q_2\}$? Justify briefly.
 - b. Does $\sigma \models \{p_1 \lor p_2\} S \{q_1 \land q_2\}$? Justify briefly.

5. [10 points] Answer the following questions below about the relationships between or variations of correctness triples. Assume $\sigma \neq \bot$ and *S* is deterministic.

For (a) and (b), the four statements are $\sigma \models \{p\}S\{q\}, \sigma \models \{p\}S\{\neg q\}, \sigma \not\models \{p\}S\{q\}, \sigma \not\models \{p\}S\{\neg q\}$

- a. [4 points] There are four statements of the form σ (\vDash or \forall) {*p*} *S* {*q* or \neg *q*}. Which (if any) of them are implied by $\sigma \vDash_{tot} \{p\} S\{q\}$?
- b. [4 points] There are [2023-02-15] four statements of the form σ (\vDash or \nvDash) {*p*} *S* {*q* or $\neg q$ }. Which (if any) of them are implied by $\sigma \vDash_{tot} \{T\}S\{q\}$?

For (a) and (c), the four statements are $\sigma \models \{p\}S\{q\}, \sigma \models \{p\}S\{\neg q\}, \sigma \models \{\neg p\}S\{q\}, \sigma \models \{\neg p\}S\{\neg q\}$

c. [2 points] There are four statements of the form $\sigma \models \{p \text{ or } \neg p\} S \{q \text{ or } \neg q\}$. When can all four of them be satisfied at the same time, or is it impossible?

Definitions

" Σ_0 *partly* \models *p*" means there is a $\tau \in \Sigma_0$ with $\tau \models p$.

" Σ_0 *partly* $\neq p$ " means there is a $\tau \in \Sigma_0$ with $\tau \models \neg p$.

- 6. [8 = 2 * 4 points] Now assume that $\sigma \neq \perp$ and *S* is nondeterministic and answer the following questions.
 - a. There are four statements of the form σ partly (\models or \neq) { *p* } *S* { *q* or $\neg q$ }. If $\perp \notin M(S, \sigma)$, then which (if any) of them are implied by $\sigma \notin \{p\}S\{q\}$?
 - b. Continuing, which (if any) of the remaining statements can occur (but might not) when $\sigma \neq \{p\} S\{q\}$?