Types, Expressions, States, Quantified Predicates

CS 536: Science of Programming, Spring 2023

Due Thu Feb 2, 11:59 pm

2023-02-01: p. 2

A. Formatting and Submitting Your Work

- Remember to use a word processor to write out your answers. Quantified variables range over \mathbb{Z} unless otherwise specified.
- To speed up grading, be sure to include your group number and a list of the group members' userids and A\# numbers. Use *.pdfs, not *.doc files.
- In all the problems below, assume that variables written with different names are \equiv unless explicitly said otherwise. (So with x and y, assume $x \neq y$, but if we define " $\nu \equiv x$ or y ", we don't necessarily know if $v \equiv x$ or $v \neq x$.)

B. Problems [60 points total]

Class 3: Types, Expressions, and Arrays

1. (4 points) Let b be a two-dimensional array. Is the expression $b[0]+b[2][3]$ legal or illegal according to the syntax we're using. If illegal, why? If legal, what is the type of the resulting expression?
2. (4 points) Is $\{u=(4), w=u[1], r=o n e, s=f o u r, t=r+s\}$ a well-formed state? If not, why?
3. $(6=2 * 3$ points) Let $\sigma=\{x=2, b=\beta\}$ where $\beta=(7,12,3)$. Complete these equivalent definitions of σ :
a. $\sigma=\{x=2, b=\{(0,7), \ldots$
b. $\sigma=\{x=2, b[0]=7, \ldots$
4. ($8=2 * 4$ points) Take the expression $c^{*} b[b[k]]$. For each state below, is it well-formed; if it is, is it also proper for the expression? If it is, does the expression terminate correctly (and with what result)? If not, why?
a. $\{k=0, b=(3,6,1,4), c=\underline{2}\}$
b. $\{k=\underline{0}, b=\underline{3}\}$

Class 4: State Updates, Satisfaction of Quantified Predicates

5. $(8=2 * 4$ points) Let $\sigma=\{x=\underline{2}, y=\underline{4}\}$.
a. What is $\sigma[x \mapsto \underline{1}]$; what is $\sigma \cup\{(x, \underline{1})\}$; are they equal?
b. What is $\sigma[\nu \mapsto \underline{2}]$; what is $\sigma \cup\{(\nu, \underline{2})\}$; are they equal?
6. ($8=2 * 4$ points) Let $\sigma=\{x=\underline{2}, y=\underline{4}\}$. (Assume $x \neq y$.)
a. What is $\sigma[x \mapsto \sigma(y)][y \mapsto \sigma(x)]$? (Be careful)
b. Let $\tau=\sigma[x \mapsto 3]\left[y \mapsto \tau(x)^{*} 4\right]$. What is τ ? (Be careful)
7. $(8=2 * 4$ points $)$ For each of the following, say whether the state satisfies the quantified predicate (and if not, briefly why). Give a witness value (for satisfied existentials) or a counterexample (for unsatisfied universals).
a. Does $\{x=\underline{0}, b=(5,3,6)\} \vDash(\forall x . \forall k .0<k<3 \wedge x<b[k])$?
b. Does $\{b=(2,5,4,8)\} \vDash(\exists m .0 \leq m<4 \rightarrow b[m]<2)$?
8. (4 points) Explain (in words): When does the following property hold?

$$
\not \vDash(\exists x \in V .(\exists y \in U . P(x, y)) \wedge(\forall z \in W \cdot Q(x, z)))
$$

9. (10 points) Write a definition for a predicate function Unique (b, x, m) that yields true when the m array elements starting with $b[x]$ have unique values (i.e., m array locations, m different values). For example, Unique (($1,2,3,2$), 1, 2) is true but [2023-02-01]
Unique ($(1,2,3,2), 1,3)$ is false because it contains 2 twice. If $m<0$ or any of the indexes x, $x+1$, etc. are illegal, return false. If you like, you can assume that \wedge and \vee are short-circuiting, like \&\& and || in C and Java. Feel free to define helper predicates if you want.
