Logic Review

CS 536: Science of Programming, Fall 2023

New due date: Fri Jan 27, 11:59 pm

Due Wed Jan 25, 11:59 pm
ver. Mon 2023-01-23, 19:40; p.3; 01-26: p. 2

A. Why?

- We use propositions and predicates to write program specifications.
- Propositions and predicates can be related or manipulated syntactically or semantically.

B. Objectives

At the end of this homework, you should be able to

- Perform various syntactic operations and checks on propositions and predicates.
- Describe the difference between syntactic and semantic equivalence.
- Form proofs of propositions using some standard proof rules.
- Design predicate functions for simple properties on values and arrays.

C. Problems [60 points total]

Quantified variables range over \mathbb{Z} unless otherwise specified.

1. [$8=4^{*} 2$ points] Which of the following mean(s) $p \rightarrow q$ and which mean $q \rightarrow p$?
a. $\quad p$ is sufficient for q
b. $\quad p$ only if q
c. $\quad p$ if q
d. p is necessary for q
2. [$4=2^{*} 2$ points] Let e_{1} and e_{2} be expressions.
a. In general, does $e_{1} \neq e_{2}$ imply $e_{1} \neq e_{2}$? If yes, briefly justify (a sentence or two is fine); if no, give a counterexample (specific values for e_{1} and e_{2} that show that this implication does not always hold).
b. In general, does $e_{1}=e_{2}$ imply $e_{1} \equiv e_{2}$,? Again give a brief justification or counterexample.
3. $\left[6=3^{*} 2\right.$ points $]$ For each pair below, characterize the state as well- or ill-formed; if wellformed, is it proper? If proper, does the given expression evaluate successfully or cause a runtime error (and if so, how?)
a. $\{v=5, z=6\}$ and $v+0^{*} w$
b. $\{v=-4, w=6\}$ and $\operatorname{sqrt}(v) * \operatorname{sqrt}(w)$
c. $\{y=18, z=2\}$ and $y^{*} y /(z+4)$
4. [6 points] The goal is to show that $p \wedge \neg(q \vee r) \rightarrow q \vee r \rightarrow \neg p$ is a tautology by proving it is $\Leftrightarrow T$. To do this, complete the proof of equivalence below using (only) the propositional logic rules (from Class 2). Be sure to include the names of the rules. There's more than one correct answer [just give one of them].

$$
\begin{array}{ll}
p \wedge \neg(q \vee r) \rightarrow q \vee r \rightarrow \neg p \text { [2023-01-26] } & \\
\text { [you fill in] } & \text { Defn } \rightarrow \\
\text { [you fill in] } & \text { Defn } \rightarrow \\
\text { [and so on] } &
\end{array}
$$

5. [6 points] Simplify $\neg(\forall x .(\exists y \cdot x \leq y) \vee \forall z . x \geq z)$ to a predicate that has no uses of \neg. Present a proof of equivalence. Use DeMorgan's laws for quantified predicates: $\neg \forall u . r \Leftrightarrow \exists u . \neg r$ and $\neg \exists u . r \Leftrightarrow \forall u . \neg r$. [2023-01-12]. Also use rules like $\neg \neg\left(e_{1} \leq e_{2}\right) \Leftrightarrow e_{1}>e_{2}$ by negation of comparison".
6. [4 $=2 * 2$ points] What is the full parenthesization of
a. $p \wedge \neg r \vee s \rightarrow \neg q \wedge r \rightarrow \neg p \leftrightarrow \neg s \rightarrow t$?
b. $\forall m .0<m<n \wedge \exists j .0 \leq j<m \rightarrow b[0] \leq b[j] \leq b[m] *$
7. [4=2*2 points] Give the minimal parenthesization of each of the following by showing what remains after removing all redundant parentheses. Hint: To avoid getting confused about which parentheses match each other, try rewriting the given parentheses with subscripts:
$(1 \text { and })_{1}$ versus $(2 \text { and })_{2}$ and so on.
a. $\quad((\neg(p \vee q) \wedge r) \rightarrow(((\neg q) \vee r) \rightarrow((p \vee(\neg r)) \wedge(q \wedge s))))$
b. $(\exists j .((0 \leq j) \wedge(j<m)) \wedge(\forall k .(((m \leq k) \wedge(k<n)) \rightarrow(b[j]<b[k])))))$. (This predicate asks "Is there a value in $b[0 . . m-1]$ < every value in $b[m . . n-1]$?)
c. $(\forall x \cdot((\exists y \cdot(p \wedge q)) \rightarrow(\forall z \cdot(p \rightarrow(q \wedge r)))))$

[^0]8. [10 points total] Say whether the given propositions or predicates are \equiv or $\not \equiv$. Briefly justify your answer.
a. [2 points] Is $\forall x \cdot p \rightarrow \exists y \cdot q \rightarrow r \equiv((\forall x \cdot p) \rightarrow(\exists y \cdot q)) \rightarrow r$?
b. [3 points] Is $\exists x . p \wedge \exists y .(q \rightarrow r) \vee \exists z . r \rightarrow s \equiv \exists x \cdot p \wedge(\exists y \cdot q \rightarrow r) \vee(\exists z . r \rightarrow s)$?
c. [3 points] Is $(\forall x . p \vee \forall y . q) \vee(\forall z . r) \rightarrow s \equiv \forall x \cdot p \vee(\forall y . q) \vee \forall z . r \rightarrow s$?
d. [2 points] Is $p \wedge q \vee \neg r \rightarrow \neg p \rightarrow q \equiv((p \wedge q) \vee((\neg r \rightarrow((\neg p) \rightarrow q))))$?
9. [6=3*2 points] Say whether each of the following is a tautology, contradiction, or contingency. If it's a contingency, show an instance when the proposition is true and show an instance where it's false.
a. $((p \rightarrow q) \rightarrow r) \rightarrow(p \rightarrow(q \rightarrow r))$.
b. $\quad(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow r)$
c. $\quad(\forall x \in \mathbb{Z} . \forall y \in \mathbb{Z} . f(x, y)>0) \rightarrow(\exists x \in \mathbb{Z} . \exists y \in \mathbb{Z} . f(x, y)>0)$.
[2023-01-12] Use DeMorgan's laws for quantified predicates: - Uu.r \Leftrightarrow ヨu. \rightarrow r and $-\exists u . r \Leftrightarrow$ Uu. \rightarrow r.
10. [6 points] Write the definition of a predicate function $G T(b, x, m, k)$ that yields true iff $x>b[m], \ldots b[k]$. E.g., in the state $\{b=(1,3,-2,8,5)\}, G T(b, 4,0,2)$ is true [2023-01-23: 2 , not 3]; $G T(b, 0,1,2)$ is false. You can assume without testing that the indexes $m, \ldots k$ are all in range. If $k<m$, the sequence $b[m], b[m+1], \ldots, b[k]$ is empty and $G T(b, x, m, k)$ is true. (It's straightforward to write $G T$ so that this is not a special case.)
Remember, this has to be a predicate function, not a program that calculates a boolean value. Hint: Check the discussion in the Class 2 notes about trying to translate programs to predicates.

[^0]: * Leave $(0 \leq j<m)$ as is; don't expand it to $((0 \leq j) \wedge(j<m))$. Don't forget to parenthesize (b [0]), e.g.

