State Updates, Satisfaction of Quantified Predicates

CS 536: Science of Programming, Fall 2021

A. Why?
- A predicate is satisfied relative to a state; it is valid if it is satisfied in all states.
- State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes
At the end of this class, you should
- Know what it means to update a state.
- Know what it means for a quantified predicate to be valid or be satisfied in a state.

C. "Updating" States
- To check quantified predicates for satisfaction, we need to look at different states that are related to, but not identical to, our starting state.
- **Example 1**: For \(\{y = 1\} \models \forall x \in \mathbb{Z}. x^2 + 1 \geq y - 1\), we need to know that \(\{y = 1, x = \alpha\} \models x^2 + 1 \geq y - 1\) for every \(\alpha \in \mathbb{Z}\). I.e., we need
 -
 - \(\{y = 1, x = -1\} \models x^2 + 1 \geq y - 1\)
 - \(\{y = 1, x = 0\} \models x^2 + 1 \geq y - 1\)
 - \(\{y = 1, x = 1\} \models x^2 + 1 \geq y - 1\)
 - \(\{y = 1, x = 2\} \models x^2 + 1 \geq y - 1\)
 -
- Similarly, for \(\{z = 4\} \models \exists x \in \mathbb{Z}. x \geq z\), we need \(\{z = 4, x = \alpha\} \models x \geq z\) for some particular integer \(\alpha\) (\(\alpha = 5\) works nicely).
- There is a complicating factor. If the quantified variable already appears in the state, then we need to replace its binding with one that gives the value we're interested in checking.
- **Example 2**: We already know \(\{z = 4\} \models \exists x \in \mathbb{Z}. x \geq z\) because \(\{z = 4, x = 5\} \models x \geq z\). If we start with the state \(\{z = 4, x = -15\}\), which already has a binding for \(x\), we find that the new state \(\models \exists x \in \mathbb{Z}. x \geq z\) because once again, \(\{z = 4, x = 5\} \models x \geq z\) holds.

- In **Example 2**, the \(x\) that appears in \(\{z = 4, x = 5\}\) is not the same \(x\) that appears within \(\exists x \in \mathbb{Z}. x \geq z\). However, the two \(x\)’s in “\(\{z = 4, x = 5\} \models x \geq z\)” are the same \(x\). Giving the two \(x\)’s the same
name causes the confusion. If we gave the x’s different names, there’d be no problem with understanding; let xo be the “outer” x and xi be the “inner” x, then
\[\{ z = 4, xo = -15 \} \models \exists xi \in \mathbb{Z} . xi \geq z \]
because
\[\{ z = 4, xo = -15, xi = 5 \} \models xi \geq z \]

- When we use the same name x, the binding for the outer x becomes invisible, overridden by the binding for the inner x:
\[\{ z = 4, \text{(outer) } x = -15 \} \models \exists x \in \mathbb{Z} . x \geq z \] because \[\{ z = 4, \text{(inner) } x = 5 \} \models x \geq z \]

- **Definition:** For any state \(\sigma \), variable \(x \), and value \(\alpha \), the **update of \(\sigma \) at \(x \) with \(\alpha \)** (written \(\sigma[x \mapsto \alpha] \)) is the state that is a copy of \(\sigma \) except that it binds variable \(x \) to value \(\alpha \).
 - Let \(\tau = \sigma[x \mapsto \alpha] \), then \(\tau(x) = \alpha \); if variable \(y = x \), then \(\tau(y) = \sigma(y) \).
 - Note \(\tau(x) = \alpha \) regardless of whether \(\sigma(x) \) is defined or not. If \(\sigma(x) \) is defined, its type and exact value are irrelevant.
 - Set theoretically,
 - If \(x \) has no binding in \(\sigma \), then \(\sigma[x \mapsto \alpha] \) is \(\sigma \cup \{ x = \alpha \} \): It’s like \(\sigma \) but has been extended with \(x = \alpha \).
 - If \(x \) has a binding in \(\sigma \), say \(\sigma = \{ x = \beta \} \cup \sigma_0 \) where \(\sigma_0 \) is the rest of \(\sigma \), then \(\sigma[x \mapsto \alpha] \) is \(\sigma_0 \cup \{ x = \alpha \} \).
 It’s like \(\sigma \) but has the binding \(x = \alpha \), not \(x = \beta \). (Having two bindings for \(x \) would be illegal.)
 - **Important:** Calling it the “update” of \(\sigma \) is kind of misleading because we’re not modifying \(\sigma \).
 - Taking \(\sigma[x \mapsto \alpha] \) does not do an update in place; if we define \(\tau = \sigma[x \mapsto \alpha] \), then \(\sigma \) is still \(\sigma \).
 - Conceptually, we aren’t modifying \(\sigma \), we’re creating a new state.
 - We’re not required to give \(\sigma[x \mapsto \alpha] \) a new name; we can write it out explicitly:
 - If \(x = v \) where \(v \) stands for a variable (not literally the variable \(v \)) then if \(v = x \), then \(\sigma[x \mapsto \alpha](v) = \sigma[x \mapsto \alpha](x) = \alpha \), otherwise (if \(v = v \), then \(\sigma[x \mapsto \alpha](v) = \sigma(v) \).
 - (You have to read \(\sigma[x \mapsto \alpha](v) \) left-to-right — we’re taking the function \(\sigma[x \mapsto \alpha] \) and applying it to \(v \). I.e., \(\sigma[x \mapsto \alpha](v) = (\sigma[x \mapsto \alpha])(v) \), where the left pair of parentheses are for grouping and the ones around \(v \) are for the function call.)
 - **Example 3:** If \(\sigma = \{ x = 2, y = 6 \} \), then \(\sigma[x \mapsto 0] = \{ x = 0, y = 6 \} \):
 - \(\sigma[x \mapsto 0](x) = 0 \) (Even though \(\sigma(x) = 2 \))
 - \(\sigma[x \mapsto 0](y) = \sigma(y) = 6 \) (Since we didn’t update \(y \))
 - \(\sigma[x \mapsto 0](x+y) = 0+6 = 6 \) (Since the \(x \) in \(x+y \) gets evaluated to \(0 \))
 - \(\sigma[x \mapsto 0] = x^2 \leq 0 \) (Even though our starting \(\sigma \neq x^2 \leq 0 \))
 - The value part of an update has to be a semantic value, not a syntactic one, so \(\sigma[x \mapsto x+1] \) isn’t well-formed.
 - In these notes, it may help to remember that since \(x+1 \) is in **this font**, it’s syntactic.

* Unfortunately, “update” is the traditional name, and for myself, I can’t find any word that’s exactly right. We’re not always extending \(\sigma \), we’re not always superseding \(\sigma \),....
• On the other hand, "σ[x ↦ σ(x+1)]" or "σ[x ↦ α plus one] where α = σ(x)" do make sense.

Multiple Updates

• We can do a sequence of updates on a state. E.g., σ[x ↦ 0][y ↦ 8] is a doubly updated state. Sequences of updates are read left-to-right, so this is (σ[x ↦ 0])[y ↦ 8].

• **Example 4**: If σ = {x = 2, y = 6}, then σ[x ↦ 0][y ↦ 8] = {x = 0, y = 6}[y ↦ 8] = {x = 0, y = 8}.

• The order of update doesn't matter if you have two different variables.

• **Example 5**: σ[x ↦ 0][y ↦ 8] = σ[y ↦ 8][x ↦ 0].

• If you update the same variable twice, the second update supersedes the first.

• **Example 6**: σ[x ↦ 0][x ↦ 17] = σ[x ↦ 17] ≠ σ[x ↦ 17][x ↦ 0] = σ[x ↦ 0]

• Of course, if the second update is identical to the first, nothing happens: σ[x ↦ α][x ↦ α] = σ[x ↦ α]

• If you have to evaluate an expression, be sure to do it in the correct state.
 - Let σ(x) = 1 and let τ = σ[x ↦ 2], then τ[z ↦ σ(x)+10] maps z to σ(x)+10 = 1+10 = 11. We can omit τ and also write σ[x ↦ 2][z ↦ σ(x)+10], which gives the same state as τ.
 - On the other hand, look at τ[z ↦ τ(x)+10]. Since τ = σ[x ↦ 2], the value of τ(x)+10 = 12, so τ[z ↦ τ(x)+10] = τ[z ↦ 12].
 - If we hadn’t given the name τ = σ[x ↦ 2], then we would had to write σ[x ↦ 2][z ↦ σ[x ↦ 2](x) +10]. (This is pretty ugly, so giving σ[x ↦ 2] a name like τ makes things more readable.)

D. Updating Array Values

• Updating array elements like b[0] is a bit more complicated than updating simple variables like x and y. First, let’s extend our notion of updating states to updating general functions.

• **Definition**: If δ is a function on one argument and α and β are valid members of the domain and range of δ respectively, then the update of δ at a with β, written δ[α ↦ β], is the function defined by δ[α ↦ β](y) = β if y = α and δ[α ↦ β](y) = δ(y) if y ≠ α.

• **Definition**: If σ is a (proper) state for an array b and α is a valid index value for b, then σ[b[α] ↦ β] means σ[b ↦ η[α ↦ β]] where η = the function σ(b). In words, if σ includes the binding b = function η, then the updating σ at b[α] with β is just like updating σ at b with an updated version of η, namely η[α ↦ β].

• **Example 7**: Say σ = {x = 3, b = (2, 4, 6)}, then σ[b[0] ↦ 8] = {x = 3, b = (8, 4, 6)}. Here, σ(b) is the function (2, 4, 6) (which means {(0, 2), (1, 4), (2, 6)}), so σ(b)[0 ↦ 8] (the update of function σ(b)) is the function (2, 4, 6)[0 ↦ 8] = (8, 4, 6).

E. Satisfaction of Quantified Predicates

• One use of updated states is for describing how assignment works. (We’ll see this later.) The other use for updated states is for defining when quantified predicates are satisfied.
• **Definition:** \(\sigma \models \exists x \in S. p \) if for one or more **witness** values \(\alpha \in S \), it's the case that \(\sigma[x \mapsto \alpha] \models p \). Note we're asking a hypothetical question: “If we were to calculate \(\sigma[x \mapsto \alpha] \), would we find that it satisfies \(p \)?”

 - **Example 8a:** For any state \(\sigma \), we can show \(\sigma \models \exists x \cdot x^2 \leq 0 \) using 0 as the witness: \(\sigma[x \mapsto 0] \models x^2 \leq 0 \), since \(\sigma[x \mapsto 0](x^2) = \sigma[x \mapsto 0]((0)^2) = (0^2 \leq 0) = \top \).

 - **Example 8b:** If \(\sigma(x) \) is, say 5, it's still the case that \(\sigma \models \exists x. x^2 \leq 0 \) using 0 as the witness because we \(\sigma[x \mapsto 0] \models x^2 \leq 0 \), regardless of \(\sigma(x) \) being 5.

If there are many successful witness values, we don't have to specify all of them; we just need one.

 - **Example 9:** If \(\sigma(y) = 3 \), then \(\sigma \models \exists x \cdot x^2 \leq y \) with \(x = 0 \) or \(1 \) as possible witness values.

• **Definition:** \(\sigma \models \forall x \in S. p \) if for every value \(\alpha \in S \), we have \(\sigma[x \mapsto \alpha] \models p \). (Again, this is hypothetical: “If for every \(\alpha \), we were to calculate \(\sigma[x \mapsto \alpha] \), would we find that it satisfies \(p \)?”

 - **Example 10:** To know \(\sigma \models \forall x \in \mathbb{Z}. x^2 \geq x \), we need to know \(\sigma[x \mapsto \alpha] \models x^2 \geq x \) for every \(\alpha \in \mathbb{Z} \).

Since for every integer \(\alpha \), indeed \(\alpha^2 \geq \alpha \), this does hold. Recall that it doesn't matter what \(\sigma(x) \) is, since we're interested in \(\sigma[x \mapsto \alpha] \).

When asking if \(\sigma \) satisfies \(\forall x \in S. p \) or \(\exists x \in S. q \), we don't care about \(\sigma(x) \). For a predicate \(p \) in general, for the question “Does \(\sigma \models p \)?” only depends on how \(\sigma \) operates on the non-quantified variables of \(p \).

 - **Example 11:** Since the body of \(\forall x \in \mathbb{Z}. x^2 \geq x \) uses only the quantified variable \(x \), it doesn't matter what bindings \(\sigma \) has when checking \(\sigma \models \forall x \in \mathbb{Z}. x^2 \geq x \). Even \(\sigma = \emptyset \) works: \(\emptyset \models \forall x \in \mathbb{Z}. x^2 \geq x \).

Note with nested quantifiers, the notation does get more complicated.

• **Example 12:** \(\sigma \models \forall x > y^2. \exists z. z \geq x+y^2 \) iff (for every \(\alpha \in \mathbb{Z} \), if \(\alpha > \sigma(y)^2 \), then there is some \(\beta \in \mathbb{Z} \) such that \(\beta \geq \alpha + \sigma(y)^2 \).

\[
\begin{align*}
\sigma &\models \forall x > y^2. \exists z. z \geq x+y^2 \\
&\text{iff } \sigma \models \forall x, x > y^2 \rightarrow \exists z. z \geq x+y^2 & \text{defn bounded } \forall \\
&\text{iff for every } \alpha \in \mathbb{Z}, \sigma[x \mapsto \alpha] \models x > y^2 \rightarrow \exists z. z \geq x+y^2, & \text{defn } \models \rightarrow \\
&\text{Now, } \sigma[x \mapsto \alpha] \models x > y^2 \rightarrow \exists z. z \geq x+y^2 \\
&\text{iff } \sigma[x \mapsto \alpha] \models x > y^2 \text{ implies } \sigma[x \mapsto \alpha] \models \exists z. z \geq x+y^2 & \text{defn } \models \rightarrow \\
&\text{iff } \alpha > y^2 \text{ implies } \sigma[x \mapsto \alpha] \models \exists z. z \geq x+y^2 & \text{where } y = \sigma(y) \\
&\text{iff } \alpha > y^2 \text{ implies for some } \beta, \sigma[x \mapsto \alpha][z \mapsto \beta] \models z \geq x+y^2 & \text{defn } \models \exists \\
&\text{iff } \alpha > y^2 \text{ implies for some } \beta, \beta \geq \alpha+y^2 & \text{defn } \models \geq \\
&\text{Taking } \beta = 2\alpha \text{ for our witness value, we need } \alpha > y^2 \text{ implies for some } 2\alpha \geq \alpha+y^2, \text{ which is true.} \\
&\text{Note defining intermediate names like "let } \tau = \sigma[x \mapsto \alpha][z \mapsto \beta] \text{" is allowed, if you prefer that style.}
\end{align*}
\]
Justifying DeMorgan’s Laws for Quantified Predicates

- In general, we want our systems of reasoning to be **sound**: We want the textual transformations that make up logical equivalence to reflect truths about how our semantics work.

- **Example 15**: Here is a check of DeMorgan’s law for existentials, which says $\neg \exists x. p \leftrightarrow \forall x. \neg p$.

 Semantically, we want each of these to be valid if and only if the other is. So we need $\sigma \models \neg \exists x. p$ if and only if $\sigma \models \forall x. \neg p$.

 $\sigma \models \neg \exists x \in S. p$

 iff $\sigma \not\models \exists x. p$ \hspace{1cm} defn of $\sigma \models \neg \text{predicate}$

 iff for no $\alpha \in S$ do we have $\sigma[x \mapsto \alpha] \models p$ \hspace{1cm} defn of $\sigma \models \exists \text{existential}$

 iff for every $\alpha \in S$ we have $\sigma[x \mapsto \alpha] \not\models p$ \hspace{1cm} equivalence of “no \models” vs “every $\not\models$”

 iff for every $\alpha \in S$ we have $\sigma[x \mapsto \alpha] \models \neg p$ \hspace{1cm} defn of $\sigma \models \neg \text{predicate}$

 iff $\sigma \models \forall x. \neg p$ \hspace{1cm} defn of $\sigma \models \forall \text{universal}$.

- Showing the semantic property that $\models \neg \exists x. p \leftrightarrow \forall x. \neg p$ gives us a justification for adding $\neg \exists x. p \leftrightarrow \forall x. \neg p$ as a proof rule.