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Await and Deadlocks 
CS 536: Science of Programming, Spring 2023 

A. Why? 

• Avoiding interference isn’t the same as coordinating desirable activities. 

• It’s common for one thread to wait for another thread to reach a desired state. 

• Care needs to be taken to avoid a program that waits with no hope of completing. 

B. Objectives 
At the end of this lecture you should know 

• The syntax and semantics of the await statement. 

• How to draw an evaluation diagram for a parallel program that uses await. 

• How to recognize deadlocked configurations in an evaluation diagram. 

• How to list the potential deadlock predicates for a parallel program that uses await. 

C. Synchronization 

The Need for Synchronization 

• We’ve looked at parallel programs whose threads avoid bad interactions. 

• They don’t interfere because they don’t interact (disjoint programs/conditions). 

• They interact but don’t interfere (interference-freedom). 

• To supporting good interaction between threads, we often have to have one thread wait for an-
other one.  Some examples: 

• Thread 1 should wait until thread 2 is finished executing a certain block of code. 

• Thread 1 has to wait until some buffer is not empty 

• Thread 2 has to wait until some buffer is not full. 

• The general problem is that we often want threads to synchronize: We want one thread to wait 
until some other thread makes a condition come true. 

• Example 1: For a more specific example, in the following program, the calculation of u  doesn't 
start until we finish calculating z , even though u  doesn't depend on z . 

[ x := …|| y := …|| z := …] ;  u = f ( x , y ) ;  v := g ( u , z )  

On the other hand, we can't nest parallel programs, so we can't write 

[ [ [ x := …|| y := …] ;  u = f ( x , y ) || z := …] ;  v := g ( u , z )  

which would be a natural way to do the calculations of u  and z  in parallel.  In some sense, 
what we'd like is to run something like 
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[ x := …|| y := …||  wait for x and y;  u = f ( x , y ) || z := …] ; v := g ( u , z )  

D. The Await Statement 

• It's time to introduce a new statement, the await statement, whose semantics implements the 
notion of waiting until some condition is true. 

• Busy wait loops like while ¬ B do skip od { B } work but are wasteful. 

• Syntax: await B then S end where B is a boolean expression and S is a statement. 

• S  isn’t allowed to have loops, await statements, or atomic regions. 

• await statements can only appear in sequential threads of parallel programs.  (I.e., in some 
thread Sk  in an [ S1 || S2 || …] .) 

• An await statement is a conditional atomic region.  Suppose that some thread begins with 
await B then S end, then 

• We nondeterministically choose between all the available threads.  I.e., there's no insistence 
that we must check the await before trying other threads.  (See case 1 of Example 2.) 

• If we choose the thread that begins with await B then S end, 

• If B is true, then immediately jump to S and execute all of it. 

• The test, jump, and execution of S are atomic — the combination executes as one step. 
E.g., with the configuration below, we can't set x  to 1  between looking up the two x's to 
use for calculating x+x.  (See case 2 of Example 2.) 

• If B is false, we block: We wait until B is true.  Instead, we nondeterministically choose be-
tween the other threads and execute it.  (See case 3 of Example 2.) 

• An await is similar to an atomic if-then statement, but not identical. 

• With ⟨ if B then S else skip fi ⟩ , if B is false, we execute skip and complete the if-fi.  (See 
case 4, Example 2.) 

• With await B then S end, if B is false, nothing happens until B becomes true.  (See the note 
with case 3, Example 2.) 

Example 2: 

• (See the discussion above) 

• Case 1: Let A  ≡ await B then x := x+x end in ⟨ [ await B then x : = x+x end|| x := 1 ] { b=T, x=2 } ⟩

→ ⟨ [ await B then x : = x + x  end|| E ] ,  { b = T, x=1 } ⟩ .  

• Case 2: ⟨ [ await B then x := x+x end|| x := 1 ] , { b=T, x=2 } ⟩→ ⟨ [ E || x := 1 ] , { b=T, x=4 } ⟩ .  
(This is the only transition that executes the await.) 

• Case 3: ⟨ [ await B then S end|| x : = 1 ] , { b=F } ⟩ → ⟨ [ await B then S end|| E ] , { b=F , x=1 } ⟩ .  
(The second configuration is blocked, with no other thread available to unblock it.) 

• Case 4: ⟨ [ if B then x := 0 else skip fi|| S′ ] , { b=F } ⟩→ ⟨ [ E || S′ ] , { b=F , x=0 } ⟩ .  

CS Dept., Illinois Institute of Technology –  – © James Sasaki, 20232



CS 536: Science of Programming Wed 2023-04-26, 12:45 Class 27

• Example 3: Execution of a non-atomic if-fi can be interleaved with.  In Figure 1, the dashed red 
lines show how execution of await x ≥ 0 then x := x+1 ; y := x+2  end takes just one step to execute 
the entire body. 

 

• Example 4: In the introduction, we looked at a situation where we want to wait for some calcu-
lations to finish before stating others.   

[ x := …|| y := …|| wait for x  and y ;  u = f ( x , y ) || z := …] ;  v := g ( u , z )  

can be implemented using 

x_done := F ;  y_don e := F ;  
[ x := …;  x_done := T || y := …;  y_done := T  
|| await x_done ∧ y_done  then u := f ( x , y )  end|| z := …] ;  
v := g ( u , z ) ;  

E. await, wait, if, and ⟨ S ⟩ 

The Abbreviations ⟨ S ⟩ and wait B 

• With await B then S end, there are two simple cases: When B is trivial and when S is trivial. 
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Solid black lines show execution steps taken only when S ≡ if x ≥ 0  then x := x + 1; y := x + 2  fi 

Dashed red lines show steps taken only when S ≡ await x ≥ 0  then x := x + 1; y := x + 2  end 

Dashed black lines are common to both executions. 

Figure 1: Execution of await vs if-fi

⟨ [ S || x := 0 ] , { x=2 } ⟩

⟨ [ E || x := 0 ] , { x=3 , y=5 } ⟩

⟨ [ E || E ] , { x=0 , y=5 } ⟩

⟨ [ x := x + 1 ; y := x + 2 || x := 0 ] , { x=2 } ⟩ ⟨ [ S || E ] , { x=0 } ⟩

⟨ [ y := x + 2 || x := 0 ] , { x=3 } ⟩ ⟨ [ x := x + 1 ; y := x + 2 || E ] , { x=0 } ⟩

⟨ [ E || E ] , { x=1 , y=3 } ⟩

⟨ [ y := x + 2 || E ] , { x=1 } ⟩

⟨ [ E || E ] , { x=0 , y=2 } ⟩

⟨ [ y := x + 2 || E ] , { x=0 } ⟩
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• Definition: We can redefine ⟨ S ⟩ to stand for await T  then S end.  When the test is trivially true, 
we don't need to wait, we simply execute the body atomically.  So atomic execution is just condi-
tional atomic execution with a trivial test. 

• Definition: wait B ≡ await B then skip end.  When the body is trivial, we simply wait; when B is 
true, execution is complete. 

• There's a important difference between wait B ; S and await B then S end. 

• With await B then S end, once B is true, we immediately atomically execute S , so no other 
statement can interleave between the test and running S.  Therefore S can rely on B being 
true when it starts executing.  If σ ( B ) = T, then ⟨ [ await B then S end|| …] , σ ⟩→ ⟨ [ E || …] , τ ⟩, 
where τ∈M ( S , σ ). 

• wait B ;  S means await B then skip end; S , so it allows another thread to be executed after the 
wait but before running S.  If σ ( B ) = T, then ⟨ [ wait B ; S || …] , σ ⟩→ ⟨ [ S || …] , σ ⟩

→ * ⟨ [ E || …] , τ ⟩ (if no interleaving occurs).  Since interleaving can occur, we rely on B be-
ing true when S starts execution. 

F. Await Statement Proof Rule and Outlines 

• The proof rule for the await statement is similar to an if fi, but there's no false clause (not even 
else skip). 

await Statement (a.k.a. Synchronization Rule) 

1. { p ∧ B } S { q }  
2. { p } await B then S end { q }    await, 1  

• Minimal Proof Outline: { p } await B then S end { q }  

• Full Proof Outline: { p } await B then { p ∧ B } S* { q } end { q } where S*  is a full proof outline for 
program S. 

• Weakest Preconditions: wp ( await B then S end, q ) ≡ B→wp ( S ,q ) . 

• This guarantees { B→wp ( S , q ) }  await B then { wp ( S , q ) } S* { q }  end { q }  

• Note: It may be tempting to write { p ∧ ¬ B } await B then …, but that's guaranteed to self-dead-
lock; the outline is 

  { p ∧ ¬ B } await B then { p ∧ ¬ B ∧ B } S* { q } end{ q }  

G. The Producer/Consumer Problem 

• The Producer/Consumer Problem (a.k.a. Bounded Buffer Problem) is a standard problem in 
parallel programming. 

• We have two threads running in parallel: The producer creates things and puts them into a buf-
fer; the consumer removes things from the buffer and does something with them. 
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• The problem is that if the buffer is full, the producer shouldn’t add anything to the buffer; if the 
buffer is empty, the consumer shouldn’t remove anything from the buffer. 

• Example 5: The rough code to solve this problem is 

Initialize ( buffer ); 
[ while ¬ done do      // Producer 
 created := Create ( ); 
 await NotFull ( buffer ) then 
  BufferAdd ( buffer, created )  
 end 
 od 
|| while ¬ done do       // Consumer 
 await NotEmpty ( buffer) then 
  removed := BufferRemove ( buffer) ; 
 end; 
 Consume ( removed )  
 od 
]  

• Buffer operations need to be synchronized because the threads share the buffer.  The threads 
don’t share the created or removed objects, so the Create and Consume calls can go outside the 
await and interleave execution. 

H. Deadlock 

Blocked Threads; Deadlock 

• Recall that ⟨ [ await B then S end;  …|| …] , σ ⟩ is blocked (must wait) if σ ( B ) = F. 

• If some other thread can make B true, then the await may eventually unblock. 

• E.g., ⟨ [ await x > y  then S end;  …|| …;  x := y+1 ; …] , σ ⟩ could unblock. 

• But if all the other threads have either completed or are themselves blocked, then there's no 
way for our await to unblock.  E.g., take ⟨ [ await B then S end;  …|| E ] , σ ⟩.  If thread 1 is stuck 
at the await but thread 2 has completed, the program can't evaluate further. 

• Definition: A parallel program is deadlocked if it has not finished execution and there's no 
possible evaluation step to take.  I.e., all the threads are either complete or blocked and at least 
one thread is blocked.  

• If all the other threads are complete or are blocked, the program is deadlocked: There's no pos-
sible evaluation step leaving from the configuration. 

• Example 6:  If A ≡ await x ≥ 0 … end, then there's no arrow out of ⟨ [ A || A ] , σ [ x ↦ – 1 ] ⟩, so this 
configuration is deadlocked.  If the value of x had been ≥ 0, then both await statements would 
have been eligible for execution.   
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Since only one blocked thread is required for deadlock, ⟨ [ await x ≥ 0 … end|| E ] , σ [ x ↦ – 1 ] ⟩ is 
also deadlocked. 

• Threads can block themselves (trivial example: await false then S end). 

• More often, threads block because they're waiting for conditions they expect other threads 
to establish.  E.g., if we’re running in a state where y=0 and x=0, then these two threads 
deadlock: 

• Thread 1: { p1 }  await y≠0  then x := 1 ; … 

• Thread 2: { p2}  await x≠0  then y := 1 ; … 

• A program might deadlock under all execution paths or only certain execution paths. 

• Example 7: The program 

[await y≠0 then x := 1 end|| await x≠0 then y := 1 end] 

deadlocks iff you execute in a state where x and y are both zero 

• Example 8: If thread 1 sets x := 0 before thread2 evaluates its wait x, then thread 2 will block.  
(Recall wait x  ≡ await x  then skip end.) 

{ T } x := 1 ;  y := 1 ;  
[ wait y=1 ;  x := 0 || wait x=1 ;  y := 0 ]  
{ x=0 ∧ y=0 }  

Figure 2 contains an execution graph for this program in state {x =1 , y=1 } (somewhat abbreviat-
ed).  There are two deadlocking paths (and four paths that terminate correctly). 

• Obviously, we’d like to know if a program is going to deadlock.  The following test identifies a set 
of predicates that indicate potential problems with a program; if none of these predicates is sat-
isfiable, then deadlock is guaranteed not to occur. 

• If one or more of these predicates is satisfiable, then we can't guarantee that deadlock will not 
occur, but we aren't guaranteeing that deadlock must occur.  (So the deadlock conditions are 
sufficient to show deadlock is impossible but they are not necessary conditions.) 

• Let { p } [ { p1 } S1 * { q1} || { p2} S2 * { q2} || …|| { pn } Sn * { qn } ] { q }  be a full outline for a parallel 
program, where p ≡ p1∧…∧ pn  and q ≡ q1∧…∧ qn .  

• Definition: A (potential) deadlock condition for the program outline above is a predicate of 
the form r1′ ∧ r2′ ∧…∧ rn ′  where each rk ′  is either 

• qk  , the postcondition for thread Sk  or 

• p ∧ ¬ B where { p } await B… appears in the proof outline for thread S k . 

• In addition, at least one of the rk ′  must involve waiting.  I.e., q  ≡ q1∧…∧ q
 n  is not a potential 

deadlock condition. 

• A program outline is deadlock-free if every one of its potential deadlock conditions is unsatisfi-
able (i.e., a contradiction): 

• I.e., for each deadlock condition r′, we have ⊨ ¬ r′  (or the equivalent ⊨ r′→ F ). 
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Parallelism with Deadlock Freedom 

1 .  { p1 } S1 * { q1 }  
2 .  { p2} S2 * { q2 }  
 … 
n .  { pn } Sn * { qn }  
n+1.  { p1∧ p2∧…∧ pn }  
 [ S1 || S2 || …|| Sn ]  
 { q1∧ q2∧…∧ qn }  D.P. w/o deadlock, 1, 2, …, n  

where the { pk } Sk * { qk }  are pairwise interference-free standard proof outlines 
and the parallel program outline is deadlock-free. 

I. Examples of Deadlock Conditions 

• Example 9: Let’s take the program from Example 7: 

[await y≠0 then x := 1 end|| await x≠0 then y := 1 end] 

and develop an annotation for it: 

{ T }  
[ { T }  await y≠0  then { y≠0 } x := 1 { x≠0 ∧ y≠0 }  end { x≠0 ∧ y≠0 }  
|| { T }  await x≠0  then {x≠0 } y := 1 { x≠0 ∧ y≠0 }  end { x≠0 ∧ y≠0 }   
] { x≠0 ∧ y≠0 }  

• Let set D1 = { x≠0 ∧ y≠0 , y=0 } be the choices for p1 ′ . 

• x≠0 ∧ y≠0 is the thread postcondition 

• y=0 indicates thread 1 is blocked at the await statement. 

• Similarly, let set D2 = { x≠0 ∧ y≠0 , x=0 } be the choices for p2 ′  (the postcondition of thread 2 and 
the blocking condition for its await). 

• There are three choices for the potential deadlock predicate r1′ ∧ r2′ : 

• ( x≠0 ∧ y≠0 ) ∧ ( x=0 ), which is a contradiction. 

• ( y=0 ) ∧ ( x≠0 ∧ y≠0 ), which is a contradiction. 

• ( y=0 ) ∧ ( x=0 ), which is not a contradiction, therefore, it’s a potential deadlock condition, and 
our program does not pass the deadlock-freedom test. 

• Recall ( x≠0 ∧ y≠0 ) ∧ ( x≠0 ∧ y≠0 ) is not a potential deadlock predicate because it says that the 
two threads have both completed. 

• One way out of this predicament is to make the initial precondition the negation of y=0 ∧ x=0.  
Let p be ( x≠0 ∨ y≠0 ) in 

{ p }  
[ { p }  await y≠0 then { p ∧ y≠0 } x := 1 { x≠0 ∧ y≠0 } end { x≠0 ∧ y≠0 }  
|| { p }  await x≠0 then { p ∧ x≠0 } y := 1 { x≠0 ∧ y≠0 } end { x≠0 ∧ y≠0 }  
] { x≠0 ∧ y≠0 }  
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• Let D1 = { x≠0 ∧ y≠0 , p ∧ y=0 }  and let D2 = { x≠0 ∧ y≠0 , p ∧ x=0 } . 

• The three potential deadlock predicates are now contradictory  

• ( x≠0 ∧ y≠0 ) ∧ ( p ∧ x=0 )   (is false because of x≠0 ∧ x=0 ) 

• ( p ∧ y=0 ) ∧ ( x≠0 ∧ y≠0 )   (is false because of y=0 ∧ y≠0 ) 

• ( p ∧ y=0 ) ∧ ( p ∧ x=0 )  
≡  ( ( x≠0 ∨ y≠0 ) ∧ y=0 ) ∧ ( ( x≠0 ∨ y≠0 ) ∧ x=0 )  
⇒ ( x≠0 ∧ y=0 ) ∧ ( y≠0 ∧ x=0 )  
⇒ F   

• (end of example 9) 

• Example 10: Since it has three threads, the deadlock conditions for this program are a bit more 
involved than for Example 9.  Thread 1 has one await statement, thread 2 has two await state-
ments, and thread 3 has no await statements. 

[ …{ p1 1 }  await B1 1  … { q1 }  
|| …{ p2 1 }  await B2 1  … { p2 2 }  await B2 2 …{ q2 }  
|| …{ q3 } ]  

• The deadlock conditions are built using the three sets 

• D1 = { p1 1∧ ¬ B1 1 , q1 }  

• D2 = { p2 1∧ ¬ B2 1 , p2 2∧ ¬ B2 2 , q2 }  

• D3 = { q3 } . 

• Let D  be the set of deadlock conditions, D = { r1∧ r2∧ r3 | r1∈D1 , r2∈D2 , r3∈D3 } – { q1∧ q2∧ q3 } .   
Specifically, we get the following ( 2 × 3 × 1 – 1 = 5 ) conditions: 

D = { ( p1 1∧ ¬ B1 1 ) ∧ ( p2 1∧ ¬ B2 1 ) ∧ q3 , — Thread 1 blocked; thread 2 blocked at 1st await 

( p1 1∧ ¬ B1 1 ) ∧ ( p2 2∧ ¬ B2 2 ) ∧ q3 ,  — Thread 1 blocked; thread 2 blocked at 2nd await 

( p1 1∧ ¬ B1 1 ) ∧ q2∧ q3 ,     — Thread 1 blocked 
q1∧ ( p2∧ ¬ B2 1 ) ∧ q3 ,     — Thread 2 blocked at 1st await 
q1∧ ( p2 2∧ ¬ B2 2 ) ∧ q3 }      — Thread 2 blocked at 2nd await 

• The program will be deadlock-free if every predicate in D is a contradiction (i.e., unsatisfiable). 

J. Strengthening Deadlock Conditions 

• Having all deadlock conditions be contradictory is sufficient for guaranteeing that no program 
execution will deadlock. 

• It’s not a necessary condition, however.  Just because some r∈D is satisfiable, that doesn’t mean 
that there exists a program execution that can get to the corresponding deadlocked configura-
tion. 

• Example 11: Here's an example of strengthening conditions so that we can prove deadlock 
freedom.  The program is small enough for us to be able to hand-verify that it never deadlocks 
(by figuring out all possible interleavings). 
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{ T } n := 0 ; [ await n=0 then n := 1 end|| wait n=1 ] { n > 0 }  

• If we annotate the program as below, we have sequential correctness for each thread, plus the 
threads are interference-free: 

{ T } n := 0 ; { T }  
[ { T } await n=0 then n := 1 end { n > 0 }  
|| { T } wait n=1 { n > 0 }  
] { n > 0 }  

• On the other hand, we can’t prove deadlock freedom.  There are 2 × 2 – 1 = 3 deadlock conditions 
and all of them are satisfiable: 

• n≠0 ∧ n≠1    — Both threads blocked 

• n≠0 ∧ n > 0    — Thread 1 blocked 

• n > 0 ∧ n≠1    — Thread 2 blocked 

• The problem here is that the proof outline’s conditions are too weak. We want each deadlock 
condition to be logically equivalent to false, the strongest predicate. 

• To make a conjunctive formula stronger, we need to strengthen its conjuncts.  For a deadlock-
freedom test, we have two kinds of conjuncts: 

• (postcondition of thread) 

• (precondition of await statement)∧¬ ( test of await statement) 

• By strengthening the postcondition of the initial assignment of n := 0  from true to n=0 , we can 
strengthen the precondition of the first await: 

{ T } n := 0 ; { n=0 }  
[ { n=0} await n=0 then { n=0 ∧ n=0 } n := 1 end { n > 0 }  
|| { T } await n=1 then { n=1 }  skip { n=1 } end { n > 0 } ]  
{ n > 0 }  

• The potential deadlock conditions for the proof outline above are now 

• ( n=0 ∧ n≠0 ) ∧ n≠1   — Both threads blocked (contradiction) 

• ( n=0 ∧ n≠0 ) ∧ n > 0   — Thread 1 blocked (contradiction) 

• n > 0 ∧ n≠1     — Thread 2 blocked (satisfiable) 

• So two of the conditions are contradictory, but one condition is still satisfiable.  To prove dead-
lock-freedom, we need to strengthen the conditions even more to include the state we get to 
when the first thread has executed and the second thread hasn’t. 

• Unfortunately, if we annotate the two threads as 

• { n=0 } await n=0 then n := 1 end { n=1 }  

• { n=1 } wait n=1 { n=1 }  

• Then the precondition of the parallel program has to be ( n=0 ) ∧ ( n=1 ), which isn’t possible.  
Even if it were, we'd need to be sure it follows form the strongest postcondition of n := 0. 
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{ T } n := 0 ;  
{ n=0 ∧ n=1 }    // ← error 
[ { n=0 } await n=0 then n := 1 end { n=1 }  
|| { n=1 } wait n=1 { n=1 }  
] { n=1 ∧ n=1 } { n=1 }  

• Before thread 2 runs, it sees n=0 or n=1 depending on whether thread 1 has run yet.  If we use 
that as the precondition for thread 2, then we get n=0 ∧ ( n=0 ∨ n=1 ) as the precondition for the 
parallel program, which works: 

{ T } n := 0 ;  
n=0 ∧ ( n=0 ∨ n=1 )  
[ { n=0 } await n=0 then n := 1 end { n=1 }  
|| { n=0 ∨ n=1 } wait n=1{ n=1 }  
{ n=1 ∧ n=1 } { n=1 }  

• Better still, the deadlock conditions are now all contradictions, so we have deadlock-freedom 

• ( n=0 ∧ n≠0 ) ∧ ( ( n=0 ∨ n=1 ) ∧ n≠1 )   — Both blocked (contradiction) 

• ( n=0 ∧ n≠0 ) ∧ n=1        — Thread 1 blocked (contradiction) 

• n=1 ∧ ( ( n=0 ∨ n=1 ) ∧ n≠1 )      — Thread 2 blocked (contradiction) 

• Unfortunately, one of the interference freedom tests now fails: 

• Pass: { n=0 ∧ ( n=0 ∨ n=1 ) } await n=0 then n := 1 end { n=0 ∨ n=1 }  

• Pass: { n=0 ∧ n=1 } await n=0  then n := 1 end { n=1 }  

• Fail: { ( n=0 ∧ n=1 ) ∧ n=0 } wait n=1 { n=0 }  — wait n=1  definitely doesn't preserve n=0   

• We can solve this problem by adding an auxiliary variable to say whether or not the first thread 
has run and set n=1 . (end of Example 11) 
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