
CS 536: Science of Programming	 Wed 2023-04-21, 13:20	̀ Class 25

Shared Variables and Interference-Freedom

CS 536: Science of Programming, Spring 2023

 2023-04-21: p.7

A. Why

• Parallel programs can coordinate their work using shared variables, but it’s important for
threads to not interfere (to not invalidate conditions that the other thread relies on).

B. Objectives

At the end of this class you should know how to

• Check for interference between the correctness proofs of the sequential threads of a shared
memory parallel program.

C. Parallel Programs with Shared Variables

• Disjoint parallel programs are nice because no thread interferes with another’s work. They’re
bad because threads can’t communicate or combine efforts.

• Let’s start looking at programs that aren’t disjoint parallel and allow threads to share variables.
We’ve seen examples, but here’s another one.

• Example 1: Below is the evaluation graph for ⟨ [x := x+1 ; x := x * 2 || x := x+3] , { x=10 } ⟩ . Since
11+1+3 = 11+3+1, two of the intermediate states are equal.

• The problem with shared variables is that threads that work correctly individually might stop
working when you combine them in parallel.

• Depending on the execution path it takes, some piece of code in one thread may invalidate a
condition needed by a second thread.

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20231

⟨ [x := x+1 ; x := x * 2 || x := x+3] , { x=10 } ⟩

⟨ [x := x * 2 || x := x+3] , { x=11 } ⟩

⟨ [E || x := x+3] , { x=22 } ⟩

⟨ [E || E] , { x =25 } ⟩

⟨ [x := x+1 ; x := x * 2 || E] , { x=13 } ⟩

⟨ [x := x * 2 || E] , { x=14 } ⟩

⟨ [E || E] , { x =28 } ⟩

CS 536: Science of Programming	 Wed 2023-04-21, 13:20	̀ Class 25

• Race condition: A situation where correctness of a parallel program depends on the relative
speeds of execution of the threads. (If different relative speeds produce different results but the
results are correct, then we don’t have a race condition.) To avoid race conditions

• We control where interleaving can occur by using atomic regions.

• We ensure that when interleaving occurs, it causes no harm (threads are interference-free).

D. Critical Sections

• The basic critical section problem involves two threads, each with an identified subset of code
(the critical section), where we must avoid both threads executing code in their critical sec-
tions simultaneously. Or said another way, if one thread is executing code in its critical section,
then we must keep the other thread from entering its critical section. Race conditions caused by
interleaving two pieces of code is a form of the critical section problem.

• Critical sections don't only involve what state changes pieces of code do, it also depends on the
form of the code. For example, we normally don't think of there being a difference between
x := y+y and x := y ; x := x+y; they both set x to 2 y. But if their opportunities for interleaving are
different, then these two pieces of code can behave very differently.

• For us, x := y+y cannot be interleaved but x := y ; x := x+y can be interleaved with at the
semicolon (i.e., between statements). There are three possible interleavings:

• { y = α } x := y+y ; { x = 2 α } x := y ; { x=α } x := x+y { x = 2 α }

• { y = α } x := y ; { x=α } x := x+y ; { x = 2 α } x := y+y { x = 2 α }

• { y = α } x := y ; { x=α } x := y+y ; { x = 2 α } x := x+y { x = 3 α }

• The third interleaving involves a race condition because running x := y+y by overwriting x
after the other thread sets x := y but before that thread gets to use x in x := x+y.

• Historically, the critical section problem was very difficult to solve using software alone. (Nu-
merous proposed solutions were in fact wrong.) Eventually, the problem was solved by adding
new hardware instructions (“test and set”).

E. Atomic Regions

• People control the amount of possible interleaving of execution by declaring pieces of code to be
atomic: Their execution cannot be interleaved with anything else.

• Definition (Syntax): If S is a statement, then < S > is an atomic region statement with body S.

• Operational semantics of atomic regions: Evaluation of < S > behaves like a single step:

• If ⟨ S , σ ⟩→ * ⟨ E , τ ⟩ then⟨ < S > , σ ⟩→ ⟨ E , τ ⟩ .

• Our operational semantics definition makes assignment statements atomic automatically, so
making v := e its own atomic section causes no change. However, embedding v := e within a
larger atomic region does make a difference.

• A normal assignment is one not inside an atomic area. We worry about interleaving of normal
assignments; we don’t worry about the non-normal ones.

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20232

CS 536: Science of Programming	 Wed 2023-04-21, 13:20	̀ Class 25

• Example 2: For example, since it can't be interleaved with < x := y ; x := x+y > has the same effect
as x := y+y. Indeed, the evaluation graph for both of them involve a single→ arrow:

• ⟨ x := y+y, σ ⟩→ ⟨ E , σ [x ↦ 2 σ (y)] ⟩

• ⟨ < x := y ; x := x+y > , σ ⟩→ ⟨ E , σ [x ↦ 2 σ (y)] ⟩

• This is because ⟨ x := y ; x := x+y, σ ⟩ → ² ⟨ E , σ [x ↦ 2 σ (y)] ⟩

• Using atomic regions gives us control over the size of pieces of code that can be interleaved
(“granularity of code interleaving”). However, making more or larger atomic sections is no
panacea: The more or larger atomic regions code has, the less interleaving and hence par-
allelism we have.

F. Interleaving with skip, if, and while statements

• There's no interleaving with a skip statement: skip executes atomically, so nothing can execute
"in the middle of a" skip. Since skip doesn't change the state, interleaving it between two state-
ments of other threads causes no change.

• For if-else and while statements (and nondeterministic if-fi and do-od), although evaluation of a
boolean expression is atomic, interleaving can occur between inspection of the result and the
jump to the next configuration.

• For example, sequentially, if σ (B) = T, then ⟨ if B then S₁ else S₂ fi, σ ⟩→ ⟨ S₁ , σ ⟩ . Thus in
parallel, another statement can be executed between the if test and the start of the true
branch. If statement U changes σ to τ, then we can have

⟨ [if B then S₁ else S₂ fi|| < U >] , σ ⟩→ ⟨ [S₁ || < U >] , σ ⟩→ ⟨ [S₁ || E] , τ ⟩

• In this last configuration, we're about to execute S₁ not in σ, but in τ. We can't use annota-
tions like { p } if B then { p ∧ B } S₁… fi because there's no guarantee that B is still true when
the true branch begins executing.

• Exactly the same problem occurs with while: if W ≡ while B do S od, then

⟨ [while B do S od||< U >] , σ ⟩→ ⟨ [S ; W ||< U >] , σ ⟩→ ⟨ [S ; W || E] , τ ⟩

 So B may be false when the loop body S starts executing.

G. Interference Between Threads

• Interference occurs when one thread invalidates a condition needed by another thread. In the
previous class we had an example where x := 1 interfered with { x=0 } y := 0 { x=y } because we
didn’t have disjoint conditions. If the triple had been { x ≥ 0 } y := 0 { x ≥ y = 0 }, then the condi-
tions would still not be disjoint, but x := 1 would not have caused them to become invalid.

• Example 3: Let { x > 0 } S₁ { x ≥ 0 } and { x > 0 } S₂ { x > 0 } be two threads. If x > 0, then the pre-
conditions for S₁ and S₂ hold, so we can run either one.

• If S₁ runs before S₂ , then S₁ terminates with x ≥ 0, which interferes with the precondition
x > 0 of S₂.

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20233

CS 536: Science of Programming	 Wed 2023-04-21, 13:20	̀ Class 25

• If S₁ runs after S₂ , then S₁ again takes x > 0 to x ≥ 0, which interferes with the postcondition
x > 0 of S₂.

• If S₂ runs before S₁, it terminates with x > 0, so it doesn't interfere with the precondition
x > 0 or the postcondition x ≥ 0 of S₁.

• To remove the interference caused by S₁, we might strengthen its postcondition from x ≥ 0 to
x > 0, or we might weaken the precondition of S₂ to x ≥ 0 . Another possibility is to make
running S₁ atomically with the code that follows it (and presumably requires x ≥ 0).

• { x > 0 } S₁ { x ≥ 0 } ; < U > { q } could become { x > 0 } < S₁ { x ≥ 0 } ; U > { q } , so we wouldn't
be able to run S₂ between S₁ and < U> .

H. The Interference-Freedom Checks

• Definition: The interference-freedom check for { p } < S > { … } versus a predicate q is the
predicate { p ∧ q }< S > { q }. If this check is valid, then we say that { p } < S > { … } does not inter-
fere with q. (Note we don’t care what < S > does if p holds but q does not: { p ∧ ¬ q } < S > { … }.)

• Example 4: { p } x := x+1 { … } does not interfere with x ≥ 0, but it does interfere with x < 0.

• Example 5: { x ≤ – 1 } x := x–1 { … } does not interfere with x ≤ 0, but it does interfere with x ≥ – 1 .

• Example 6: { x % 4 = 2 } x := x+4 { … } does not interfere with even (x) (i.e., x % 2 = 0).

• Note interference freedom of { p } < S >{ …} with q doesn’t mean that S can’t change the values of
variables free in q, it means that S is restricted to changes that maintain satisfaction of q. Inter-
ference freedom is less restrictive than disjointedness of programs or conditions.

Failing an interference freedom check

• Proving that the interference freedom check for { p } < S >{ …} with q is valid tells us that we
know interference cannot occur at runtime. That means failing to prove the check only tells us
that we don't know that interference cannot occur at runtime. Said another way, the negation
of “does not interfere with” is “possibly interferes with”.

• Specifically, failing an interference freedom check does not guarantee that interference will oc-
cur at runtime. Interference occurs if running the program uses ⟨ < S > , τ₀ ⟩→ ⟨ E , τ₁ ⟩ for some
τ₀ ⊨ p ∧ q and some τ₁⊭ q. If program execution along some path never involves ⟨ < S > , τ₀ ⟩

→ ⟨ E , τ₁ ⟩ , then interference doesn't occur .
*

Checking for Interference-Freedom of larger structures

• Once we have a notion of interference freedom of an atomic triple versus a predicate, we can
build up to a notion of interference between threads.

• Notation: S* is a proof outline of the program S.

In actual execution, < S > would be the next step of execution of a thread, so we would get something like *

⟨ [< S > ; S′ || …] , τ₀ ⟩→ ⟨ [S′ || …] , τ₁ ⟩ .

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20234

CS 536: Science of Programming	 Wed 2023-04-21, 13:20	̀ Class 25

• Definition: The atomic statement { p₁ } < S₁ > { …} does not interfere with the proof outline
{ p₂ } S₂* { q₂ } if it doesn’t interfere with p₂, nor with q₂, nor with any precondition before an
atomic statement in S₂* . I.e., { p₁ } < S₁ > { …} does not interfere with any r where { r } < … > { …}
appears in S₂* .

• Definition: A proof outline { p₁ } S₁* { q₁ } does not interfere with another proof outline { p₂ }
S ₂ * { q₂} if every atomic statement { r } < S > { …} in S₁* does not interfere with the outline { p₂ }
S₂ * { q₂ } .

• It's sufficient to look at only the atomic statements in S₁* because complex statements don't
cause state changes until they get to atomic sub-statements. E.g., with { p₁ } while B do { p₂ }
S { p₃ } od { p₄ }, when execution is at p₁ or p₃ , the next execution step involves testing B and
jumping to p₂ or p₄; this doesn't change the state. When execution is at p₃, execution might
cause a state change, but only if S begins with (or is) an atomic statement. The situations with if
statements and nondeterministic if and do statements are similar.

• Definition: Two proof outlines { p₁ } S₁* { q₁ } and { p₂ } S₂* { q₂ } are interference-free if neither
interferes with the other.

• Example 7: { x mod 4 = 0 } x := x+3 { … } interferes with { even (x) } x := x+1 { odd (x) } because it
interferes with even (x) : { x mod 4 = 0 ∧ even (x) } x := x+3 { even (x) } is not valid. However,
the first triple doesn't interfere with odd (x) : { x mod 4 = 0 ∧ odd (x) } x := x+3 { odd (x) } is
valid because the precondition implies false (and { F } S { q } is valid for all S and q).

• Example 8: Two different copies of { even (x) } x := x+1 { odd (x) } interfere with each other. I.e.,
copies of { even (x) } x := x+1 { odd (x) } in different threads will interfere with each other.

• Example 9: { even (x) } x := x+1 { odd (x) } and { x ≥ 0 } x := x+2 { x > 1 } are interference-free.

• Precondition of triple 1: { x ≥ 0 ∧ even (x) } x := x+2 { even (x) } is valid.

• Postcondition of triple 1: { x ≥ 0 ∧ odd (x) } x := x+2 { odd (x) } is valid.

• Precondition of triple 2: { even (x) ∧ x ≥ 0 } x := x+1 { x ≥ 0 } is valid.

• Postcondition of triple 2: { even (x) ∧ x > 1 } x := x+1 { x > 1 } is valid.

I. Parallelism with Shared Variables and Interference-Freedom

• Theorem (Interference-Freedom): Let { p₁ } S₁* { q₁ }, { p₂ } S₂* { q₂ } , …, and { pn } Sn * { qn } be
sequentially valid and pairwise interference-free. Then their parallel composition

{ p₁ ∧ p₂ ∧… ∧ pn } [S₁* || … || S n *] { q₁ ∧ q₂ ∧… ∧ qn }

is also valid. (Proof omitted.)

• The interference freedom theorem enables the use of a new parallelism rule:

Parallelism with Shared Variables Rule

1.	 { p₁ } S₁* { q₁ }  
2.	 { p₂ } S₂* { q₂ }  

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20235

CS 536: Science of Programming	 Wed 2023-04-21, 13:20	̀ Class 25

… 
n .	 { pn } Sn * { qn }  
n+1 .	{ p₁ ∧ p ₂∧… ∧ pn } 	 Parallelism w/ Shared Vars, 1 , 2 , … , n  
	 [S₁* || … || Sn *]  
	 { q₁ ∧ q₂ ∧… ∧ qn }

where the { pk } S k * { qk } are pairwise interference-free.

• One feature of this rule is that it talks about proof outlines, not correctness triples. (Before this,
the rules only concerned triples.) We can no longer compose correctness triples because we
can't guarantee correctness without knowing that the different threads don't invalidate condi-
tions inside the other threads.

• Example 12: A proof outline for { x=0 } [x := x+2 || x := 0] { x=0 ∨ x=2 } using parallelism with
shared variables is below:

{ x=0 }  
{ x=0 ∧ T }  
[{ x=0 } x := x+2 { x=0 ∨ x=2 }  
|| { T } x := 0 { x=0 ∨ x=2 }  
]  
{ (x=0 ∨ x=2) ∧ (x=0 ∨ x=2) }  
{ x=0 ∨ x=2 }

• The side conditions are

• { x=0 } x := x+2 { … } does not interfere with T or x=0 ∨ x=2, which holds by

• { x=0 ∧ T } x := x+2 { T }

• { x=0 ∧ (x=0 ∨ x=2) } x := x+2 { x=0 ∨ x=2 }

• { T } x := 0 { … } does not interfere with x=0 or x=0 ∨ x=2

• { T ∧ x=0 } x := 0 { x=0 }

• { T ∧ (x=0 ∨ x=2) } x := 0 { x=0 ∨ x=2 }

• No matter which assignment executes first, when x := x+2 runs, it sees x=0 and sets it to 2.
When x := 0 runs, it sees x=0 or 2 and makes it 0.

• Sequentially, the disjunct x=0 is not needed in { x=0 } x := x+2 { x=0 ∨ x=2 }, nor is x=2 needed in
{ T } x := 0 { x=0 ∨ x=2 }. To run the threads in parallel, however, we need to add these disjuncts
to account for the interactions that parallel execution causes. (Or said the other way, we add
these disjuncts to avoid interference in the final result.)

J. An Example With Shared and Auxiliary Variables
†

• Recall the program { x=0 } [x := x+2 || x := 0] { x=0 ∨ x=2 }, which we proved correct using par-
allelism with shared variables. Sequentially, we had { x=0 } x := x+2 { x=0 ∨ x=2 } and { T }
x := 0 { x=0 ∨ x=2 }, and interference freedom allowed us to compose these threads in parallel.

 We'll look in detail at auxiliary variables in the next class.†

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20236

CS 536: Science of Programming	 Wed 2023-04-21, 13:20	̀ Class 25

• We can weaken the precondition x=0 to just true and the program still works, but it’s annoying-
ly difficult to verify. If we try to annotate the program using

{ T ∧ x=x₀ } [{ T } x := 0 { x=0 } || { x=x₀ } x := x+2 { x=x₀ +2 }] { … }

we find that each thread's assignment to x interferes with one or both conditions of the other
thread.

• However, just because two proof outlines interfere, that doesn’t mean the programs are wrong. ‡

It may just be that one or more of the proofs need to be modified in order to prove interference
freedom.

• We could try adding the x=0 postcondition of thread 1 to thread 2. [2023-04-21]

{ T ∧ x=x₀ }  
[{ T } x := 0 { x=0 }  
|| { x=x₀ } { x=0 ∨ x=x₀ } x := x+2 { x=2 ∨ x=x₀+2 }

]  
{ x=0 ∧ (x=2 ∨ x=x₀ +2) }

[2023-04-21] start new version

• If thread 1 runs first, its x := 0 interferes with thread 2's postcondition x=2 ∨ x=x₀ +2 .

• We can fix this by changing the thread 2 postcondition to x=0 ∨ x=2 ∨ x=x₀ +2 .

• If thread 2 runs first, it interferes with thread 1’s x=0.

• We could make the first thread { T } x := 0 { x=0 ∨ x=2 }, which reflects the possibility that
x := 0 runs and then x := x+2 runs.

• But thread 2’s x := x+2 interferes with x=0 ∨ x=2. Adding x = 4 to get x=0 ∨ x=2 ∨ x =4 doesn't
solve the problem because now x := x+2 interferes with that. Adding a disjunct x =6 leads to
adding x =8, ad infinitum.

• Even worse,, adding x=4 or 6 or 8 … doesn't reflect the reality of what the program does: Ei-
ther x=x₀ or 0 or x₀ +2 or 2. It should never be 4 (unless x₀ = 2).

[2023-04-21] end new version

• The problem here is that we don’t know which case ran first: If thread 1 runs first then we have
x=x₀ and then x=0 and then thread 2 sets x=2. If thread 2 runs first then we have x=x₀ and then
x=x₀ +2 and then x=0. We can solve this problem by adding a new boolean variable inc that
tells us whether or not the x := x+2 increment has been done.

• { T } inc := F ; [x := 0 || < x := x+2 ; inc := T >] { x=0 ∨ x=2 }

• First, let's look at how adding inc lets us prove correctness, then we'll look at (and eliminate) the
inefficiency caused by adding a new (what we'll eventually call an auxiliary) variable.

• The increment of x and setting of inc are done together atomically so we don't have to worry
about x := 0 being done between them. Since inc will be removed from the program, there's
no actual increase in granularity of atomicity.

 That's especially true here, since the program in fact works correctly.‡

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20237

CS 536: Science of Programming	 Wed 2023-04-21, 13:20	̀ Class 25

• The annotation of the first thread, is key: { T } x := 0 { x=0 ∨ (inc ∧ x=2) }. The postcondition
can't just be x=0, since that's interfered with by thread 2. If thread 2 runs, however, it sees
x=0 and sets x=2 and inc to true, so we can make that a second disjunct of the postcondition.

• For the second thread, { ¬ inc } < x := x+2 ; inc := T > { inc } is all we need. The important
information about the value of x is held in the conditions of thread 1. We could add infor-
mation to the conditions of the second thread, but it just makes for more complicated inter-
ference-freedom checks.

• Here is a full annotation for our program, with inc added

{ T } inc := F { T ∧ ¬ inc } ; 
[{ T } x := 0 { x=0 ∨ (inc ∧ x=2) }  
|| { ¬ inc } < x := x+2 ; inc := T > { inc }  
]  
{ (x=0 ∨ (inc ∧ x=2)) ∧ inc }  
{ x=0 ∨ x=2 }

• Adding inc lets us know whether or not the increment of x has occurred. There's a symmetric
alternative, which is to use a variable that tells us whether or not x := 0 has executed; let's call it
z (short for zeroed). To avoid interference, we need to make z := T atomic with x := 0 so that
thread2 can never observe x=0 ∧ ¬ z.

{ T } z := F ; { ¬ z ∧ (z→ x=0) }  
[{ ¬ z } < x := 0 ; z := T > { z }  
|| { z→ x=0 } x := x+2 { z→ x=0 ∨ x=2 }  
]  
{ z ∧ (z→ x=0 ∨ x=2) }  
{ x=0 ∨ x=2 }

Once again, we don't need to include all the variables in all the conditions. The post-
condition of thread 1 doesn't need to mention x because all the relevant information is
contained in the postcondition of thread 2. Sequential correctness of the threads is
easy to verify, as is interference freedom: Thread 1's < x := 0 ; z := T > doesn't interfere
with z→ x=0 or with z→ x=0 ∨ x=2, and thread 2 doesn’t modify z, so it can't interfere
with z.

Auxiliary Variables

• Whether we add inc or z, the resulting program works correctly, but we've also added to its
computation, which doesn't seem efficient. On the other hand, assignments to x don't rely on
inc or z: We don't have x := … expression involving inc or z …, so for purposes of calculating x,
the actual value of inc or z in memory isn't relevant. When we look at auxiliary variables in
the next class, we'll see that the code involving inc or z can be removed without affecting the

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20238

CS 536: Science of Programming	 Wed 2023-04-21, 13:20	̀ Class 25

overall correctness of the program. This will get us back to the program and annotation we
wanted,

{ T } [x := 0 || x := x+2] { x=0 ∨ x=2 }

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20239

