
CS 536: Science of Programming Sat 2023-04-15, 20:00 Class 24

Disjoint Conditions
CS 536: Science of Programming, Spring 2023

 

A. Why?

• Combining arbitrary threads are in parallel can yield programs that have surprisingly different
results from how each thread works when run sequentially.

• When threads don't interfere with each other's work, we can combine them into a parallel pro-
gram without worrying about these strange and unexpected kinds of behavior.

• Simply having disjoint parallel programs for threads isn't sufficient to avoid interference prob-
lems.

• What's needed are disjoint conditions, which ensure that no thread can interfere with the con-
ditions of another thread.

B. Objectives
After this class, you should know

• What disjoint conditions are, why we need them, and how to recognize them.

• What the disjoint parallelism rule for disjoint parallel programs with disjoint conditions allows.

• That maybe not all apparent interference actually causes problems.

C. Parallelism Rule for Parallel Programs?

• The sequentialization proof rule for DPPs lets us reason about DPPs, which is nice, but it has
two major flaws.

• First, It requires disjoint parallel programs, and we know disjoint parallelism is a strong con-
straint on what programs we can write.

• Second, to use it sequentialization, we need many intermediate conditions. To prove { p } [S₁
|| … || Sn] { q }, we need to prove { p } S₁ ; … ; S n { q }, which (if we use wp) means finding a se-
quence of preconditions q₁ , …, q n and proving { p } { q n } S₁ ; { q n -1} S₂ ; { q n -2} … { q₁ } S n { q }.

The proofs of q₁ , q₂ , … q n can get increasingly complicated because each qi can depend on all
the threads and conditions to its right.

• Parallelism Rule: Ideally, we’d like to take advantage not only of parallel execution of pro-
grams but also parallel writing of programs. Can we have n programmers write n sequential
threads and then combine them into a parallel program? This behavior describes a parallelism
rule. For two threads, the form would be as follows (it generalizes to n threads).

CS Dept., Illinois Institute of Technology – – © James Sasaki, 2023 1

CS 536: Science of Programming Sat 2023-04-15, 20:00 Class 24

1. { p₁ } S₁ { q₁ }
2. { p₂ } S₂ { q₂ }
3. { p₁ ∧ p₂ } [S₁ || S₂] { q₁ ∧ q₂ } by (some kind of) parallelism 1, 2

In proof outline format, we write this as { p₁ ∧ p₂ } [{ p₁ } S₁ { q₁ } || { p₂ } S₂ { q₂ }] { q₁ ∧ q₂ }.

• Example 1: In proof format, we write

1. { x ≥ 0 } z := x { z ≥ 0 }
2. { y ≤ 0 } w := – y { w ≥ 0 }
3. { x ≥ 0 ∧ y ≤ 0 } [z := x || w := – y] { z ≥ 0 ∧w ≥ 0 } by ??? parallelism 1, 2

The proof outline form is

{ x ≥ 0 ∧ y ≤ 0 }
[{ x ≥ 0 } z := x { z ≥ 0 }
|| { y ≤ 0 } w := – y { w ≥ 0 }
] { z ≥ 0 ∧w ≥ 0 }

• It's nice when this pattern works, but we'll see examples where the pattern produces incorrect
programs. To get correctness, we have to impose side conditions that limit how we can combine
threads. Altogether, we'll look at a couple of different kinds of side conditions, which work in
different situations.

• Example 2: Here are some outlines where using a parallelism rule works. Outlines (b) and (c)
use postcondition weakening to get a final postcondition.

a. { x ≥ 0 ∧ y ≤ 0 } [{ x ≥ 0 } z := x { z ≥ 0 } || { y ≤ 0 } w := – y { w ≥ 0 }] { z ≥ 0 ∧w ≥ 0 }

b. { z = 0 } [{ z = 0 } x := z – 1 { x ≤ z = 0 } || { z = 0 } y := z { y = z = 0 }] { x ≤ z = 0 ∧ y = z = 0 }
{ x ≤ y = z = 0 }

c. { T } [{ T } a := x + 1 { a = x + 1 } || { T } b := x + 2 { b = x + 2 }] { a = x + 1 ∧ b = x + 2 } { a + 1 = b }

d. { x = y = z = c }
[{ x = c } x := x² { x = c² }
|| { y = c } y := y² { y = c² }
|| { z = c } z := (z – d) * (z + d) { z = c² – d² }
]
{ x = c² ∧ y = c² ∧ z = c² – d² }
{ x = y = z + d² }

e.

• Example 3: Here are some outlines where using a parallelism rule fails. Outline (a) is incorrect
because it wants to end with x = 1 ∧ x = y = 0 Outline (b) doesn't always leave x > y (e.g., if we
start with x = y = 2) . Outline (c) never works.

a. { x = 0 } [{ x = 0 } x := 1 { x = 1 } || { x = 0 } y := 0 { x = y = 0 }] { x = 1 ∧ x = y = 0 }

CS Dept., Illinois Institute of Technology – – © James Sasaki, 2023 2

CS 536: Science of Programming Sat 2023-04-15, 20:00 Class 24

b. { x ≥ y ∧ y = z } [{ x ≥ y } x := x + 1 { x > y } || { y = z } y := y * 2 ; z := z * 2 { y = z }] { x > y ∧ y = z }

c. { T } [{ T } [x := 2 + 2 { x = 2 + 2 } || { T } x := 5 { x = 5 }] { x = 2 + 2 ∧ x = 5 } { 2 + 2 = 5 }

D. Disjoint Conditions

• Why do the proof outlines in Example 3 fail? Since outline (c) should fail because the seman-
tics don't support it. But outlines (a) and (b) fail even though they have disjoint parallel pro-
grams.

• Looking more closely, we see outline (a) fails because thread 1 sets x to 1, which invalidates the
precondition x = 0 needed by thread 2. Similarly, outline (b) fails because thread 2 modifies y ,
which might invalidate the x ≥ y and x > y pre- and postconditions in thread1.

• It's not enough for outlines (a) and (b) to have disjoint parallel programs. I.e., it's not enough to
guarantee that threads don't change each others' states. For correctness, we need each thread to
not modify the variables that appear in the conditions of other threads.

• Definition: Free (p , …, q) is the set of variables that appear free in any of the predicates p, …, q.
(Recall that a variable can have both free and bound occurrences, “bound” meaning “in the
scope of a quantifier” for it. If a variable has at least one free occurrence in a predicate, then it
is free in that predicate, regardless of whether or not there are bound occurrences.)

• Definition: With { p₁ } S₁ { q₁ } and { p₂ } S₂ { q₂ }, the first triple interferes with the conditions
of the second triple if Change (S₁) ∩ Free (p₂ , q₂) ≠∅. We may use disjoint from the condi-
tions as a synonym for “not interfering with.” The two triples have disjoint conditions if nei-
ther interferes with the conditions of the other. (I.e., Change (S₁) ∩ Free (p₂ , q₂) =∅ and
Change (S₂) ∩ Free (p₁ , q₁) =∅.)

• Definition: A parallel program outline { p } [{ p₁ } S₁ { q₁ } || … || { pn } Sn { qn }] { q } has disjoint
conditions if its threads have pairwise disjoint conditions. I.e., threads i and j have disjoint
conditions, for all indexes i and j (with i ≠ j).

• Example 4: All of the outlines in Example 2 have pairwise disjoint programs and conditions. To
show this, we can add a Disjoint Conditions column to the table we used for checking for dis-
joint programs. (Note that not all the sequential thread outlines are full outlines.) [Note: In the
table below, I don't think it makes any difference if you write (e.g.) w y or w, y or { w , y } .]

a. { x ≥ 0 ∧ y ≤ 0 } [{ x ≥ 0 } z := x { z ≥ 0 } || { y ≤ 0 } w := – y { w ≥ 0 }] { z ≥ 0 ∧w ≥ 0 }

i j Change i Vars j Free j Disj Pgm Disj Cond

1 2 z w y w y Y Y

2 1 w x z x z Y Y

CS Dept., Illinois Institute of Technology – – © James Sasaki, 2023 3

CS 536: Science of Programming Sat 2023-04-15, 20:00 Class 24

b. { z = 0 } [{ z = 0 } x := z + 1 { x ≤ z = 0 } || { z = 0 } y := z { y = z = 0 }] { x ≤ z = 0 ∧ y = z = 0 }
{ x ≤ y = z = 0 }

c. { T } [{ T } a := x + 1 { a = x + 1 } || { T } b := x + 2 { b = x + 2 }] { a = x + 1 ∧ b = x + 2 } { a + 1 = b }

d. { x = y = z = c }
[{ x = c } x := x² { x = c² }
|| { y = c } y := y² { y = c² }
|| { z = c } z := (z – d) * (z + d) { z = c² – d² }
] { x = c² ∧ y = c² ∧ z = c² – d² }
{ x = y = z + d² }

• Example 5: All of the outlines in Example 4 lack pairwise disjoint conditions. Outlines (a) and
(b) have disjoint programs but outline (c) does not.

i j Change i Vars j Free j Disj Pgm Disj Cond

1 2 x y z y z Y Y

2 1 y x z x z Y Y

i j Change i Vars j Free j Disj Pgm Disj Cond

1 2 a b x b x Y Y

2 1 b a x a x Y Y

i j Change i Vars j Free j Disj Pgm Disj Cond

1 2 x y c y Y Y

1 3 x d z c d z Y Y

2 1 y x c x Y Y

2 3 y d z c d z Y Y

3 1 z x c x Y Y

3 2 z y c y Y Y

CS Dept., Illinois Institute of Technology – – © James Sasaki, 2023 4

CS 536: Science of Programming Sat 2023-04-15, 20:00 Class 24

a. { x = 0 } [{ x = 0 } x := 1 { x = 1 } || { x = 0 } y := 0 { x = y }] { x = 1 ∧ x = y }

b. { x ≤ y ∧ y = z } [{ x ≤ y } x := x – 1 { x < y } || { y = z } y := y * 2 ; z := z * 2 { y = z }] { x < y ∧ y = z }

c. { T } [{ T } x := 2 + 2 { x = 2 + 2 } || { T } x := 5 { x = 5 }] { x = 2 + 2 ∧ x = 5 } { 2 + 2 = 5 }

E. Disjoint Conditions; Disjoint Parallelism Rule

• If two outlines have disjoint programs and conditions, then their evaluations can be arbitrarily
interleaved without fear. Having disjoint programs guarantees that no thread modifies the
parts of the state used by the calculations of other threads. Having disjoint conditions guaran-
tees that no thread modifies the parts of the state used to determine satisfaction of other
threads' conditions.

• Because of this lack of runtime interference, we can use a a parallelism rule for disjoint parallel
programs with disjoint conditions. The rule has the form of a parallelism rule (the parallel pro-
gram uses the conjunctions of its threads' preconditions and postconditions as its precondition
and postcondition). Having disjoint programs and conditions is the side condition that guaran-
tees correctness of the rule.

i j Change i Vars j Free j Disj Pgm Disj Cond

1 2 x y x y Y N

2 1 y x x Y Y

i j Change i Vars j Free j Disj Pgm Disj Cond

1 2 x y z y z Y Y

2 1 y z x x y Y N

i j Change i Vars j Free j Disj Pgm Disj Cond

1 2 x x x N N

2 1 x x x N N

CS Dept., Illinois Institute of Technology – – © James Sasaki, 2023 5

CS 536: Science of Programming Sat 2023-04-15, 20:00 Class 24

DisjointParallelism Rule

1 . { p₁ } S₁ { q₁ }
2 . { p₂ } S₂ { q₂ }

…

n { pn } S n { q n }
n + 1 { p₁ ∧ p₂ ∧… ∧ pn } [S₁ || … || Sn] { q₁ ∧ q₂ ∧… ∧ qn } Disjoint Parallelism, 1, 2, …,
n
where threads 1, 2, …, n are pairwise disjoint programs with pairwise disjoint condi-
tions

• A reminder: The pairwise tests check thread i for interference with thread j, for all
i , j∈ { 1 , 2 , … , n } where i ≠ j.

Example 6: The outlines from Example 2 all have disjoint programs and conditions, so all of them
can be proved using the disjoint parallelism rule. The presentations in Example 2 illustrate the
uses of the rule. Just to be different, we can write them in nonlinear form. The comments
marked * indicate parts of outline that are partial but not full. E.g., { y ≤ 0 } w := – y { w ≥ 0 } is not a
full outline; { y ≤ 0 } w := – y { y ≤ 0 ∧w = – y } { w ≥ 0 } is; so is { y ≤ 0 } { – y ≥ 0 } w := – y { w ≥ 0 }.

a. { x ≥ 0 ∧ y ≤ 0 }
[{ x ≥ 0 } z := x { z ≥ 0 }
|| { y ≤ 0 } w := – y { w ≥ 0 }] (*) (Not a full outline for the sequential thread)
{ z ≥ 0 ∧w ≥ 0 }

b. { z = 0 } //I.e., z = 0 ∧ z = 0
[{ z = 0 } x := z – 1 { x ≤ z = 0 } (*)
|| { z = 0 } y := z { y = z = 0 }]
{ x ≤ z = 0 ∧ y = z = 0 }
{ x ≤ y = z = 0 }

c. { T }
[{ T } a := x + 1 { a = x + 1 }
|| { T } b := x + 2 { b = x + 2 }]
{ a = x + 1 ∧ b = x + 2 }
{ a + 1 = b }

CS Dept., Illinois Institute of Technology – – © James Sasaki, 2023 6

CS 536: Science of Programming Sat 2023-04-15, 20:00 Class 24

d. { x = y = z = c }
{ x = c ∧ y = c ∧ z = c }
[{ x = c } x := x² { x = c² } (*)
|| { y = c } y := y² { y = c² } (*)
|| { z = c } z := (z – d) * (z + d) { z = c² – d² } (*)
]
{ x = c² ∧ y = c² ∧ z = c² – d² }
{ x = y = z + d² }

F. Removing Interference of Conditions

• Sometimes, interference with conditions can be removed by adding logical variables.

Example 7: All of the outlines from Example 3 have interfering conditions, but we can remove the
interference for outlines (a) and (b). Since (c) doesn't have disjoint programs, modifying its con-
ditions won't help.

a. Original: { x = 0 } [{ x = 0 } x := 1 { x = 1 } || { x = 0 } y := 0 { x = y }] { x = 1 ∧ x = y }.
The interference is that thread 1 setting x to 1 interferes with the x in x = y in thread2.
Said the other way, the x in x = y refers to the value of x before x := 1. Introducing a logical
variable for the initial value of x takes care of that. We also have to change the final post-
condition to get one that's true.

Without interference: (note the outline for thread 2 is not full).
 { x = x₀ ∧ x = 0 }
 [{ x = x₀ ∧ x = 0 } x := 1 { x = 1 ∧ x₀ = 0 }
 || { x = x₀ ∧ x = 0 } y := 0 { x₀ = y }]
 { x = 1 ∧ x – 1 = y }

b. Original:
{ x ≤ y ∧ y = z } [{ x ≤ y } x := x – 1 { x < y } || { y = z } y := y * 2 ; z := z * 2 { y = z }] { x < y ∧ y = z }.
The interference is y := y * 2 in thread 2 versus x ≤ y and x < y in thread 1. Again, introduc-
ing logical variables helps.

CS Dept., Illinois Institute of Technology – – © James Sasaki, 2023 7

CS 536: Science of Programming Sat 2023-04-15, 20:00 Class 24

Without interference:
 { x = x₀ ∧ y = y₀ ∧ z = z₀ ∧ x ≤ y ∧ y = z }
 [{ x = x₀ ∧ x ≤ y₀ }
 x := x – 1
 { x₀ ≤ y₀ ∧ x = x₀ – 1 }
 || { y = y₀ ∧ z = z₀ ∧ y = z }
 y := y * 2 ; z := z * 2
 { y₀ = z₀ ∧ y = y₀ * 2 ∧ z = z₀ * 2 }
]
 { (x₀ ≤ y₀ ∧ x = x₀ – 1) ∧ (y₀ = z₀ ∧ y = y₀ * 2 ∧ z = z₀ * 2) }
 { x < y ÷ 2 ∧ y = z }

• For another example of removing interference, let's look at a modified version of Example 6.d
where we have the initial precondition x = y = z = c but no annotation for the sequential threads.
In that case, it would be natural to use x = y = z = c as the precondition for all three threads:

{ x = y = z = c } (partial outline)
[{ x = y = z = c } x := x² { x = c² ∧ y = z = c }
|| { x = y = z = c } y := y ² { y = c² ∧ x = z = c }
|| { x = y = z = c } z := (z – d) * (z + d) { z = c² – d² ∧ x = y = c }
]
{ x = c² ∧ y = z = c ∧ y = c² ∧ x = z = c ∧ z = c² – d² ∧ x = y = c }
{ x = y = z + d² }

• But this has interference all over the place. E.g., x := x² interferes with all the conditions x = … in
the other threads, and similarly for the assignments to y and z.

• A possible fix that works very well for this example is to look at the sequential annotations and
drop everything that isn't directly related to the sequential thread's programs. E.g., with
{ x = y = z = c } x := x² { x = c² ∧ y = z = c }, we need x and c but not y or z. Removing y and z gives us
{ x = c } x := x² { x = c² }. Similarly, we can remove x and z from the thread for y := y² and then x
and y from the thread for z := (z – d) * (z + d). The result is exactly Example 6.d:

{ x = y = z = c } (partial outline)
[{ x = c } x := x² { x = c² }
|| { y = c } y := y² { y = c² }
|| { z = c } z := (z – d) * (z + d) { z = c² – d² }
]
{ x = c² ∧ y = c² ∧ z = c² – d² }
{ x = y = z + d² }

• Another analysis that adds x₀ , y₀ , and z₀ turns { x = y = z = c } x := x² { x = c² ∧ y = z = c } into
{ x = x₀ ∧ x = c } x := x² { x₀ = c ∧ x = x₀ ² } and similarly for y and z:

CS Dept., Illinois Institute of Technology – – © James Sasaki, 2023 8

CS 536: Science of Programming Sat 2023-04-15, 20:00 Class 24

{ x = y = z = c } (partial outline)
[{ x = x₀ ∧ x = c } x := x² { x₀ = c ∧ x = x₀ ² }
|| { y = y₀ ∧ y = c } y := y² { y₀ = c ∧ y = x₀ ² }
|| { z = z₀ ∧ z = c } z := (z – d) * (z + d) { z₀ = c ∧ z = z₀ ² – d² }
]
{ x₀ = c ∧ x = x₀ ² ∧ y₀ = c ∧ y = x₀ ² ∧ z₀ = c ∧ z = z₀ ² – d² }
{ x = c² ∧ y = c² ∧ z = c² – d² }
{ x = y = z + d² }

G. Not All Changes are Interference

• We'll look into this in more detail next class, but can we loosen the requirement of disjoint
conditions? (After all, requiring disjoint threads already disallows too many programs we
want to write.)

• The basic observation is that often we can change the values of variables without changing
whether a condition is satisfied or not. E.g., the condition x > 0 isn't invalidated by setting
x := 1 or x := x + 1 (or x := x, for that matter).

• Say a thread includes a condition p (either as a precondition or postcondition; it doesn't mat-
ter), and a different thread is about to execute { q₁ } x := e { q₂ }. Surprisingly, q₂ isn't impor-
tant; what is important is that executing x := e only causes harm if it makes p false. More pre-
cisely, if p and q₁ hold and we execute x := e, we don't have interference if p is still satisfied
after the assignment.

• As long as { p ∧ q₁ } x := e { p } is valid, we know that whatever change x := e causes, it won't dis-
turb execution of the other thread, at least as far as p holding.

• More generally, with p and { q₁ } S₁ { … } (we don't care about the postcondition of S₁), we're
free of interference if { p ∧ q₁ } S₁ { p } is valid.

• We can build on this observation to get a notion of interference-freedom that works as a side
condition for a nicer parallelism rule. It's not trivial because a thread has multiple statements
that we have to check against multiple conditions in the other thread. But we can reduce the
burden by looking more carefully at exactly what statements we need to check for interfer-
ence.

• E.g., x₁ : = e₁ ; x₂ : = e₂ ; x₃ : = e₃ comprises 5 statements (three assignments and two sequences).
We'll have the check the assignments, of course, but do we need to check the two sequences?
As it turns out, no, we don't.

CS Dept., Illinois Institute of Technology – – © James Sasaki, 2023 9

