
CS 536: Science of Programming Sun 2023-04-09, 21:31 Class 23

  Disjoint Programs

  CS 536: Science of Programming, Spring 2023

A. Why?

• Parallel programs are harder to reason about because parts of a parallel program can interfere
with other parts.

• Reducing the amount of interference between threads lets us reason about parallel programs by
combining the proofs of the individual threads.

• Disjoint parallel programs ensure that no thread can interfere with the execution of another
thread.

• The sequentialization rule (though imperfect) gives us a way to prove the correctness of disjoint
parallel programs.

B. Objectives
After this class, you should know

• What distinguishes disjoint parallel programs

• The sequentialization rule for disjoint parallel programs

C. Disjoint Parallel Programs

• The following example shows a program with an innocuous kind of parallelism: no matter what
order we execute the threads in, we end up in the same final state.

• Example 1: Here is the the evaluation graph for ⟨ [x : = a + 1 || y : = a * 2] , σ ⟩ where β = σ (a).
The final state is σ[x ↦ β + 1] [y ↦ 2 β] if we take the left-hand path and σ [y ↦ 2 β] [x ↦ β + 1] if
we take the right-hand path, but since x ≢ y, these two states are exactly the same, so we show
two arrows going to the final state configuration.

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20231

⟨ [x : = a + 1 || y : = a * 2] , σ ⟩

⟨ [E || y : = a * 2] , σ [x ↦ β + 1] ⟩ ⟨ [x : = a + 1 || E] , σ [y ↦ 2 β] ⟩

⟨ [E || E] , τ ⟩
 where τ = σ [y ↦ 2 β] [x ↦ β + 1] and β = σ (x)

CS 536: Science of Programming Sun 2023-04-09, 21:31 Class 23

 Disjoint Parallel Programs (DPPs) model computations with n processors that share readable
memory but not writable memory. In a disjoint parallel program, for every variable x that
appears in the program, either

• One or more threads reads x (i.e., look up its value) and no thread writes to x (i.e., assigns it
a value).

• Exactly one thread writes to x and that thread can read x; no other thread can read or
write x.

• Definition: vars (S) is the set of variables that appear in S and change (S) is the set of variables
that appear on the left-hand side of assignments in S. Since these sets are statically calculable,
they are ⊇ the sets of variables actually read or written at runtime. Another way to say this is
that execution order isn’t taken into account. E.g., If S ≡ if B then x : = 1 else y : = 1 fi then
change (S) = { x , y }.

• Definition: The threads S₁ , S₂ , …, Sn are pairwise disjoint if no thread can change the
variables used by any other: I.e., change (S i) ∩ vars (Sj) =∅ for all 1 ≤ i ≠ j ≤ n.

• Example 2: S₁ ≡ a : = a + x and S₂ ≡ y : = y + x are disjoint: change (S₁) = { a } and
vars (S₂) = { x , y } and these sets don’t intersect. Similarly, change (S₂) = { y } and
vars (S₁) = { a , x } and those sets don’t intersect.

• Definition: For n > 1 , if S₁ , S₂ , …, Sn are pairwise disjoint, then [S₁ || …|| Sn] is their disjoint
parallel composition. We also say [S₁ || … || Sn] is a disjoint parallel program (DPP).

• Example 3:

• a : = a + x and y : = y + x are disjoint, so [a : = a + x || y : = y + x] is a DPP.

• a : = x + 1 and y : = x + 2 are disjoint, so [a : = x + 1 || y : = x + 2] is a DPP.

• a : = x and x : = c are not disjoint so [a : = x || x : = c] isn’t a DPP.

• a : = x and x : = x + 1 are not disjoint so [a : = x || x : = x + 1] isn’t a DPP.

• x : = a + 1 and x : = b * 2 are not disjoint so [x : = a + 1 || x : = b * 2] isn’t a DPP.

• An easy way to calculate whether or not programs are pairwise disjoint is to use a table listing
the change (Sj) and vars (Sk) sets for each pair of pair of threads.

• Definitions

• Thread Sj (apparently) interferes with thread Sk if change (Sj) ∩ vars (Sk) ≠∅.

• Thread Sj is disjoint with thread Sk if change (Sj) ∩ vars (Sk) =∅.

• Threads Sj and Sk are disjoint if they are disjoint with each other (Sj with Sk and Sk
with Sj).

• A collection of threads is pairwise disjoint if each pair of two different threads is disjoint.
Note for a collection of n threads, there are n * (n - 1) such pairs.

• For convenience and flexibility, we'll often omit the “apparently” in “apparently interferes with”
and we'll allow phrases like “doesn't interfere with” and “isn't disjoint with” as synonyms or “is
disjoint with” and “(apparently) interferes with”. Similarly, “can/can't change the variables of”
means “interferes with/is disjoint with”.

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20232

CS 536: Science of Programming Sun 2023-04-09, 21:31 Class 23

• Example 4: Here is a table for a : = a + x and y : = y + x, showing that they are pairwise disjoint:

Conclusion: The two programs are pairwise disjoint.

• Example 5: Here's a table for and a : = x and x : = c showing that while the first doesn't interfere
with the second, the second does interfere with the first, which makes the pair not disjoint.

  Conclusion: The two programs are not pairwise disjoint.

• Example 6: Here's a table showing the interference relationships for the three threads

• a : = v ; v : = c + b

• if b > 0 then b : = c * b else c : = c * 2 fi

• while d ≥ 0 do d : = d ÷ 2 – c od

 

  Conclusion: Thread 2 interferes with threads 1 and 3; the other combinations are disjoint

j k Change j Vars k j Disjoint with k

1 2 a x y yes

2 1 y a x yes

j k Change j Vars k j Disjoint with k

1 2 a c x yes

2 1 x a x no

j k Change j Vars k j Disjoint with k

1 2 a v b c yes

1 3 a v c d yes

2 1 b c a b c v no

2 3 b c c d no

3 1 d a b c v yes

3 2 d b c yes

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20233

CS 536: Science of Programming Sun 2023-04-09, 21:31 Class 23

• Example 7: This example is similar to Example 6 but only causes interference in one arm of the
conditional.

• a : = v

• if b̀ ≤ 0 then v : = c + b else v : = b * 2 fi

• while d ≥ 0 do d : = d ÷ 2 – c od

  Conclusion: Thread 2 interferes with thread 3; the other combinations are disjoint

• Disjointedness Test Can Overestimate Amount of Interference: The disjointedness test is a
static (compile-time) that aims for safety over accuracy when it comes to looking for
interference. Not all the variables in change (…) and vars (…) are necessarily used at runtime.
The tests for if B then S₁ else S₂ fi use the union of the variables for S₁ and for S₂, so a variable
that is appears only in one branch of the if-fi is counted regardless of B or the runtime state.

• Passing a disjointedness test of thread j against thread k guarantees that interference cannot
happen, no matter what the starting state is, and no matter what execution path gets taken.

• Failing a disjointedness test simply says we can't guarantee that thread j interferes with
thread k. Without knowing more about the threads and the starting state, we can't say anything
about whether interference in fact doesn't occur, or occurs only with some start states, or only
along some execution paths. Failing a test certainly does not guarantee that interference is
inevitable at runtime.

D. The Diamond Property; Confluence

• The parallelism in DPPs is innocuous because different threads don't interfere with each other's
execution: If one thread modifies a variable, that modification can’t be overwritten by any other
thread. Also, since the modified variable can’t even be inspected by other threads, we know the
modification won’t affect how the other threads execute. This “disjointedness” causes all the
evaluation paths to end in the same configuration.

• In general, with [S₁ || S₂] , we can execute S₁ or S₂ for one step. In an evaluation graph, the
current evaluation path splits into two paths. With parallel programs in general, there might be

j k Change j Vars k j Disjoint with k

1 2 a b c v yes

1 3 a c d yes

2 1 b v a v no

2 3 b v c d yes

3 1 d a v yes

3 2 d b c v yes

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20234

CS 536: Science of Programming Sun 2023-04-09, 21:31 Class 23

no way for those two paths to eventually merge back together into one path, but DPP's are
different.

• Let [S₁ || S₂] be a DPP. If ⟨ S₁ , σ ⟩→⟨ T₁ , σ₁ ⟩ and ⟨ S₂ ,σ ⟩→⟨ T₂ , σ₂ ⟩ then there is a state τ such
that ⟨ [T₁ || S₂] ,σ₁ ⟩ and ⟨ [S₁ || T₂] , σ₂ ⟩ both →⟨ [T₁ || T₂] , τ ⟩. (Note: the same τ.)

• This is called the diamond property because people often draw it as in the diagram shown
below. The claim is that if the solid arrows exist then the dashed arrows will exist.

 

• The diamond property holds because the threads are disjoint so that it doesn’t matter which
thread you execute first: Any change in state caused by S₁ will be the same whether or not you
execute part of S₂ (and vice-versa).

• The diamond property is actually stronger than what we discussed earlier, where an execution
path splits and then eventually can merge back together. This weaker property is called
confluence (or Church-Rosser, after two investigators of the lambda calculus), where the one-
step arrows are replaced by zero-or-more-step arrows (→ becomes →*). The diamond property
is stronger because it implies confluence, but the converse is not true.

• Basically, a computation system in general (not just parallel programs) is confluent if execution
doesn't have side effects. Everyday arithmetic expressions are confluent; C expressions with
assignment operators are not.

• Because execution of disjoint parallel programs is confluent, if execution terminates, it
terminates in a unique state.

⟨ T₁ , σ₁ ⟩ ⟨ T₂ , σ₂ ⟩

⟨ T, τ ⟩

⟨ S , σ ⟩

* *

* *

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20235

⟨ [T₁ || S₂] , σ₁ ⟩ ⟨ [S₁ || T₂] , σ₂ ⟩

⟨ [T₁ || T₂] , τ⟩

⟨ [S₁ || S₂] , σ ⟩

CS 536: Science of Programming Sun 2023-04-09, 21:31 Class 23

• Theorem (Unique Result of Disjoint Parallel Program): If S is a disjoint parallel program then
either M (S , σ) = { τ } (for some τ∈ Σ), { ⊥d } , or { ⊥e } .

• Proof:If ⟨ S , σ ⟩→* ⟨ E , τ₁ ⟩ and ⟨ S , σ ⟩→* ⟨ E , τ₂ ⟩, then by confluence, there exists some common
⟨ S ′, τ ⟩that both ⟨ E , τ₁ ⟩and ⟨ E , τ₂ ⟩ can →* to. Since no semantics rule take ⟨ E , …⟩→ anything,
the →* relations must both involve zero steps, so S ′ is E and τ = τ₁ = τ₂.

 

E. Sequentialization Proof Rule for Disjoint Parallel Programs

• We’ll have three rules for proving disjoint parallel programs correct: a sequential rule and two
parallel rules. The sequential rule is powerful but burdensome.

• Definition: The sequentialization of the parallel statement [S₁ || …|| Sn] is the sequence
S₁ ; …; Sn . The sequentialized execution of the parallel statement is the execution of its
sequentialization: We evaluate S₁ completely ,then S₂ completely, and so on.

• Since it doesn't matter how we interleave evaluation of pairwise disjoint parallel threads, their
total effect will be the same as if we had evaluated them sequentially.

Sequentialization Rule

• If the sequential threads S₁ , …, Sn are pairwise disjoint, then

1̀. { p } S₁ ; …; Sn { q }
2. { p } [S₁ || …|| Sn] { q } Sequentialization, 1

• Example 4: First, prove { T } a : = x + 1 ; b : = x + 2 { a + 1 = b }:

{ T } a : = x + 1 { a = x + 1 } ; b : = x + 2 { a = x + 1 ∧ b = x + 2 } { a + 1 = b }

• From the sequentialization rule for disjoint parallel programs, it follows that

{ T } [a : = x + 1 || b : = x + 2] { a + 1 = b }

• Example 5: From { x = y } { x + 1 = y + 1 } x : = x + 1 ; { x = y + 1 } y : = y + 1 { x = y }

• We can prove { x = y } x : = x + 1 ; y : = y + 1 { x = y }

• So by the sequentialization rule for disjoint parallel programs,

{ x = y } [x : = x + 1 || y : = y + 1] { x = y }

• Since the order of evaluation the threads doesn't matter for a DPP, we can actually shuffle the
order of the threads in the sequentialized program. E.g., since { p } [S₁ || S₂] { q } and { p } [S₂ ||
S₁] { q } produce the same final state, so do { p } S₁ ; S₂ { q } and { p } S₂ ; S₁ { q }.

⟨ E , τ⟩ where τ = τ₁ = τ₂

⟨ S , σ ⟩

⟨ E , τ₁ ⟩ ⟨ E , τ₂ ⟩

∗∗

0 0

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20236

CS 536: Science of Programming Sun 2023-04-09, 21:31 Class 23

• Example 6: As a concrete example of reordering, take Example 4:

• { T } a : = x + 1 ; b : = x + 2 { a + 1 = b } [before reordering]

• { T } b : = x + 2 ; a : = x + 1 { a + 1 = b } [after reordering]

CS Dept., Illinois Institute of Technology – – © James Sasaki, 20237

