Basics of Parallel Programs

CS 536: Science of Programming, Spring 2023

2023-04-06: pp 3-6

A. Why?

- Parallel programs are more flexible than sequential programs but their execution is more complicated.
- Parallel programs are harder to reason about because parts of a parallel program can interfere with other parts.
- Evaluation graphs can be used to show all possible execution paths for a parallel program.

B. Objectives

After this class, you should know

- The syntax and operational \& denotational semantics of parallel programs.

C. Basic Definitions for Parallel Programs

- Syntax for parallel statements: $S:=[S| | S| | \ldots| | S]$. We say $\left[S_{1}| | S_{2}| | \ldots| | S_{n}\right]$ is the parallel composition of the threads $S_{1}, S_{2}, \ldots, S_{n}$.
- The threads must be sequential: You can't nest parallel programs. (But you can embed parallel programs within otherwise-sequential programs, such as in the body of a loop.)
- Example 1: $\left[x:=x+1| | x:=x * 2 \| y:=x^{2}\right]$ is a parallel program with three threads. Since it tries to nest parallel programs, $\left[x:=x+1| |\left[x:=x * 2| | y:=x^{2}\right]\right]$ is illegal.

Interleaving Execution of Parallel Programs

- We run sequential threads in parallel by interleaving their execution. I.e., we interleave the operational semantics steps for the individual threads.
- We execute one thread for some number of operational steps, then execute another thread, etc.
- Depending on the program and the sequence of interleaving, a program can have more than one final state (or cause an error sometimes but not other times).
- As an example, since evaluation of $[x:=x+1 \| x:=x * 2]$ is done by interleaving the operational semantics steps of the two threads, we can either evaluate $x:=x+1$ and then $x:=x * 2$ or evaluate $x:=x * 2$ and then $x:=x+1$.
- The difference between $[x:=x+1 \| x:=x * 2]$ and if $T \rightarrow x:=x+1 \square T \rightarrow x:=x * 2$ fis is that the nondeterministic if-fi executes only one of the two assignments whereas the parallel composition executes both assignments but in an unpredictable order. The sequential nondeterministic if-fi that simulates the parallel assignments is if $T \rightarrow x:=x+1 ; x:=x * 2 \square T \rightarrow x:=x * 2 ; x:=x+1$
fi. It nondeterministically chooses between the two possible traces of execution for the program. ${ }^{1}$
- Because of the nondeterminism, re-executions of a parallel program can use different orders. For example, two executions of while B do $\left[x:=x+1 \| x:=x^{*} 2\right]$ od can have the same sequence or different sequences of updates to x.

Difficult to Predict Parallel Program Behavior

- The main problem with parallel programs is that their properties can be very different from the behaviors of the individual threads.

- Example 2:

- $\vDash\{x=5\} x:=x+1\{x=6\}$ and $\vDash\{x=5\} x:=x * 2\{x=10\}$
- But $\vDash\{x=5\}[x:=x+1 \| x:=x * 2]\{x=11 \vee x=12\}$
- The problem with reasoning about parallel programs is that different threads can interfere with each other: They can change the state in ways that don't maintain the assumptions used by other threads.
- Full interference is tricky, so we're going to work our way up to it. First we'll look at simple, limited parallel programs that don't interact at all (much less interfere).
- But before that, we need to look at the semantics of parallel programs more closely.

D. Semantics of Parallel Programs

- To execute the sequential composition $S_{1} ; \ldots ; S_{n}$ for one step, we execute S_{1} for one step.
- To execute the parallel composition [$S_{1}\|\ldots\| S_{n}$] for one step, we take one of the threads and evaluate it for one step.

Operational and Denotational Semantics of Parallel Programs

- Definition: Given [$S_{1}\|\ldots\| S_{n}$], for each $k=1,2, \ldots, n$, if $\left\langle S_{k}, \sigma\right\rangle \rightarrow\left\langle T_{k}, \tau_{k}\right\rangle$, then $\left\langle\left[S_{1}\|\ldots\| S_{n}\right], \sigma\right\rangle \rightarrow\left\langle\left[S_{1}\|\ldots\| S_{k-1} \mid T_{k}\left\|S_{k+1}\right\| \ldots \| S_{n}\right], \tau_{k}\right\rangle$
- We write E for sequential thread that has finished execution, so a parallel program that has finished execution is written $[E\|\ldots\| E \| E]$. We'll treat E and $[E\|\ldots\| E \| E]$ as being syntactically equal, i.e., $E \equiv[E\|\ldots\| E \| E]$.

The \rightarrow * Notation

- Notation: The \rightarrow * notation has the same meaning whether the configurations involved have parallel programs or not: \rightarrow^{*} means \rightarrow^{n} for some $n \geq 0$, and $C_{0} \rightarrow^{n} C_{n}$ means we've omitted writing the out intermediate configurations in the sequence $C_{0} \rightarrow C_{1} \rightarrow \ldots \rightarrow C_{n-1} \rightarrow C_{n}$ (for some collection of C.)

[^0]- Common Mistake: Writing $\langle[E \| E], \tau\rangle \rightarrow\langle E, \tau\rangle$ is a common mistake. Since $[E \| E] \equiv E$, going from $\langle[E \| E], \tau\rangle$ to $\langle E, \tau\rangle$ doesn't involve an execution step. But $\langle[E \| E], \tau\rangle \rightarrow^{0}\langle E, \tau\rangle$ is ok because it says that in zero steps, we go from one empty configuration to itself.

Evaluation Graph and Denotational Semantics

- Recall that the evaluation graph for $\langle S, \sigma\rangle$ is the directed graph of configurations and evaluation arrows leading from $\langle S, \sigma\rangle$.
- When drawing evaluation graphs, the configuration nodes need to be different.
- (I.e., if the same configuration appears more than once, show multiple arrows into it - don't repeat the same node.)
- An evaluation graph shows all possible executions.
- A program with n threads will have n out-arrows from its configuration.
- (Exception: Evaluation graphs are not multigraphs: If two arrows go to exactly the same configuration, we write the configuration just once and write exactly one arrow to it.)
- A path through the graph corresponds to one possible evaluation of the program.
- The denotational semantics of a program in a state is the set of all possible terminating states (plus possibly the pseudostates \perp_{d} and \perp_{e}). I.e., the states found in the sinks (i.e., at the leaves) of an evaluation graph. (We'll modify this definition when we get to deadlocked programs.)
- $M(S, \sigma)=\left\{\tau \in \sigma \mid\langle S, \sigma\rangle \rightarrow^{*}\langle E, \tau\rangle\right\}$
$\cup\left\{\perp_{d}\right\}$ if S can diverge; i.e., if $\langle S, \sigma\rangle \rightarrow^{*}\left\langle E, \perp_{d}\right\rangle$ is possible [2023-04-06]
$\cup\left\{\perp_{e}\right\}$ if S can produce a runtime error; i.e., $\langle S, \sigma\rangle \rightarrow^{*}\left\langle\mathrm{E}, \perp_{\mathrm{e}}\right\rangle$ is possible. [2023-04-06]
- Example 3: The evaluation graph below is for the same program as in Example 2, but starting with an arbitrary state σ where $\sigma(x)=\alpha$. The graph has two sinks for the two possible final states, so $M([x:=x+1| | x:=x * 2], \sigma)=\{\sigma[x \mapsto 2 \alpha+2], \sigma[x \mapsto 2 \alpha+1]\}$.

Example 3

Example 4

- Example 4: For this example, the evaluation graph is for $\left\langle\left[x:=v\|y:=v+2\| z:=v^{*} 2\right], \sigma\right\rangle$, where $\sigma(v)=\alpha$. $M\left(\left[x:=v\|y:=v+2\| z:=v^{*} 2\right], \sigma\right)=\{\sigma[x \mapsto \alpha][y \mapsto \alpha+2][z \mapsto 2 \alpha]\}$. Note even though the program is nondeterministic, it produces the same result no matter what execution path it uses.
(More generally, if S is parallel, then $M(S, \sigma)$ can have more than 1 member, but the converse is not true: Having $M(S, \sigma)$ of size 1 does not imply that S is nondeterministic.)
- Example 5: If we take the program from Example 4 and combine the last two threads sequentially, then the evaluation graph for the resulting program is a subgraph of the graph from Example 4. Below, $\sigma(v)=6$, and $M([x:=v\|y:=v+2\| z:=v * 2], \sigma)=\{\sigma[x \mapsto 6][y \mapsto 8]$ [z↔12]\}.

Example 5

- Example 6: Let $W \equiv x:=0$; while $x=0$ do $[x:=0 \| x:=1]$ od. Then $M(W, \sigma)=\left\{\sigma[x \mapsto 1], \perp_{d}\right\}$. as shown in the evaluation graph. Note the transitions $\langle[E \| E] ; W, \sigma[x \mapsto \ldots]\rangle$ $\rightarrow^{0}\langle W, \sigma[x \mapsto \ldots]\rangle$ take 0 steps because $[E \| E] ; W \equiv E ; W \equiv W$; that is, they're all the same program, textually.
- The problem in this example is that there is possible divergence.
- On the other hand, it only happens if we always choose thread 1 when we have to make the nondeterministic choice of $[x:=0 \| x:=1]$.
- This is definitely unfair behavior, but it's allowed because of the unpredictability of our nondeterministic choices. In real life, we would want a fairness mechanism to ensure that all threads get to evaluate once in a while.
- If each thread is on a separate processor, then the nondeterministic choice corresponds to which processor is fastest, so the possible divergence of the program is a race condition, where the correct behavior of a program depends on the relative speed of the processors involved. Here, divergence occurs if the processor for $\mathrm{x}:=1$ is always faster than the processor for $\mathrm{x}:=0$. [2023-04-06]
- Note that it's not necessarily a race condition to have a parallel program producing different results when run multiple times. As long as all results satisfy the specification, there's no race condition.

Example 6

- Example 7: The correctness triple $\{T\}[x:=0 \| x:=1]\{x \geq 0\}$ does not have a race condition, but $\{T\}[x:=0 \| x:=1]\{x>0\}$ does. [2023-04-06] The program terminates with $x=0$ or 1 . With postcondition $x \geq 0$, both states are correct even though they're different. But with postcondition $x>0$, the relative speed of the threads means we may or may not produce a correct result.

[^0]: ${ }^{1}$ This trick doesn't scale up well to larger programs, but it helps with initially understanding parallel execution.

