CS 536: Science of Programming Class 22

Basics of Parallel Programs

CS 536: Science of Programming, Spring 2023
2023-04-06: pp 3-6

A. Why?
« Parallel programs are more flexible than sequential programs but their execution is more com-
plicated.

« Parallel programs are harder to reason about because parts of a parallel program can interfere
with other parts.

« Evaluation graphs can be used to show all possible execution paths for a parallel program.

B. Objectives

After this class, you should know

« The syntax and operational & denotational semantics of parallel programs.

C. Basic Definitions for Parallel Programs

« Syntax for parallel statements: S := [S || S || ... || S]. Wesay[S:1 || Sz || --- || Sn] is the parallel
composition of the threads S, S,, ..., S,.
« The threads must be sequential: You can’t nest parallel programs. (But you can embed par-
allel programs within otherwise-sequential programs, such as in the body of a loop.)
o Example 1: [x:=x+1 || x:=x*2 || y:=x2] is a parallel program with three threads. Since it
tries to nest parallel programs, [x:=x+1 || [x:=x*2 || y:=x2]] is illegal.

Interleaving Execution of Parallel Programs

« We run sequential threads in parallel by interleaving their execution. Le., we interleave the
operational semantics steps for the individual threads.

+ We execute one thread for some number of operational steps, then execute another thread, etc.

» Depending on the program and the sequence of interleaving, a program can have more than
one final state (or cause an error sometimes but not other times).

» As an example, since evaluation of [x:=x+1 || x:=x *2] is done by interleaving the operational
semantics steps of the two threads, we can either evaluate x:=x + 1 and then x:=x *2 or evalu-
ate x:=x*2 and then x:=x+1.

+ The difference between [x:=x+1 || x:=x*2] andif T=x:=x+10 T— x:=x *2 fiis that the
nondeterministic if-fi executes only one of the two assignments whereas the parallel composi-
tion executes both assignments but in an unpredictable order. The sequential nondeterministic
if-fi that simulates the parallel assignmentsisif T—=x:=x+1; x:=x*20 T—ox:=x*2; x:=x+1

CS Dept., Illinois Institute of Technology -1- © James Sasaki, 2023

CS 536: Science of Programming Class 22

fi. It nondeterministically chooses between the two possible traces of execution for the pro-
gram.!

» Because of the nondeterminism, re-executions of a parallel program can use different orders.
For example, two executions of while Bdo [x:=x+1 || x:=x *2] od can have the same sequence
or different sequences of updates to x.

Difficult to Predict Parallel Program Behavior
« The main problem with parallel programs is that their properties can be very different from the
behaviors of the individual threads.
« Example 2:
e ={x=5}x:=x+1{x=6} ande={x=5}x:=x*2{x=10}
o Bute={x=5}[x:=x+1||x:=x*2]{x=11vx=12}
» The problem with reasoning about parallel programs is that different threads can interfere

with each other: They can change the state in ways that don’t maintain the assumptions used by
other threads.

« Full interference is tricky, so we’re going to work our way up to it. First we'll look at simple, lim-
ited parallel programs that don't interact at all (much less interfere).

» But before that, we need to look at the semantics of parallel programs more closely.

D. Semantics of Parallel Programs

« To execute the sequential composition S;; ...; S, for one step, we execute S; for one step.

« To execute the parallel composition [S; || ... || S.] for one step, we take one of the threads and
evaluate it for one step.

Operational and Denotational Semantics of Parallel Programs

« Definition: Given [S; || ... || S,],foreach k=1,2, ...,n,if(S;,0) - (T}, Ty, then
LS|l 1 ShTs 00 = LSyl e [St | Tl Sicea || +ov [Sals T
+ We write E for sequential thread that has finished execution, so a parallel program that has fin-
ished execution is written [E || ... || E || E]. We'lltreat Eand [E || ... || E || E] as being syntac-
tically equal,i.e.,, E=[E || ... || E|| E].

The - * Notation

» Notation: The - * notation has the same meaning whether the configurations involved have
parallel programs or not: - * means - " for some n>0, and C, -~ " C, means we've omitted writ-
ing the out intermediate configurations in the sequence Cy - C; - ...» C,,.1 » C, (for some col-
lection of C.)

1 This trick doesn't scale up well to larger programs, but it helps with initially understanding parallel execution.

CS Dept., Illinois Institute of Technology -2- © James Sasaki, 2023

CS 536: Science of Programming Class 22

Common Mistake: Writing <[E || E],T) - (E, T) is a common mistake. Since [E || E]=E, go-
ing from ([E || E], T) to (E, 7) doesn't involve an execution step. But ([E || E], T) -9(E, T) is
ok because it says that in zero steps, we go from one empty configuration to itself.

Evaluation Graph and Denotational Semantics

Recall that the evaluation graph for (S, o) is the directed graph of configurations and evalua-
tion arrows leading from (S, o).

When drawing evaluation graphs, the configuration nodes need to be different.
o (I.e, if the same configuration appears more than once, show multiple arrows into it — don't
repeat the same node.)
An evaluation graph shows all possible executions.
o A program with n threads will have n out-arrows from its configuration.
« (Exception: Evaluation graphs are not multigraphs: If two arrows go to exactly the same
configuration, we write the configuration just once and write exactly one arrow to it.)
A path through the graph corresponds to one possible evaluation of the program.
The denotational semantics of a program in a state is the set of all possible terminating states
(plus possibly the pseudostates L; and L,). Le., the states found in the sinks (i.e., at the leaves)
of an evaluation graph. (We'll modify this definition when we get to deadlocked programs.)
o M(S,0)={t€0|(S,0)->"E,T)}
U{ Ly} if S can diverge; i.e., if (S, 0) - * (E, Lg) is possible [2023-04-06]
U { L, } if S can produce a runtime error; i.e., (S, o) - *(E, Le) is possible. [2023-04-06]

Example 3: The evaluation graph below is for the same program as in Example 2, but starting
with an arbitrary state ¢ where o (x) = «. The graph has two sinks for the two possible final
states,so M ([x:=x+1 || x:=x*2],0)={c[x»2a+2],0[x»2a+1]}.

x=x+1||x:=x*2],0[x»a]>

— T

[E||x>=x*2],0[x»a+1]> {x:=x+1||E],o[x»2a«]>
X[E||E],o[x»2a+2]> {[E||E],o[x»2a+1]>
Example 3

CS Dept., Illinois Institute of Technology -3- © James Sasaki, 2023

CS 536: Science of Programming Class 22

x:=v||y=v+2||z:=v*2],0> where o(v)=a [2023-04-06]

XIE||y:=v+2||z:=v*2],0[xra]> {[x:=v||y=v+2||E],c[zn2a]>

v

x:=Vv||E||lz:=v*2],0lyr»ax+2]>

x:=v||E||E]l,olyra+2][z»2a]>

IE||E||z:=v*2],0[x»a][yra+2]> [E||y=v+2||E],o[xra][z»2a]>

KIE||E||E],olxra]lyra+2][zn2a]>

Example 4

« Example 4: For this example, the evaluation graph is for ([x:=v ||y:=v+2||z:=v*2],0),
whereo(v)=«. M([x:=v ||y:=v+2||z:=v*2],0)={o[x»a J[yra+2][zr2«]}. Note
even though the program is nondeterministic, it produces the same result no matter what exe-
cution path it uses.

(More generally, if S is parallel, then M (S, o) can have more than 1 member, but the converse
is not true: Having M (S, o) of size 1 does not imply that S is nondeterministic.)

CS Dept., Illinois Institute of Technology -4- © James Sasaki, 2023

CS 536: Science of Programming Class 22

o Example 5: If we take the program from Example 4 and combine the last two threads sequen-
tially, then the evaluation graph for the resulting program is a subgraph of the graph from Ex-
ample 4. Below,a(v)=6,and M([x:=v ||y:=v+2||z:=v*2],0)={c[x»6][y~8]
[zw»12]}.

x:=v||y:=v+2;z:=v*2],0> where o(v)=6 [2023-04-06]

K[E||y:=v+2;z:=v*2],0[x»6]> {[x:=v]|lz:=v*2],0[y~8]>

K[E|lz:=v*2],0[x»6][y~»8]> {Ix:=v||E],oly»8][z~12]>

X[E||E],o[x»6][yr8][z»12]>

Example 5

o Example 6: Let W=x:=0; whilex=0do [x:=0 || x:=1]od. Then M(W,c)={a[x~»1],1;}.as
shown in the evaluation graph. Note the transitions {[E || E]; W,0[x»...]>
-0{W,a[xw...]> take O steps because [E || E];W=E;W=W; that is, they're all the same pro-
gram, textually.

« The problem in this example is that there is possible divergence.

« On the other hand, it only happens if we always choose thread 1 when we have to make the
nondeterministic choice of [x:=0 || x:=1].

o This is definitely unfair behavior, but it's allowed because of the unpredictability of our
nondeterministic choices. In real life, we would want a fairness mechanism to ensure that
all threads get to evaluate once in a while.

« If each thread is on a separate processor, then the nondeterministic choice corresponds to
which processor is fastest, so the possible divergence of the program is a race condition, where
the correct behavior of a program depends on the relative speed of the processors involved.
Here, divergence occurs if the processor for x:=1 is always faster than the processor for x:=0.
[2023-04-06]

» Note that it's not necessarily a race condition to have a parallel program producing different
results when run multiple times. Aslong as all results satisfy the specification, there's no race
condition.

CS Dept., Illinois Institute of Technology -5- © James Sasaki, 2023

CS 536: Science of Programming Tue 2023-04-04, 15:40 Class 22

{x:=0;W,0>where W=whilex=0 do[x:=0 || x:=1]

l

{whilex=0do[x:=0|| x:=1],0[x»0]>

l

x:=0||x=1];W,a[x»0]>

T

[E||x:=1];W,a[x»0]> {I[x:=0||E];W,0[x»1]>

l l

[E||E];W,0[x»1]> [E||E];W,a[x»0]>

lO 0

{whilex=0do[x:=0||x:=1] od,c[x»1]>

l

KE,o[x»1]>

Example 6

« Example 7: The correctness triple { T} [x:=0 || x:=1]{ x>0} does not have a race condition,
but{T}[x:=0||x:=1]{x>0} does. [2023-04-06] The program terminates with x=0 or 1.
With postcondition x > 0, both states are correct even though they're different. But with post-
condition x > 0, the relative speed of the threads means we may or may not produce a correct
result.

CS Dept., Illinois Institute of Technology -6- © James Sasaki, 2023

