
CS 536: Science of Programming	 Tue 2023-04-04, 15:40	 Class 22

Basics of Parallel Programs

CS 536: Science of Programming, Spring 2023

 2023-04-06: pp 3–6

A. Why?

• Parallel programs are more flexible than sequential programs but their execution is more com-
plicated.

• Parallel programs are harder to reason about because parts of a parallel program can interfere
with other parts.

• Evaluation graphs can be used to show all possible execution paths for a parallel program.

B. Objectives

After this class, you should know

• The syntax and operational & denotational semantics of parallel programs.

C. Basic Definitions for Parallel Programs

• Syntax for parallel statements: S := [S || S || … || S] . We say [S₁ || S₂ || … || Sn] is the parallel
composition of the threads S₁, S₂ , …, Sn .

• The threads must be sequential: You can’t nest parallel programs. (But you can embed par-
allel programs within otherwise-sequential programs, such as in the body of a loop.)

• Example 1: [x := x + 1 || x := x * 2 || y := x²] is a parallel program with three threads. Since it
tries to nest parallel programs, [x := x + 1 || [x := x * 2 || y := x ²]] is illegal.

Interleaving Execution of Parallel Programs

• We run sequential threads in parallel by interleaving their execution. I.e., we interleave the
operational semantics steps for the individual threads.

• We execute one thread for some number of operational steps, then execute another thread, etc.

• Depending on the program and the sequence of interleaving, a program can have more than
one final state (or cause an error sometimes but not other times).

• As an example, since evaluation of [x := x + 1 || x := x * 2] is done by interleaving the operational
semantics steps of the two threads, we can either evaluate x := x + 1 and then x := x * 2 or evalu-
ate x := x * 2 and then x := x + 1.

• The difference between [x := x + 1 || x := x * 2] and if T ➞ x := x + 1 ☐ T ➞ x := x * 2 fi is that the
nondeterministic if-fi executes only one of the two assignments whereas the parallel composi-
tion executes both assignments but in an unpredictable order. The sequential nondeterministic
if-fi that simulates the parallel assignments is if T ➞ x := x + 1 ; x := x * 2 ☐ T ➞ x := x * 2 ; x := x + 1

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20231

CS 536: Science of Programming	 Tue 2023-04-04, 15:40	 Class 22

fi. It nondeterministically chooses between the two possible traces of execution for the pro-
gram.
1

• Because of the nondeterminism, re-executions of a parallel program can use different orders.
For example, two executions of while B do [x := x + 1 || x := x * 2] od can have the same sequence
or different sequences of updates to x.

Difficult to Predict Parallel Program Behavior

• The main problem with parallel programs is that their properties can be very different from the
behaviors of the individual threads.

• Example 2:

• ⊨ { x = 5 } x := x + 1 { x = 6 } and ⊨ { x = 5 } x := x * 2 { x = 10 }

• But ⊨ { x = 5 } [x := x + 1 || x := x * 2] { x = 11 ∨ x = 12 }

• The problem with reasoning about parallel programs is that different threads can interfere
with each other: They can change the state in ways that don’t maintain the assumptions used by
other threads.

• Full interference is tricky, so we’re going to work our way up to it. First we'll look at simple, lim-
ited parallel programs that don't interact at all (much less interfere).

• But before that, we need to look at the semantics of parallel programs more closely.

D. Semantics of Parallel Programs

• To execute the sequential composition S₁ ; … ; Sn for one step, we execute S₁ for one step.

• To execute the parallel composition [S₁ || … || Sn] for one step, we take one of the threads and
evaluate it for one step.

Operational and Denotational Semantics of Parallel Programs

• Definition: Given [S₁ || … || S n] , for each k = 1 , 2 , … , n , if ⟨ S k , σ ⟩ → ⟨ T k , τ k ⟩, then 
	 ⟨ [S₁ || … || Sn] , σ ⟩ → ⟨ [S₁ || … || S k - 1 | T k || S k +1|| … || S n] , τ k ⟩

• We write E for sequential thread that has finished execution, so a parallel program that has fin-
ished execution is written [E || … || E || E] . We'll treat E and [E || … || E || E] as being syntac-
tically equal, i.e., E ≡ [E || … || E || E].

The →* Notation

• Notation: The →* notation has the same meaning whether the configurations involved have
parallel programs or not: →* means →n for some n ≥ 0, and C₀→n Cn means we've omitted writ-
ing the out intermediate configurations in the sequence C₀→ C₁→ …→ Cn -1→ Cn (for some col-
lection of C .)

 This trick doesn't scale up well to larger programs, but it helps with initially understanding parallel execution.1

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20232

CS 536: Science of Programming	 Tue 2023-04-04, 15:40	 Class 22

• Common Mistake: Writing ⟨ [E || E] , τ ⟩ → ⟨ E , τ ⟩ is a common mistake. Since [E || E] ≡ E, go-
ing from ⟨ [E || E] , τ ⟩ to ⟨ E , τ ⟩ doesn't involve an execution step. But ⟨ [E || E] , τ ⟩ →0 ⟨ E , τ ⟩ is
ok because it says that in zero steps, we go from one empty configuration to itself.

Evaluation Graph and Denotational Semantics

• Recall that the evaluation graph for ⟨ S , σ ⟩ is the directed graph of configurations and evalua-
tion arrows leading from ⟨ S , σ ⟩.

• When drawing evaluation graphs, the configuration nodes need to be different.

• (I.e., if the same configuration appears more than once, show multiple arrows into it — don't
repeat the same node.)

• An evaluation graph shows all possible executions.

• A program with n threads will have n out-arrows from its configuration.

• (Exception: Evaluation graphs are not multigraphs: If two arrows go to exactly the same
configuration, we write the configuration just once and write exactly one arrow to it.)

• A path through the graph corresponds to one possible evaluation of the program.

• The denotational semantics of a program in a state is the set of all possible terminating states
(plus possibly the pseudostates ⊥d and ⊥e). I.e., the states found in the sinks (i.e., at the leaves)
of an evaluation graph. (We'll modify this definition when we get to deadlocked programs.)

• M (S , σ) = { τ∈ σ | ⟨ S , σ ⟩→*⟨ E , τ ⟩ }  
∪ {⊥d } if S can diverge; i.e., if ⟨ S , σ ⟩→* ⟨ E, ⊥d⟩ is possible [2023-04-06] 
∪ {⊥e } if S can produce a runtime error; i.e., ⟨ S , σ ⟩→*⟨ E, ⊥e⟩ is possible. [2023-04-06]

• Example 3: The evaluation graph below is for the same program as in Example 2, but starting
with an arbitrary state σ where σ (x) = α . The graph has two sinks for the two possible final
states, so M ([x := x + 1 || x := x * 2] , σ) = { σ [x ↦ 2 α + 2] , σ [x ↦ 2 α + 1] } .

 

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20233

〈 [x := x + 1 || x := x * 2] , σ [x ↦ α] 〉

〈 [E || x := x * 2] , σ [x ↦ α + 1] 〉 〈 [x := x + 1 || E] , σ [x ↦ 2 α] 〉

〈 [E || E] , σ [x ↦ 2 α + 1] 〉〈 [E || E] , σ [x ↦ 2 α + 2] 〉

Example 3

CS 536: Science of Programming	 Tue 2023-04-04, 15:40	 Class 22

• Example 4: For this example, the evaluation graph is for ⟨ [x := v || y := v + 2 || z := v * 2] , σ ⟩ ,
where σ (v) = α . M ([x := v || y := v + 2 || z := v * 2] , σ) = { σ [x ↦ α] [y ↦ α + 2] [z ↦ 2 α] }. Note
even though the program is nondeterministic, it produces the same result no matter what exe-
cution path it uses.

(More generally, if S is parallel, then M (S , σ) can have more than 1 member, but the converse
is not true: Having M (S , σ) of size 1 does not imply that S is nondeterministic.)

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20234

〈 [E || E || z := v * 2] , σ [x ↦ α] [y ↦ α + 2] 〉

〈 [x := v || y := v + 2 || z := v * 2] , σ 〉

〈 [x := v || E || z := v * 2] , σ [y ↦ α + 2] 〉

〈 [x := v || E || E] , σ [y ↦ α + 2] [z ↦ 2 α] 〉

〈 [E || E || E] , σ [x ↦ α] [y ↦ α + 2] [z ↦ 2 α] 〉

〈 [x := v || y := v + 2 || E] , σ [z ↦ 2 α] 〉

〈 [E || y := v + 2 || E] , σ [x ↦ α] [z ↦ 2 α] 〉

〈 [E || y := v + 2 || z := v * 2] , σ [x ↦ α] 〉

  Example 4

where σ(v)=α [2023-04-06]

CS 536: Science of Programming	 Tue 2023-04-04, 15:40	 Class 22

• Example 5: If we take the program from Example 4 and combine the last two threads sequen-
tially, then the evaluation graph for the resulting program is a subgraph of the graph from Ex-
ample 4. Below, σ (v) = 6 , and M ([x := v || y := v + 2 || z := v * 2] , σ) = { σ [x ↦ 6] [y ↦ 8]
[z ↦ 12] } .

• Example 6: Let W ≡ x := 0; while x = 0 do [x := 0 || x := 1] od. Then M (W, σ) = { σ [x ↦ 1] ,⊥d }. as
shown in the evaluation graph. Note the transitions 〈 [E || E] ; W, σ [x ↦…] 〉
→⁰ 〈W, σ [x ↦…] 〉 take 0 steps because [E || E] ;W ≡ E ;W ≡ W ; that is, they're all the same pro-
gram, textually.

• The problem in this example is that there is possible divergence.

• On the other hand, it only happens if we always choose thread 1 when we have to make the
nondeterministic choice of [x := 0 || x := 1].

• This is definitely unfair behavior, but it's allowed because of the unpredictability of our
nondeterministic choices. In real life, we would want a fairness mechanism to ensure that
all threads get to evaluate once in a while.

• If each thread is on a separate processor, then the nondeterministic choice corresponds to
which processor is fastest, so the possible divergence of the program is a race condition, where
the correct behavior of a program depends on the relative speed of the processors involved.
Here, divergence occurs if the processor for x:=1 is always faster than the processor for x:=0.
[2023-04-06]

• Note that it's not necessarily a race condition to have a parallel program producing different
results when run multiple times. As long as all results satisfy the specification, there's no race
condition.  

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20235

〈 [E || z := v * 2] , σ [x ↦ 6] [y ↦ 8] 〉

〈 [x := v || y := v + 2 ; z := v * 2] , σ 〉

〈 [E || E] , σ [x ↦ 6] [y ↦ 8] [z ↦ 12] 〉

〈 [x := v || z := v * 2] , σ [y ↦ 8] 〉

〈 [x := v || E] , σ [y ↦ 8] [z ↦ 12] 〉

〈 [E || y := v + 2 ; z := v * 2] , σ [x ↦ 6] 〉

Example 5

where σ(v)=6 [2023-04-06]

CS 536: Science of Programming	 Tue 2023-04-04, 15:40	 Class 22

• Example 7: The correctness triple { T } [x := 0 || x := 1] { x ≥ 0 } does not have a race condition,
but { T } [x := 0 || x := 1] { x > 0 } does. [2023-04-06] The program terminates with x = 0 or 1.
With postcondition x ≥ 0 , both states are correct even though they're different. But with post-
condition x > 0 , the relative speed of the threads means we may or may not produce a correct
result. 

CS Dept., Illinois Institute of Technology	 – –	 © James Sasaki, 20236

〈 x := 0 ; W, σ 〉where W ≡ while x = 0 do [x := 0 || x := 1]

〈while x = 0 do [x := 0 || x := 1] , σ [x ↦ 0] 〉

〈 [x := 0 || x := 1] ;W, σ [x ↦ 0] 〉

〈 [E || x := 1] ;W, σ [x ↦ 0] 〉

〈 [E || E] ;W, σ [x ↦ 1] 〉

〈 [x := 0 || E] ;W, σ [x ↦ 1] 〉

〈 [E || E] ;W, σ [x ↦ 0] 〉

〈while x = 0 do [x := 0 || x := 1] od, σ [x ↦ 1] 〉

〈 E , σ [x ↦ 1] 〉

0 0

Example 6

