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Finding Invariants

Part 2: Deleting Conjuncts; Adding Disjuncts; Examples


CS 536: Science of Programming, Spring 2023

 2023-03-29: pp. 5, 6, 9, 10


A. Why


• It is easier to write good programs and check them for defects than to write bad programs and 
then debug them.


• The hardest part of programming is finding good loop invariants.


• There are heuristics for finding them but no algorithms that work in all cases.


• Changing how we re-establish a loop invariant can greatly speed up the code.


B. Objectives

At the end of this class you should


• Know how to generate possible invariants using “Drop a conjunct” or “Add a disjunct” and to be 
familiar with some examples of these techniques.


C. Finding Invariants - Review


• An invariant needs to be easy to establish with initialization code, it needs to establish the post-
condition (when the loop test fails), and it has to be an approximation to the sp and wp of the 
loop body.


• There exist various general heuristics for finding invariants, though no heuristic works easily in 
every situation. The general idea is to weaken the postcondition somehow;  the kind of weaken-
ing determines the loop test.


• We've looked at getting candidate invariants by adding parameters to the postcondition.


• Replacing a Constant by a Variable is the simplest way to add a parameter. 


• We take the postcondition q, find an occurrence of a constant c in it, and replace that occur-
rence with a new variable x . The result is a candidate invariant  p where p [ c ⧸ x ] ≡ q.


• The loop header becomes while x ≠ c, and initialization code has to set the loop variable x to 
a value that satisfies p.


• For loop termination, we make progress by changing x so that it's ”closer” to c. 


• For example, we saw changes to q ≡ s = sum ( 0 , n ) where we replaced 0 by i or n by j.


• More generally, we can add parameters by replacing one or more occurrences of an expression 
with one or more new variables. The expression which might be a constant or a constant-valued 
expression, or a variable, or any other kind of expression.
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• An example was integer square root, where x ² ≤ n < ( x+1 ) ² became x ² ≤ n < y ² by replacing 
( x+1 ) ² with y, as opposed to x ² ≤ n < ( x+y ) ² when we replaced 1 with y.


D. Adding a Disjunct


• Adding a disjunct is another way to find possible invariants. Say we want to establish postcondi-
tion q. For various possible B, we can try


{ inv q ∨ B }  
while B do  
	 { ( q ∨ B ) ∧ B }  
	 Loop body 
	 { q ∨ B }  
od 
{ ( q ∨ B ) ∧ ¬ B }  
{ q } 


• Unlike first two methods, this one is very open-ended. The other techniques we've seen all take 
the postcondition and modify some identified part of it, but here we can use any testable predi-
cate for B.


• Adding a disjunct lets us, e.g., generalize a relation like i = n to i ≤ n (i.e., i = n ∨ i < n ). This is one 
way to understand a loop like { inv i ≤ n …  } while i < n do… od { i = n } : The invariant i ≤ n is the 
postcondition i = n plus the disjunct i < n added.


E. Deleting A Conjunct


• A different way to find possible invariants is Deleting a Conjunct. Say postcondition is q is a 
conjunction, q₁ ∧ q₂…∧ qn  where n ≥ 2.


• We get n candidate invariants, each one being q less one conjunct, and the loop runs until the 
conjunct is true. For k = 1 , 2 ,… , n, let pk  be q less qk ;  i.e., pk ≡ q₁ ∧… qk - 1∧  qk + 1∧… qn . 


• The candidate loop using pk  is


{ inv pk } 	 	 / / where pk ≡ q₁ ∧…  qk - 1∧ qk + 1∧… qn . 
while ¬ qk  do 
	 { pk∧ ¬ qk }  … { pk }  
od 
{ pk∧ qk }  
{ q } 


• Adding a disjunct is one way to view deleting a conjunct.


• Take q₁ ∧ q₂  and add the disjunct ( q₁ ∧ ¬ q₂ ). The result is ( q₁ ∧ q₂ ) ∨ ( q₁ ∧ ¬ q₂ )⇔ q₁ , in ef-
fect deleting q₂ .
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• Another example: Converting p ∧ q to p ∨ q can be viewed as a generalization of ∧ to ∨ or as tak-
ing p ∧ q to ( p ∧ q ) ∨ ( p ∧ ¬ q ) ∨ q.


F. Examples of Programs and Their Invariants


• We won't cover all of these in class and you're not expected to know these in detail.  It would be 
good to look at each example and ask yourself what technique is being used to find the invari-
ant, the invariant relates to the bound function, and how progress toward termination is made.


Example 1: Linear Search of an Array


• This will be an example of deleting a conjunct.


• Precondition: Array b has at least n elements ( n ≥ 0 ) and the value x may or may not appear in 
b [ 0..n–1 ]. 


• Postcondition: We find the index k of the leftmost occurrence of x  in b [ 0..n–1 ]. If x doesn’t ap-
pear in b [ 0 .. n–1 ], then k = n. Note in either case, x  doesn’t appear in b [ 0..k–1 ]. We can for-
malize this as


0 ≤ k ≤ n ∧ x∉ b [ 0..k–1 ] ∧ ( k < n→ b [ k ] = x ) 


where x∉ b [ 0..k–1 ] means ∀ 0 ≤ k′ < k . x ≠ b [ k′ ]. Note if k = 0, then b [ 0..k–1 ]= b [ 0 ..– 1 ], 
which is the empty sequence of values.


• Since 0 ≤ k ≤ n is short for 0 ≤ k ∧ k ≤ n, there are four conjuncts we can try deleting, which yields 
four possible loop/test combinations. Three of them don’t yield a usable invariant, but the fourth 
one does.


• Dropping the first conjunct, 0 ≤ k, forces k < 0 in the loop body, which makes referencing b [ k ] 
illegal. This sounds really unpromising.


{ inv k ≤ n ∧ x∉ b [ 0..k–1 ] ∧ ( k < n→ b [ k ] = x ) } while 0 > k do …


• Dropping k ≤ n has the symmetric problem: k > n in the loop body makes b [ k ] erroneous.


{ inv 0 ≤ k ∧ x∉ b [ 0..k–1 ] ∧ ( k < n→ b [ k ] = x ) } while k > n do …


[Start rewrite in v.2]  
1

• Dropping x∉ b [ 0..k–1 ] means we'd use while x∈ b [ 0..k–1 ].  First problem: How do we initial-
ize k?  Using k := 0 makes x∉  the empty segment b [ 0..k–1 ].  Using k := 1 requires b [ 0 ] = x, 
which can be false, and using k := n requires us to know x∈ b [ 0..n–1 ], which we don't.


• Dropping the fourth conjunct, k < n→ b [ k ] = x, however, works well.


{ inv 0 ≤ k ≤ n ∧ x∉ b [ 0..k–1 ] } while ¬ ( k < n→ b [ k ] = x ) do …


• Now we can rewrite ¬ ( k < n→ b [ k ] = x ) as (k < n && b [ k ] ≠ x), where && is the short-circuiting 
operator found in C etc.: B₁&& B₂ ≡  if B₁ then B₂ else F fi.


 In class I said we could initialize k=0  but that's backward - we need x ∈ b[0. .k–1] , not ∉.1
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• Initialization is easy: k := 0, since its wp is 0 ≤ 0 ≤ n ∧ x∉ b [ 0..0–1 ]. The only nontrivial part is 
n ≥ 0, which will be the initial precondition.


[End rewrite]


• Since k starts out at 0 and must increase to n, a progress step of k := k+1 seems pretty reason-
able. The loop body so far is


{ p ∧ k < n ∧ b [ k ] ≠ x } 	 	 	 	 	 // Invariant∧ loop test 
???		 	 	 	 	 	 	 	 	 // Code to write 
{ 0 ≤ k+1 ≤ n ∧ x∉ b [ 0..k+1–1 ] } 	 	 // wp of progress step 
k := k+1 	 	 	 	 	 	 	 	 // Progress step 
{ 0 ≤ k ≤ n ∧ x∉ b [ 0..k–1 ] } 		 	 	 // Invariant


where ??? is code that must take us from the precondition of the loop body to the wp of the 
loop body. But it turns out that the precondition implies the wp, so no code is needed.


• Convergence is easy: Since p includes k ≤ n and k gets incremented, we can use n–k. So the 
whole loop is


{ n ≥ 0 }  
k := 0 ;  
{ inv p ≡ 0 ≤ k ≤ n ∧ x∉ b [ 0..k–1 ] ∧ n–k ≥ 0 } { bd n–k } 
while k < n & & b [ k ] ≠ x do 
	 { ( 0 ≤ k ≤ n ∧ x∉ b [ 0..k–1 ] ∧ n–k ≥ 0 ) ∧ k < n ∧ b [ k ] ≠ x ∧ n–k = t₀ }  
	 { 0 ≤ k+1 ≤ n ∧ x∉ b [ 0..k+1–1 ] ∧ n–( k+1 ) < t₀ }  
	 k := k+1  
	 { ( 0 ≤ k ≤ n ∧ x∉ b [ 0..k–1 ] ) ∧ n–k < t₀ }  
od  
{ 0 ≤ k ≤ n ∧ x∉ b [ 0..k–1 ] ∧ ( k < n→ b [ k ] = x ) } 


Example 2: Binary Search Example (Version 1)


• Binary search is a nice example of a loop that isn’t a for loop. For termination, a loose upper 
bound (the distance between the endpoints) suffices.


• Binary search has a small subtlety about what to do when the left and right endpoints are adja-
cent: Because of integer division, midpoint  =  ( L+( L+1 ) ) ÷ 2 = L, which implies that the distance 
from L to the midpoint doesn't always decrease.


• We'll see a couple of ways to handle this.


• The first way uses a sentinel value, and when R = L+1, the loop halts.


• The second way allows R = L–1, and R < L causes halting.


• The differences between the two approaches makes the postconditions different, which in 
turn makes the invariants different, and (as it turns out) the loop test is different.
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Binary Search version 1


• Program specification:{ q₀ } Binsearch( b , x , n ) { r } where


• q₀ ≡ Sorted ( b , n ) ∧ 1 ≤ n < |b| ∧ b [ 0 ] ≤ x < b [ n ] ( writing |b| for size ( b ) )


• Sorted ( b , n ) ≡∀ 0 ≤ k < n–1 < |b| –1 . b [ k ] ≤ b [ k+1 ]


• r ≡ 0 ≤ L < n ∧ ( b [ L ] = x ∨ b [ L ] < x < b [ L+1 ] ) ∧ ( found↔ x = b [ L ] ) 


• Having x < b [ n ] means b [ n ] is a sentinel value, not an actual data value.


• Since b and n are named constants, Sorted ( b , n ) holds throughout the program, so we'll omit 
explicitly writing it in the conditions.


• For our invariant, let's generalize the loop [2023-03-29] postcondition b [ L ] ≤ x < b [ L+1 ] to 
b [ L ] ≤ x < b [ R ] where 0 ≤ L < R ≤ n. (We replaced the expression L+1 by R.) In addition, let's 
weaken the postcondition's ( found↔ x = b [ L ] ) to just implication:( found→ x = b [ L ] );  this lets 
us have found = F while we search. For the bound function, we can use R–L; it's a loose termina-
tion bound but that's okay.


• For the loop body, we’ll begin by calculating the midpoint m := ( L+R ) ÷ 2 (with truncating divi-
sion). The search succeeds if b [ m ] = x; we can set found  to true and L to m and exit the loop.


• The loop so far is


{ q ≡ Sorted ( b , n ) ∧ n ≥ 1 ∧ b [ 0 ] ≤ x < b [ n ] }  
L := 0 ; R := n ; found := F ;  
{ inv p ≡ 0 ≤ L < R ≤ n ∧ ( b [ L ] = x ∨ b [ L ] < x < b [ R ] ) ∧ ( found→ x = b [ L ] ) }  
{ bd R–L }  while ¬ found ∧ R ≠ L+1 do 
	 	 { p ∧ ¬ found ∧ R ≠ L+1 ∧ R–L = t₀ }  
	 	 m := ( L+R ) ÷ 2 ;  
	 	 { p₁ ≡ p ∧ ¬ found ∧ R ≠ L+1 ∧ R–L = t₀ ∧m = ( L+R ) ÷ 2 }  
	 	 if b [ m ] = x  then  
	 	 	 { p₁ ∧ b [ m ] = x } found := T ; L := m ; R := L+1 { p ∧ R–L < t₀ } [2023-03-29] 2

	 	 else 
	 	 	 { p₁ ∧ b [ m ] ≠ x }  … code to be filled in …{ p ∧ R–L < t₀ }  
	 	 fi  
	 	 { p ∧ R–L < t₀ }  
od 
{ p ∧ ( found ∨ R = L+1 ) }  
{ 0 ≤ L < n ∧ ( b [ L ] = x ∨ b [ L ] < x < b [ L+1 ] ) ∧ ( found ↔ x = b [ L ] ) } 


• It's easy to verify that loop initialization is correct. Loop termination is also correct: Either 
found  is true and b [ L ] = x , or found  is false, R = L+1, and b [ L ] < x < b [ L+1 ], indicating the 
search has indeed failed. 


 In class I said I thought this was a bug because we don't know x≠b[L+1], but now I remember that that's 2

why things are written as b[L]=x  OR b[L]<x<b[R] .
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• The loop body calculates the midpoint m and checks b [ m ]against x. If b [ m ] = x, the search has 
succeeded and we set L , R, and found  accordingly.


• If b [ m ] ≠ x, then there are two ways to make progress toward termination: L := m and R := m. 
Both assignments have p ∧ R–L < t₀ as the postcondition, so we can calculate the wp of each as-
signment and see if the current precondition p₁ ∧ b [ m ] ≠ x is sufficient.  We get


{ p₁ ∧ b [ m ] ≠ x }  … { p [ m⧸L ] ∧ R–m < t₀ } L := m { p ∧ R–L < t₀ }  
{ p₁ ∧ b [ m ] ≠ x }  … { p [ m⧸R ] ∧m – L < t₀ } R := m { p ∧ R–L < t₀ } 


• Expanding,


• p₁ ∧ b [ m ] ≠ x ≡ p ∧ ¬ found ∧ R ≠ L+1 ∧ R–L = t₀ ∧m = ( L+R ) ÷ 2 ∧ b [ m ] ≠ x 


• Since p ≡ 0 ≤ L < R ≤ n ∧ ( b [ L ] = x ∨ b [ L ] < x < b [ R ] ) ∧ ( found→ x = b [ L ] )


• Substituting, p [m ⧸ L ] ≡ 0 ≤ m < R ≤ n ∧ ( b [ m ] = x ∨ b [ m ] < x < b [ R ] ) ∧ ( found→ x = b [ m ] )


• And p [ m ⧸ R ] ≡ 0 ≤ L < m ≤ n ∧ ( b [ L ] = x ∨ b [ L ] < x < b [ m ] ) ∧ ( found→ x = b [ L ] )


• Comparing (and omitting detailed calculations), we see that to imply the wp of L := m , the pre-
condition p₁ ∧ b [ m ] ≠ x is not strong enough. We need to add ( m < R ∧ b [ m ] ≤ x ∧ R–m < t₀ ). 


• Similarly, to imply the wp of R := m we need to add ( L < m ∧ b [ m ] > x ∧m–L < t₀ ).


• We can determine b [ m ] < x and b [ m ] > x with a test (we already know b [ m ] ≠ x ).


• It turns out that L < R [2023-03-29] and R ≠ L+1  imply all four of m < R , R–m < t₀ , L < m , and m–
L < t₀ , so the wp's are satisfied .
3

• Adding the test for b [ m ] < or > x gives us a loop body partially outlined  as
4

{ q ≡ Sorted ( b , n ) ∧ n ≥ 1 ∧ b [ 0 ] ≤ x < b [ n ] }  
L := 0 ; R := n ; found := F ;  
{ inv p ≡ 0 ≤ L < R ≤ n ∧ ( ( b [ L ] = x ∨ b [ L ] < x < b [ R ] ) ∧ ( found→ x = b [ L ] ) }  
{ bd R–L }  while ¬ found ∧ R ≠ L+1  do 
	 { p ∧ ¬ found ∧ R ≠ L+1 ∧ R–L = t₀ }  
	 m := ( L+R ) ÷ 2 ;   
	 { p₁ ≡ p ∧ ¬ found ∧ R ≠ L+1 ∧ R–L = t₀ ∧m = ( L+R ) ÷ 2 }  
	 if b [ m ] = x  then  
	 	 found := T ; L := m  
	 else if b [ m ] < x  then  
	 	 L := m  
	 else // b [ m ] > x  
	 	 R := m  
	 fi fi  
	 { p ∧ R–L < t₀ }  
od  

 Quick argument for L < m < R : Since L+2≤R , m = ( L+R ) ÷ 2 ≥ ( 2*L+2)÷2=L+1  and also ≤ ( 2*R–2 ) ÷ 2 ≤ R–1 .3

 A nice at-home activity is to completely expand the annotation.4
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{ p ∧ ( found ∨ R = L+1 ) }  
{ 0 ≤ L < n ∧ ( ( b [ L ] = x ∨ b [ L ] < x < b [ L+1 ] ) ) ∧ ( found ↔ x = b [ L ] ) } 


Example 3: Traditional Binary Search


• For contrast, let's look at a traditional version of binary search, where we stop if L > R.


• We won't have a sentinel value in b, so b [ n–1 ] is the last data value, and the precondition be-
comes Sorted ( b , n ) ∧ n ≥ 1 ∧ b [ 0 ] ≤ x ≤ b [ n–1 ].


• The postcondition will be different: If we end with R < L (in particular R = L–1 ) then the search 
has failed, otherwise b [ L ] = x as before. Again, to distinguish between failure and success, we'll 
use found  to stop the search. At termination,


– 1 ≤ L–1 ≤ R < n ∧ ( found→ b [ L ] = x ) ∧ ( ¬ found→ x∉ b [ 0..n–1 ] ) 


• – 1 ≤ L–1 ≤ R < n summarizes the properties and relationships of L and R, namely 0 ≤ L < n  
and either L ≤ R < n or R = L–1 .


• For the invariant, we want to weaken ( ¬ found→ x∉ b [ 0..n–1 ] ) to something that will be true 
during the search. We only change L and R in ways that don't alter “Is x in b [ L .. R ]?" If R < L, 
we know the search has failed because b [ L .. R ] =∅. We should terminate the loop if found  or 
( R < L ∧ ¬ found ) .


• Now for a bound function. We can't use R–L  because it can be – 1 . We can almost use R–L+1 , 
except that when find b [ m ] = x, all we do is set found  := T and L := m, which doesn't necessarily 
decrease R–L+1 . To take found  into account, define |F| = 0  and |T| = 1 , then the bound func-
tion can be R–L+1 +|¬ found| .


• Altogether, we get the following sketch for our binary search:


{ n > 0 ∧ Sorted ( b , n ) ∧ b [ 0 ] ≤ x ≤ b [ n–1 ] } L := 0 ; R := n–1 ; found := F ;  
{ inv q ≡ – 1 ≤ L–1 ≤ R < n ∧ ( found→ b [ L ] = x ) ∧ ( x∈ b [ 0..n–1 ] ↔ x∈ b [ L .. R ] ) }  
{ bd R–L+1 + |¬ found | }  
while ¬ found ∧ L ≤ R  do  
	 m := ( L+R ) ÷ 2 ;  
	 { q ∧ ¬ found ∧ L ≤ R ∧ t = t₀ ∧m = ( L+R ) ÷ 2 }  // where t ≡ R–L+1 + |¬ found |  
	 if b [ m ] = x  then 
	 	 found := T ; L := m  
	 else if b [ m ] < x  then


	 	 L := m + 1  
	 else // b [ m ] > x 


	 	 R := m – 1   
	 fi fi { q ∧ t < t₀ }  
od 
{ q ∧ ( found ∨ L > R ) }  
{ – 1 ≤ L–1 ≤ R < n ∧ ( found→ b [ L ] = x ) ∧ ( ¬ found→ x∉ b [ 0..n–1 ] ) } 
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Example 4: Match Across Two Arrays


• We saw the three-array version of this problem when we looked at sequential nondeterminism. 
The context there was finding partial solutions and combining them nondeterministically. This 
time, we'll concentrate on the invariant and on termination. The arrays can have different 
lengths, and this is reflected in the bound function. To cut down on notation, we'll just match 
two arrays instead of three arrays. 


• We start with two sorted arrays b₁ and b₂ and want to find the least indexes i and j that make 
b₁ [ i ] = b₂ [ j ]; if no such values exist, we halt with i = n ∨ j = m where n =|b₁| and m =|b₂ |.


• We'll use a bound function of t ( i , j ) ≡ ( n – i ) + ( m – j ).  Defining it as an actual function lets 
us write, e.g., t ( i+1 , j )  later on, instead of ( ( n – i ) + ( m – j ) ) [ i+1⧸i ] .


• We can initialize i and j to 0, increment at least one of them with each iteration and ensure 
that the invariant implies 0 ≤ i ≤ n ∧ 0 ≤ j ≤ m.


• We aren’t going to change b₁ or b₂, so we'll specify Sorted ( b₁ , n ) ∧ Sorted ( b₂ , m )  in the initial 
precondition, but after that, omit it as being implicit.


Sorted ( b , n ) ≡∀ 0 ≤ k ≤ n–2 . b [ k ] ≤ b [ k+1 ] 


• It wasn't mentioned earlier, but that program stopped with the first match it found, and so will 
this one. We can formalize the “least indexes i  and j ” part of the postcondition as a property 
that says no value to the left of b₁ [ i ] matches any value to the left of b₂ [ j ]:


noMatch ( i , j ) ≡∀ 0 ≤ i ′ < i ≤ n .∀ 0 ≤ j ′ < j ≤ m . b₁ [ i ′ ] ≠ b₂ [ j ′ ] 


• We also define InRange ( i , j ) ≡ 0 ≤ i ≤ n ∧ 0 ≤ j ≤ m , so our postcondition is


q ≡ InRange ( i , j ) ∧  noMatch ( i , j ) ∧ ( i < n ∧ j < m→ b₁ [ i ] = b₂ [ j ] ) 


• To get an invariant, we’ll drop the third conjunct ( i < n ∧ j < m→ b₁ [ i ] = b₂ [ j ]   ) .


{ inv p ≡ InRange ( i , j ) ∧  noMatch ( i , j ) } { bd t ( i , j ) }  
while ¬ ( i < n ∧ j < m→ b₁ [ i ] = b₂ [ j ] )  
do …  
od 
{ p ∧ ( i < n ∧ j < m→ b₁ [ i ] = b₂ [ j ] ) } { q } 


• As in linear search (Example 1), we’ll rewrite the test as B ≡ ( i < n ∧ j < m && b₁ [ i ] ≠ b₂ [ j ] ) . As a 
conditional expression, this is if i < n ∧ j < m  then b₁ [ i ] ≠ b₂ [ j ] else F  fi. 


• Let’s consider loop initialization. As we begin, noMatch ( 0,0 ) is all we know about the arrays, so 
we should set i and j to zero.


{ n ≥ 0 ∧m ≥ 0 ∧ Sorted ( b , n ) ∧ Sorted ( b₂ , m ) }  
i := 0 ; j := 0  
{ inRange ( 0 , 0 ) ∧  noMatch ( 0 , 0 ) }  
{ inv p ≡ InRange ( i , j ) ∧ noMatch ( i , j ) } { bd t ( i , j ) ≡ ( n – i ) + ( m – j ) }  
while i < n ∧ j < m && b₁ [ i ] ≠ b₂ [ j ]  
do …  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od 
{ q ≡ p ∧ b } 		 // where b ≡ i < n ∧ j < m→ b₁ [ i ] = b₂ [ j ]


• The termination requirement that the invariant imply t ( i , j ) ≥ 0 follows from InRange ( i , j ) .


• To get closer to termination, we'll use either i := i + 1 or j := j + 1. So our loop body will include 
finding code taking us from the invariant and loop test to the wp of each progress statement. 
With invariant p ≡ InRange ( i , j ) ∧ noMatch ( i , j ) , and ¬ B⇔ i < n ∧ j < m & & b₁ [ i ] ≠ b₂ [ j ], calcu-
lating the wp' s  of the progress steps gives us


{ p ∧ t ( i , j ) = t₀ ∧ ¬ B } 	 	 	 	 	 	 	 	 	 	 // inv, bound, and test 
???		 	 	 	 	 	 	 	 	 	 	 	 	 	 // needed code 
{ InRange ( i+1 , j ) ∧  noMatch ( i+1 , j ) ∧ t ( i+1 , j ) < t₀ } // wp of progress step 
i := i+1 		 	 	 	 	 	 	 	 	 	 	 	 	 // increase i to make progress 
{ p ∧ t < t₀ } // inv and decreased bound


and


{ p ∧ t ( i , j ) = t₀ ∧ ¬ B }  	 	 	 	 	 	 	 	 	 	 // inv, bound, and test 
???		 	 	 	 	 	 	 	 	 	 	 	 	 	 // needed code 
{ InRange ( i , j+1 ) ∧  noMatch ( i , j+1 ) ∧ t ( i , j+1 ) < t₀ }  // wp of progress step 
j := j+1  		 	 	 	 	 	 	 	 	 	 	 	 	 // increase j to make progress 
{ p ∧ t < t₀ }  	 	 	 	 	 	 	 	 	 	 	 	 // inv and decreased bound


• The wp range requirements are easy: InRange ( i+1 , j )  and InRange ( i , j+1 )  are both implied 
by InRange ( i , j ) ∧… i < n ∧ j < m . The bound requirements with t ( i+1 , j ) < t₀  and t ( i , j+1 ) < t₀ , 
where t₀ = t ( i , j ) , are established by i := i+1  and j := j+1  respectively.


• So what remains is “How do we get from p ∧ ¬ B  to noMatch ( i + 1 , j )  or to NoMatch ( i , j+1 ) ? ” 
The invariant tells us that noMatch ( i , j )  holds, so no value in b₁ [ 0..i - 1 ] equals any value in 
b₂ [ 0..j - 1 ] . Certainly if b₁ [ i ] = b₂ [ j ] , then we've found a match.


• If b₁ [ i ] > b₂ [ j ], which is ≥ b₂ [ 0..j–1 ] , then no value in b₁ [ 0..i ] equals any value in b₂ [ 0..j-1 ], 
so noMatch ( i+1 , j )  holds. Note we can't say noMatch ( i+1 , j+1 )  holds because we don't know 
whether b₁ [ i ] is > , < , or= b₂ [ j–1 ] .


• Symmetrically, if b₁ [ j ] > b₂ [ i ], which is ≥ b₁ [ 0..i–1 ], then no value in b₂ [ 0..j ] equals any value 
in b₁ [ 0..i–1 ], so noMatch ( i , j+1 )  holds. We can't say noMatch ( i+1 , j+1 )  because we don't 
know whether b₂ [ j ] is >, <, or = b₁ [ i–1 ].


• As partial solutions, we have (the nondeterministic) 
	 	 { p ∧ ¬ B } if b₁ [ i ] < b₂ [ j ] ➞ { p [ i+1⧸i ] } i := i+1  fi { p } and	 [2023-03-29] tests 
	 	 { p ∧ ¬ B } if b₁ [ i ] > b₂ [ j ] ➞ { p [ j+1⧸j ] } j := j+1  fi { p }


• Combining these gives us


{ p ∧ ¬ B }  
if b₁ [ i ] < b₂ [ j ] ➞ { p [ i+1⧸i ] } i := i+1  	[2023-03-29] tests 
☐ b₁ [ i ] > b₂ [ j ] ➞ { p [ j+1⧸j ] } j := j+1  
fi 
{ p } 
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• We can make this if-fi the body of a loop that runs while b₁ [ i ] ≠ b₂ [ j ], and we know the if-fi 
won't cause a domain error (where neither of the tests hold).  For a deterministic version, since 
we know b₁ [ i ] ≠ b₂ [ j ], then if b₁ [ i ] > b₂ [ j ] is false, then b₂ [ j ] > b₁ [ i ] must hold. We get


	 { p ∧ ¬ B }  if b₁ [ i ] < b₂ [ j ]  then i := i+1  else j := j+1  fi { p } 	 [2023-03-29] test


• Adding this to the loop framework (initialization and test), we get


{ n ≥ 0 ∧m ≥ 0 ∧ Sorted ( b , n ) ∧ Sorted ( b₂ , m ) }  
i := 0 ;  j := 0  
{ inv p ≡ InRange ( i , j ) ∧ noMatch ( i , j ) ∧ n – i + m – j ≥ 0 } { bd n–i + m–j }  
while ¬ B do { p ∧ ¬ B ∧ t ( i , j ) = t₀ } 	 	 	 // ¬ B⇔ i < n ∧ j < m & & b₁ [ i ] ≠ b₂ [ j ]  
	 if b₁ [ i ] < b₂ [ j ]  then	 [2023-03-29] test 
	 	 { p ∧ ¬ B ∧ t ( i , j ) = t₀ ∧ b₁ [ i ] > b₂ [ j ] }  
	 	 { ( p ∧ ¬ B ) [ i+1⧸i ] ∧ t ( i + 1 , j ) < t₀ }  
	 	 i := i+1  
	 	 { p ∧ t ( i , j ) < t₀ }  
	 else 
	 	 { p ∧ ¬ B ∧ t ( i , j ) = t₀ ∧ b₁ [ i ] < b₂ [ j ] }  
	 	 { ( p ∧ ¬ B ) [ j+1⧸j ] ∧ t ( i , j+1 ) < t₀ }  
	 	 j := j+1  
	 	 { p ∧ t ( i , j ) < t₀ }  
	 fi { p ∧ t ( i , j ) < t₀ }  
od 
{ p ∧ B }  
{ p ∧ ( i < n ∧ j < m→ b₁ [ i ] ≠ b₂ [ j ] ) } 


• This program can easily be extended to 3 or more arrays.


Example 5: Multiply Integers x and y (version 1: Slowly)


• Our specification is { x = x₀ ∧ y = y₀ } S { z = x₀* y₀ } . (x₀ and y₀ are the initial values of x  and y .)


• When the loop ends, we want z = x₀* y₀.


• When the loop begins, we have x₀* y₀ = x* y  because x = x₀ ∧ y = y₀ .


• To get an invariant, define z so that it covers both cases: z = x₀* y₀ – x * y.


• When the loop begins, x = x₀ and y = y₀ , so x₀* y₀ = x* y , so we'll set z := 0.


• We can end the loop if x  or y = 0 , because z = x₀* y₀ – x* y = x₀* y₀ – 0.


• Let's assume x₀ ≥ 0 initially, so that we can maintain 0 ≤ x ≤ x₀ and make progress toward 
termination by moving x from x₀ toward 0. For the progress step, let's use x := x–1.


• Combining everything so far with x ≠ 0 as the loop test gives us


{ x = x₀ ≥ 0 ∧ y = y₀ } z := 0 ;  
{ inv p ≡ x ≥ 0 ∧ z = x₀* y₀ – x * y } { bd x }  
while x ≠ 0  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do 
	 { p ∧ x ≠ 0 }  
	 …code to write … ;  
	 { w } 	 	 	 	 	 	 	 // where w ≡  wp ( x := x–1 , p )  
	 x := x–1 { p }  
od 
{ p ∧ x = 0 } { z = x₀* y₀ } 


• Above, w ≡  wp ( x := x–1 , p ) ≡ p [ x–1⧸x ] ≡ ( z = x₀* y₀ – ( x–1 ) * y ∧ x–1 ≥ 0 ) 


• The loop body precondition p ∧ x ≠ 0 ≡ ( z = x₀* y₀ – x * y ∧ x ≥ 0 ) ∧ x ≠ 0 


• Note p implies z = x₀* y₀ – x * y , but w requires z = x₀* y₀ – ( x–1 ) * y.


• So we don't have p ∧ x ≠ 0→w , so we need some code between them to establish this.


• Recall one way to change z = e₁ to z = e₂ is z := z + ( e₂– e₁) . Here, e₂ – e₁ is ( x₀* y₀ – x * y ) –
( x₀* y₀ – ( x–1 ) * y ) , which = x * y – ( x–1 ) * y, which = y.


• So { p ∧ x ≠ 0 } z := z + y { w } x := x–1 { p } 


• Our program is


{ x = x₀ ≥ 0 ∧ y = y₀ } z := 0 ;  
{ inv p ≡ z = x₀* y₀ – x * y ∧ x ≥ 0 } { bd x }  
while x ≠ 0  do 
	 { p ∧ x ≠ 0 ∧ x = t₀ } { p [ x–1⧸x ] [ z + y⧸z ] ∧ x–1 < t₀ }  
	 z := z + y ; { p [ x–1⧸x ] ∧ x–1 < t₀ }  
	 x := x–1 { p ∧ x < t₀ }  
od 
{ p ∧ x = 0 } { z = x₀* y₀ } 


• Partial correctness of this outline is easy to verify. For total correctness, we need to make sure x 
can be a bound expression.  This is easy: The invariant contains x ≥ 0 as a conjunct, and the loop 
body always decrements x.


Example 6: Multiply Integers x and y (version 2: More Quickly) 


• The program just finished to multiply integers has a runtime linear in x₀.


• The Progress Step Governs the Runtime: We can get a faster multiplication program if we 
make progress toward x = 0 more quickly. What if we try x := x ÷ 2? 


• We can still use x as the bound expression: The invariant still implies x ≥ 0, and if x ≠ 0, then 
x := x ÷ 2  brings us strictly closer to 0.


• Instead of a loop body of 


• { p ∧ x ≠ 0 ∧ x = t₀ } z := z + y ; x := x–1 { p ∧ x < t₀ } 


	 we have


{ p ∧ x ≠ 0 ∧ x = t₀ } ??? { w₁ } x := x ÷ 2 { p ∧ x < t₀ } 
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where


w₁ ≡  wp ( x := x ÷ 2 , p ∧ x < t₀ )  
	 	 ≡ ( p ∧ x < t₀ ) [ x÷2 ⧸ x ]  
	 	 ≡ p [ x÷2 ⧸ x ] ∧ x÷2 < t₀  
	 	 ≡ ( z = x₀* y₀ – ( x÷2 ) * y ) ∧ x÷2 ≥ 0 ∧ x÷2 < t₀ 


• The missing statement has to take us from p ∧ x ≠ 0 ∧ x = t₀  to w₁.


• We're already ensured that the x÷2 ≥ 0  and x÷2 < t₀  clauses of w₁  hold:


• p implies x ≥ 0, so we know x÷2 ≥ 0 .


• x = t₀  and x ≥ 0 ∧ x ≠ 0 implies x÷2 < t₀ .


• We need code to go from ( z = x₀* y₀ – x* y )  in p to ( z = x₀* y₀ – ( x÷2 ) * y )  in w₁ .


• If x  is even, then ( x÷2 ) * ( 2* y ) = x* y. 


• So { p ∧ even ( x ) } y := 2* y ; { w₁ } x := x ÷ 2 { p } 


• But we don’t know that x is even. We could check for it:


if even ( x )  
	 then …code above, which requires x to be even … { w₁ }  
else 
	 { p ∧ x ≠ 0 ∧ odd ( x ) } ??? { w₁ } 		 	 // Missing code handles x odd case? 
fi 


• Or we could force x to be even:


{ p }  
if odd ( x )  then ??? ;  x := x–1  fi;	 	 	 // Missing code enables x := x-1 to maintain p 
{ p ∧ even ( x ) }  
… above code … 
{ w₁ } 


• But we already know what we can use before the decrement of x. 


• We've already written it once: it's z := z + y. 


• This completes the program:


{ x = x₀ ∧ y = y₀ ∧ x₀ ≥ 0 } 	  
z := 0 ;  
{ inv p ≡ z = x₀* y₀ – x * y ∧ x ≥ 0 } { bd x }  
while x ≠ 0 do 
	 if odd ( x )  then z := z + y ; x := x–1  fi; { p ∧ even ( x ) }  
	 y := 2* y ; x := x ÷ 2  
od 
{ p ∧ x = 0 } { z = x₀* y₀ } 


• This is a program that implements multiplication by repeated addition and bit-shifting. (Multi-
plication and division by 2  correspond to left and right bit shifting respectively.)  It does roughly 
log₂ ( x₀ ) iterations.
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Example 7: Faster Integer Square Root


• For another example of how a faster progress step speeds up a program, recall the integer 
square root problem (from the previous class). One change: Instead of n–x+y for the bound 
function, we will be able to use just y because we'll always decrease it (in addition to sometimes 
increasing x ).


{ inv p } { bd y } / /  where p ≡ x ² ≤ n < ( x+y ) ² ∧ y ≤ 1  
while y ≠ 1  
do { p ∧ y = y₀ }  
	 … code to write ... 
	 { p }  
od 
{ p ∧ y = 1 }  
{ x ² ≤ n < ( x+1 ) ² } 


• To make progress, we need to decrease y.  Instead of decrementing y by 1 as before, this time 
we'll divide it by 2:  Using y := y÷2 , makes for a binary-search-like method: We test the midpoint 
( x + y÷2 ) ²  against n and make it the new left or right endpoint accordingly.


• Here's a partial proof outline:


{ inv p ∧ y ≥ 1 } { bd y }  
while y ≠ 1  do 
	 if ( x + y÷2 ) ² > n  then 
	 	 	 { 0 ≤ x ² ≤ n < ( x + y÷2 ) ² ∧ y÷2 < t₀ }  
	 	 	 y := y÷2  
	 else	 // ( x + y÷2 ) ² ≤ n  
	 	 	 { 0 ≤ ( x + y÷2 ) ² ≤ n < ( x + y÷2 + ( y – y÷2 ) ) ² ∧ ( y – y÷2 ) < t₀ }  
	 	 	 x := x + y÷2 ; y := y – y÷2  
	 fi; { 0 ≤ x ² ≤ n < ( x+y ) ² ∧ y < t₀ }  
od 
{ 0 ≤ x ² ≤ n < ( x+y ) ² ∧ y ≥ 1 } ∧ y = 1 }  
{ 0 ≤ x ² ≤ n < ( x+1 ) ² } 


• Notes: The invariant implies y ≥ 1; that with the loop test y ≠ 1 implies y ≥ 2. That in turn implies 
that y÷2 and y – y÷2  are both < y, which ensures progress whether the if test succeeds or fails.
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