Finding Invariants

Part 2: Deleting Conjuncts; Adding Disjuncts; Examples
 CS 536: Science of Programming, Spring 2023

2023-03-29: pp. 5, 6, 9, 10

A. Why

- It is easier to write good programs and check them for defects than to write bad programs and then debug them.
- The hardest part of programming is finding good loop invariants.
- There are heuristics for finding them but no algorithms that work in all cases.
- Changing how we re-establish a loop invariant can greatly speed up the code.

B. Objectives

At the end of this class you should

- Know how to generate possible invariants using "Drop a conjunct" or "Add a disjunct" and to be familiar with some examples of these techniques.

C. Finding Invariants - Review

- An invariant needs to be easy to establish with initialization code, it needs to establish the postcondition (when the loop test fails), and it has to be an approximation to the $s p$ and $w p$ of the loop body.
- There exist various general heuristics for finding invariants, though no heuristic works easily in every situation. The general idea is to weaken the postcondition somehow; the kind of weakening determines the loop test.
- We've looked at getting candidate invariants by adding parameters to the postcondition.
- Replacing a Constant by a Variable is the simplest way to add a parameter.
- We take the postcondition q, find an occurrence of a constant c in it, and replace that occurrence with a new variable x. The result is a candidate invariant p where $p[c / x] \equiv q$.
- The loop header becomes while $x \neq c$, and initialization code has to set the loop variable x to a value that satisfies p.
- For loop termination, we make progress by changing x so that it's "closer" to c.
- For example, we saw changes to $q \equiv s=\operatorname{sum}(0, n)$ where we replaced 0 by i or n by j.
- More generally, we can add parameters by replacing one or more occurrences of an expression with one or more new variables. The expression which might be a constant or a constant-valued expression, or a variable, or any other kind of expression.
- An example was integer square root, where $x^{2} \leq n<(x+1)^{2}$ became $x^{2} \leq n<y^{2}$ by replacing $(x+1)^{2}$ with y, as opposed to $x^{2} \leq n<(x+y)^{2}$ when we replaced 1 with y.

D. Adding a Disjunct

- Adding a disjunct is another way to find possible invariants. Say we want to establish postcondition q. For various possible B, we can try

```
\(\{\operatorname{inv} q \vee B\}\)
while \(B\) do
    \(\{(q \vee B) \wedge B\}\)
    Loop body
    \(\{q \vee B\}\)
od
\(\{(q \vee B) \wedge \neg B\}\)
\{q\}
```

- Unlike first two methods, this one is very open-ended. The other techniques we've seen all take the postcondition and modify some identified part of it, but here we can use any testable predicate for B.
- Adding a disjunct lets us, e.g., generalize a relation like $i=n$ to $i \leq n$ (i.e., $i=n \vee i<n$). This is one way to understand a loop like $\{\operatorname{inv} i \leq n \ldots\}$ while $i<n$ do... od $\{i=n\}$: The invariant $i \leq n$ is the postcondition $i=n$ plus the disjunct $i<n$ added.

E. Deleting A Conjunct

- A different way to find possible invariants is Deleting a Conjunct. Say postcondition is q is a conjunction, $q_{1} \wedge q_{2} \ldots \wedge q_{n}$ where $n \geq 2$.
- We get n candidate invariants, each one being q less one conjunct, and the loop runs until the conjunct is true. For $k=1,2, \ldots, n$, let p_{k} be q less q_{k}; i.e., $p_{k} \equiv q_{1} \wedge \ldots q_{k-1} \wedge q_{k+1} \wedge \ldots q_{n}$.
- The candidate loop using p_{k} is

```
\(\left\{\operatorname{inv} p_{k}\right\} \quad / /\) where \(p_{k} \equiv q_{1} \wedge \ldots q_{k-1} \wedge q_{k+1} \wedge \ldots q_{n}\).
while \(\neg q_{k}\) do
    \(\left\{p_{k} \wedge \neg q_{k}\right\} \ldots\left\{p_{k}\right\}\)
od
\(\left\{p_{k} \wedge q_{k}\right\}\)
\{q\}
```

- Adding a disjunct is one way to view deleting a conjunct.
- Take $q_{1} \wedge q_{2}$ and add the disjunct ($q_{1} \wedge \neg q_{2}$). The result is $\left(q_{1} \wedge q_{2}\right) \vee\left(q_{1} \wedge \neg q_{2}\right) \Leftrightarrow q_{1}$, in effect deleting q_{2}.
- Another example: Converting $p \wedge q$ to $p \vee q$ can be viewed as a generalization of \wedge to \vee or as taking $p \wedge q$ to $(p \wedge q) \vee(p \wedge \neg q) \vee q$.

F. Examples of Programs and Their Invariants

- We won't cover all of these in class and you're not expected to know these in detail. It would be good to look at each example and ask yourself what technique is being used to find the invariant, the invariant relates to the bound function, and how progress toward termination is made.

Example 1: Linear Search of an Array

- This will be an example of deleting a conjunct.
- Precondition: Array b has at least n elements ($n \geq 0$) and the value x may or may not appear in b [0..n-1].
- Postcondition: We find the index k of the leftmost occurrence of x in $b[0 . . n-1]$. If x doesn't appear in $b[0 . . n-1]$, then $k=n$. Note in either case, x doesn't appear in $b[0 . . k-1]$. We can formalize this as

$$
0 \leq k \leq n \wedge x \notin b[0 . . k-1] \wedge(k<n \rightarrow b[k]=x)
$$

where $x \notin b[0 . . k-1]$ means $\forall 0 \leq k^{\prime}<k . x \neq b\left[k^{\prime}\right]$. Note if $k=0$, then $b[0 . . k-1]=b[0 . .-1]$, which is the empty sequence of values.

- Since $0 \leq k \leq n$ is short for $0 \leq k \wedge k \leq n$, there are four conjuncts we can try deleting, which yields four possible loop/test combinations. Three of them don't yield a usable invariant, but the fourth one does.
- Dropping the first conjunct, $0 \leq k$, forces $k<0$ in the loop body, which makes referencing b [k] illegal. This sounds really unpromising.
$\{\operatorname{inv} k \leq n \wedge x \notin b[0 . . k-1] \wedge(k<n \rightarrow b[k]=x)\}$ while $0>k d o \ldots$
- Dropping $k \leq n$ has the symmetric problem: $k>n$ in the loop body makes $b[k]$ erroneous.
$\{\operatorname{inv} 0 \leq k \wedge x \notin b[0 . . k-1] \wedge(k<n \rightarrow b[k]=x)\}$ while $k>n d o . .$.
[Start rewrite in v.2] ${ }^{1}$
- Dropping $x \notin b[0 . . k-1]$ means we'd use while $x \in b[0 . . k-1]$. First problem: How do we initialize k ? Using $k:=0$ makes $x \notin$ the empty segment $b[0 . . k-1]$. Using $k:=1$ requires $b[0]=x$, which can be false, and using $k:=n$ requires us to know $x \in b[0 . . n-1$], which we don't.
- Dropping the fourth conjunct, $k<n \rightarrow b[k]=x$, however, works well.
$\{$ inv $0 \leq k \leq n \wedge x \notin b[0 . . k-1]\}$ while $\neg(k<n \rightarrow b[k]=x)$ do ...
- Now we can rewrite $\neg(k<n \rightarrow b[k]=x)$ as $(k<n \& \& b[k] \neq x)$, where $\& \&$ is the short-circuiting operator found in C etc.: $B_{1} \& \& B_{2} \equiv$ if B_{1} then B_{2} else F fi.

[^0]- Initialization is easy: $k:=0$, since its $w p$ is $0 \leq 0 \leq n \wedge x \notin b$ [0... $0-1$]. The only nontrivial part is $n \geq 0$, which will be the initial precondition.

[End rewrite]

- Since k starts out at 0 and must increase to n, a progress step of $k:=k+1$ seems pretty reasonable. The loop body so far is

$\{p \wedge k<n \wedge b[k] \neq x\}$	// Invariant^ loop test
???	// Code to write
$\{0 \leq k+1 \leq n \wedge x \notin b[0 . . k+1-1]\}$	//wp of progress step
$k:=k+1$	// Progress step
$\{0 \leq k \leq n \wedge x \notin b[0 . . k-1]\}$	// Invariant

where ??? is code that must take us from the precondition of the loop body to the $w p$ of the loop body. But it turns out that the precondition implies the $w p$, so no code is needed.

- Convergence is easy: Since p includes $k \leq n$ and k gets incremented, we can use $n-k$. So the whole loop is

```
\(\{n \geq 0\}\)
\(k:=0\);
\(\{\operatorname{inv} p \equiv 0 \leq k \leq n \wedge x \notin b[0 . . k-1] \wedge n-k \geq 0\}\{b d n-k\}\)
while \(k<n \& \& b[k] \neq x\) do
    \(\left\{(0 \leq k \leq n \wedge x \notin b[0 . . k-1] \wedge n-k \geq 0) \wedge k<n \wedge b[k] \neq x \wedge n-k=t_{0}\right\}\)
    \(\left\{0 \leq k+1 \leq n \wedge x \notin b[0 . . k+1-1] \wedge n-(k+1)<t_{0}\right\}\)
    \(k:=k+1\)
    \(\left\{(0 \leq k \leq n \wedge x \notin b[0 . . k-1]) \wedge n-k<t_{0}\right\}\)
od
\(\{0 \leq k \leq n \wedge x \notin b[0 . . k-1] \wedge(k<n \rightarrow b[k]=x)\}\)
```


Example 2: Binary Search Example (Version 1)

- Binary search is a nice example of a loop that isn’t a for loop. For termination, a loose upper bound (the distance between the endpoints) suffices.
- Binary search has a small subtlety about what to do when the left and right endpoints are adjacent: Because of integer division, midpoint $=\left(L^{+}(L+1)\right) \div 2=L$, which implies that the distance from L to the midpoint doesn't always decrease.
- We'll see a couple of ways to handle this.
- The first way uses a sentinel value, and when $R=L+1$, the loop halts.
- The second way allows $R=L-1$, and $R<L$ causes halting.
- The differences between the two approaches makes the postconditions different, which in turn makes the invariants different, and (as it turns out) the loop test is different.

Binary Search version 1

- Program specification:\{ $\left.q_{0}\right\}$ Binsearch $(b, x, n)\{r\}$ where
- $q_{0} \equiv \operatorname{Sorted}(b, n) \wedge 1 \leq n<|b| \wedge b[0] \leq x<b[n]$ (writing $|b|$ for size (b))
- Sorted $(b, n) \equiv \forall 0 \leq k<n-1<|b|-1 . b[k] \leq b[k+1]$
- $r \equiv 0 \leq L<n \wedge(b[L]=x \vee b[L]<x<b[L+1]) \wedge(f o u n d \leftrightarrow x=b[L])$
- Having $x<b[n$] means b [n] is a sentinel value, not an actual data value.
- Since b and n are named constants, Sorted (b, n) holds throughout the program, so we'll omit explicitly writing it in the conditions.
- For our invariant, let's generalize the loop [2023-03-29] postcondition $b[L] \leq x<b[L+1$] to $b[L] \leq x<b[R]$ where $0 \leq L<R \leq n$. (We replaced the expression $L+1$ by R.) In addition, let's weaken the postcondition's (found $\leftrightarrow x=b[L]$) to just implication:(found $\rightarrow x=b[L]$); this lets us have found $=F$ while we search. For the bound function, we can use $R-L$; it's a loose termination bound but that's okay.
- For the loop body, we'll begin by calculating the midpoint $m:=(L+R) \div 2$ (with truncating division). The search succeeds if $b[m]=x$; we can set found to true and L to m and exit the loop.
- The loop so far is

```
\(\{q \equiv \operatorname{Sorted}(b, n) \wedge n \geq 1 \wedge b[0] \leq x<b[n]\}\)
\(L:=0 ; R:=n\);found \(:=F\);
\(\{\operatorname{inv} p \equiv 0 \leq L<R \leq n \wedge(b[L]=x \vee b[L]<x<b[R]) \wedge(\) found \(\rightarrow x=b[L])\}\)
\(\{\) bd \(R-L\}\) while \(\neg\) found \(\wedge R \neq L+1\) do
    \(\left\{p \wedge \neg\right.\) found \(\left.\wedge R \neq L+1 \wedge R-L=t_{0}\right\}\)
    \(m:=(L+R) \div 2\);
    \(\left\{p_{1} \equiv p \wedge \neg\right.\) found \(\left.\wedge R \neq L+1 \wedge R-L=t_{0} \wedge m=(L+R) \div 2\right\}\)
    if \(b[m]=x\) then
        \(\left\{p_{1} \wedge b[m]=x\right\}\) found \(:=T ; L:=m ; R:=L+1\left\{p \wedge R-L<t_{0}\right\}^{2}[2023-03-29]\)
    else
        \(\left\{p_{1} \wedge b[m] \neq x\right\}\)... code to be filled in \(\ldots\left\{p \wedge R-L<t_{0}\right\}\)
    fi
    \(\left\{p \wedge R-L<t_{0}\right\}\)
od
\(\{p \wedge(\) found \(\vee R=L+1)\}\)
\(\{0 \leq L<n \wedge(b[L]=x \vee b[L]<x<b[L+1]) \wedge(f o u n d \leftrightarrow x=b[L])\}\)
```

- It's easy to verify that loop initialization is correct. Loop termination is also correct: Either found is true and $b[L]=x$, or found is false, $R=L+1$, and $b[L]<x<b[L+1]$, indicating the search has indeed failed.

[^1]- The loop body calculates the midpoint m and checks b [m] against x. If $b[m$] $=x$, the search has succeeded and we set L, R, and found accordingly.
- If $b[m] \neq x$, then there are two ways to make progress toward termination: $L:=m$ and $R:=m$. Both assignments have $p \wedge R-L<t_{0}$ as the postcondition, so we can calculate the $w p$ of each assignment and see if the current precondition $p_{1} \wedge b[m] \neq x$ is sufficient. We get

$$
\begin{aligned}
& \left\{p_{1} \wedge b[m] \neq x\right\} \ldots\left\{p[m / L] \wedge R-m<t_{0}\right\} L:=m\left\{p \wedge R-L<t_{0}\right\} \\
& \left\{p_{1} \wedge b[m] \neq x\right\} \ldots\left\{p[m / R] \wedge m-L<t_{0}\right\} R:=m\left\{p \wedge R-L<t_{0}\right\}
\end{aligned}
$$

- Expanding,
- $p_{1} \wedge b[m] \neq x \equiv p \wedge \neg$ found $\wedge R \neq L+1 \wedge R-L=t_{0} \wedge m=(L+R) \div 2 \wedge b[m] \neq x$
- Since $p \equiv 0 \leq L<R \leq n \wedge(b[L]=x \vee b[L]<x<b[R]) \wedge($ found $\rightarrow x=b[L])$
- Substituting, $p[m / L] \equiv 0 \leq m<R \leq n \wedge(b[m]=x \vee b[m]<x<b[R]) \wedge(f o u n d \rightarrow x=b[m])$
- And $p[m / R] \equiv 0 \leq L<m \leq n \wedge(b[L]=x \vee b[L]<x<b[m]) \wedge(f o u n d \rightarrow x=b[L])$
- Comparing (and omitting detailed calculations), we see that to imply the $w p$ of $L:=m$, the precondition $p_{1} \wedge b[m] \neq x$ is not strong enough. We need to add ($m<R \wedge b[m] \leq x \wedge R-m<t_{0}$).
- Similarly, to imply the $w p$ of R := m we need to add ($L<m \wedge b[m]>x \wedge m-L<t_{0}$).
- We can determine $b[m]<x$ and $b[m]>x$ with a test (we already know $b[m] \neq x$).
- It turns out that $L<R$ [2023-03-29] and $R \neq L+1$ imply all four of $m<R, R-m<t_{0}, L<m$, and $m-$ $L<t_{0}$, so the $w p$'s are satisfied ${ }^{3}$.
- Adding the test for $b[m]<$ or $>x$ gives us a loop body partially outlined ${ }^{4}$ as

```
\(\{q \equiv \operatorname{Sorted}(b, n) \wedge n \geq 1 \wedge b[0] \leq x<b[n]\}\)
\(L:=0 ; R:=n\); found \(:=F\);
\(\{\operatorname{inv} p \equiv 0 \leq L<R \leq n \wedge((b[L]=x \vee b[L]<x<b[R]) \wedge(f o u n d \rightarrow x=b[L])\}\)
\(\{\) bd \(R-L\}\) while \(\neg\) found \(\wedge R \neq L+1\) do
    \(\left\{p \wedge \neg\right.\) found \(\left.\wedge R \neq L+1 \wedge R-L=t_{0}\right\}\)
    \(m:=(L+R) \div 2\);
    \(\left\{p_{1} \equiv p \wedge \neg\right.\) found \(\left.\wedge R \neq L+1 \wedge R-L=t_{0} \wedge m=(L+R) \div 2\right\}\)
    if \(b[m]=x\) then
        found:=T; \(L:=m\)
    else if \(b[m]<x\) then
        \(L:=m\)
    else //b[m]>x
        \(R:=m\)
    fi fi
    \(\left\{p \wedge R-L<t_{0}\right\}\)
od
```

${ }^{3}$ Quick argument for $L<m<R$: Since $L+2 \leq R, m=(L+R) \div 2 \geq(2 * L+2) \div 2=L+1$ and also $\leq(2 * R-2) \div 2 \leq R-1$.
${ }^{4} \mathrm{~A}$ nice at-home activity is to completely expand the annotation.

```
\(\{p \wedge(\) found \(\vee R=L+1)\}\)
\(\{0 \leq L<n \wedge((b[L]=x \vee b[L]<x<b[L+1])) \wedge(f o u n d \leftrightarrow x=b[L])\}\)
```


Example 3: Traditional Binary Search

- For contrast, let's look at a traditional version of binary search, where we stop if $L>R$.
- We won't have a sentinel value in b, so $b[n-1$] is the last data value, and the precondition becomes Sorted (b, n) ^ $n \geq 1 \wedge b[0] \leq x \leq b[n-1]$.
- The postcondition will be different: If we end with $R<L$ (in particular $R=L-1$) then the search has failed, otherwise $b[L]=x$ as before. Again, to distinguish between failure and success, we'll use found to stop the search. At termination,

$$
-1 \leq L-1 \leq R<n \wedge(\text { found } \rightarrow b[L]=x) \wedge(\neg \text { found } \rightarrow x \notin b[0 . . n-1])
$$

- $-1 \leq L-1 \leq R<n$ summarizes the properties and relationships of L and R, namely $0 \leq L<n$ and either $L \leq R<n$ or $R=L-1$.
- For the invariant, we want to weaken (\neg found $\rightarrow x \notin b[0 . . n-1$) to something that will be true during the search. We only change L and R in ways that don't alter "Is x in $b[L . . R]$?" If $R<L$, we know the search has failed because $b[L . . R]=\varnothing$. We should terminate the loop if found or ($R<L \wedge \neg$ found).
- Now for a bound function. We can't use $R-L$ because it can be -1 . We can almost use $R-L+1$, except that when find $b[m]=x$, all we do is set found $:=T$ and $L:=m$, which doesn't necessarily decrease $R-L+1$. To take found into account, define $|F|=0$ and $|T|=1$, then the bound function can be $R-L+1+\mid \neg$ found \mid.
- Altogether, we get the following sketch for our binary search:

```
\(\{n>0 \wedge\) Sorted \((b, n) \wedge b[0] \leq x \leq b[n-1]\} L:=0 ; R:=n-1\);found: \(:=F\);
\(\{\operatorname{inv} q \equiv-1 \leq L-1 \leq R<n \wedge(\) found \(\rightarrow b[L]=x) \wedge(x \in b[0 . . n-1] \leftrightarrow x \in b[L . . R])\}\)
\{bd \(R-L+1+\mid \neg\) found \(\mid\}\)
while \(\neg\) found \(\wedge L \leq R\) do
    \(m:=(L+R) \div 2\);
    \(\left\{q \wedge \neg\right.\) found \(\left.\wedge L \leq R \wedge t=t_{0} \wedge m=(L+R) \div 2\right\} / /\) where \(t \equiv R-L+1+\mid \neg\) found \(\mid\)
    if \(b[m]=x\) then
        found:=T;L:=m
    else if \(b[m]<x\) then
        \(L:=m+1\)
    else // \(b[m]>x\)
        \(R:=m-1\)
    fi fi \(\left\{q \wedge t<t_{0}\right\}\)
od
\(\{q \wedge(\) found \(\vee L>R)\}\)
\(\{-1 \leq L-1 \leq R<n \wedge(f o u n d \rightarrow b[L]=x) \wedge(\neg\) found \(\rightarrow x \notin b[0 . . n-1])\}\)
```


Example 4: Match Across Two Arrays

- We saw the three-array version of this problem when we looked at sequential nondeterminism. The context there was finding partial solutions and combining them nondeterministically. This time, we'll concentrate on the invariant and on termination. The arrays can have different lengths, and this is reflected in the bound function. To cut down on notation, we'll just match two arrays instead of three arrays.
- We start with two sorted arrays b_{1} and b_{2} and want to find the least indexes i and j that make $b_{1}[i]=b_{2}[j]$; if no such values exist, we halt with $i=n \vee j=m$ where $n=\left|b_{1}\right|$ and $m=\left|b_{2}\right|$.
- We'll use a bound function of $t(i, j) \equiv(n-i)+(m-j)$. Defining it as an actual function lets us write, e.g., $t(i+1, j)$ later on, instead of $((n-i)+(m-j))[i+1 / i]$.
- We can initialize i and j to 0 , increment at least one of them with each iteration and ensure that the invariant implies $0 \leq i \leq n \wedge 0 \leq j \leq m$.
- We aren’t going to change b_{1} or b_{2}, so we'll specify $\operatorname{Sorted}\left(b_{1}, n\right) \wedge \operatorname{Sorted}\left(b_{2}, m\right)$ in the initial precondition, but after that, omit it as being implicit.

```
Sorted (b,n)\equiv\forall0\leqk\leqn-2.b[k]\leqb[k+1]
```

- It wasn't mentioned earlier, but that program stopped with the first match it found, and so will this one. We can formalize the "least indexes i and j " part of the postcondition as a property that says no value to the left of $b_{1}[i]$ matches any value to the left of $b_{2}[j]$:

$$
\operatorname{noMatch}(i, j) \equiv \forall 0 \leq i^{\prime}<i \leq n . \forall 0 \leq j^{\prime}<j \leq m . b_{1}\left[i^{\prime}\right] \neq b_{2}\left[j^{\prime}\right]
$$

- We also define $\operatorname{InRange}(i, j) \equiv 0 \leq i \leq n \wedge 0 \leq j \leq m$, so our postcondition is
$q \equiv \operatorname{InRange}(i, j) \wedge$ noMatch $(i, j) \wedge\left(i<n \wedge j<m \rightarrow b_{1}[i]=b_{2}[j]\right)$
- To get an invariant, we'll drop the third conjunct ($i<n \wedge j<m \rightarrow b_{1}[i]=b_{2}[j]$).

```
{inv p\equivInRange (i,j)^ noMatch(i,j)}{bd t(i,j)}
while }\neg(i<n\wedgej<m->\mp@subsup{b}{1}{}[i]=\mp@subsup{b}{2}{}[j]
do ...
od
{p^(i<n^j<m->\mp@subsup{b}{1}{}[i]=\mp@subsup{b}{2}{}[j])}{q}
```

- As in linear search (Example 1), we'll rewrite the test as $B \equiv\left(i<n \wedge j<m \& \& b_{1}[i] \neq b_{2}[j]\right)$. As a conditional expression, this is if $i<n \wedge j<m$ then $b_{1}[i] \neq b_{2}[j]$ else F fi.
- Let's consider loop initialization. As we begin, noMatch (0,0) is all we know about the arrays, so we should set i and j to zero.

```
\(\left\{n \geq 0 \wedge m \geq 0 \wedge \operatorname{Sorted}(b, n) \wedge \operatorname{Sorted}\left(b_{2}, m\right)\right\}\)
\(i:=0 ; j:=0\)
\{inRange \((0,0) \wedge\) noMatch \((0,0)\}\)
\(\{\operatorname{inv} p \equiv \operatorname{InRange}(i, j) \wedge\) noMatch \((i, j)\}\{b d t(i, j) \equiv(n-i)+(m-j)\}\)
while \(i<n \wedge j<m \& \& b_{1}[i] \neq b_{2}[j]\)
do ...
```

```
od
{q\equivp^b} // where b\equivi<n^j<m->\mp@subsup{b}{1}{}[i]=\mp@subsup{b}{2}{}[j]
```

- The termination requirement that the invariant imply $t(i, j) \geq 0$ follows from InRange (i, j).
- To get closer to termination, we'll use either $i:=i+1$ or $j:=j+1$. So our loop body will include finding code taking us from the invariant and loop test to the $w p$ of each progress statement. With invariant $p \equiv \operatorname{InRange}(i, j) \wedge$ noMatch (i, j), and $\neg B \Leftrightarrow i<n \wedge j<m \& \& b_{1}[i] \neq b_{2}[j]$, calculating the $w p$'s of the progress steps gives us

```
{p\wedget(i,j)=to^\negB} // inv, bound, and test
???
{InRange(i+1,j)^ noMatch(i+1,j)^t(i+1,j)<\mp@subsup{t}{0}{}}\quad//wp of progress step
i:=i+1 // increase i to make progress
{p\wedget<\mp@subsup{t}{0}{}}\quad// inv and decreased bound
```

and

```
{p\wedget(i,j)=to^\negB} // inv, bound, and test
???
{InRange(i,j+1)^ noMatch(i,j+1)^t(i,j+1)<\mp@subsup{t}{0}{}}\quad//wp of progress step
j:=j+1 // increase j to make progress
{p\wedget<\mp@subsup{t}{0}{}}\quad// inv and decreased bound
```

- The $w p$ range requirements are easy: InRange ($i+1, j$) and InRange $(i, j+1)$ are both implied by InRange $(i, j) \wedge \ldots i<n \wedge j<m$. The bound requirements with $t(i+1, j)<t_{0}$ and $t(i, j+1)<t_{0}$, where $t_{0}=t(i, j)$, are established by $i:=i+1$ and $j:=j+1$ respectively.
- So what remains is "How do we get from $p \wedge \neg B$ to $\operatorname{noMatch}(i+1, j)$ or to $\operatorname{NoMatch}(i, j+1)$?" The invariant tells us that noMatch (i, j) holds, so no value in $b_{1}[0 . . i-1]$ equals any value in $b_{2}[0 . . j-1]$. Certainly if $b_{1}[i]=b_{2}[j]$, then we've found a match.
- If $b_{1}[i]>b_{2}[j]$, which is $\geq b_{2}[0 . . j-1]$, then no value in $b_{1}[0 . . i]$ equals any value in $b_{2}[0 . . j-1]$, so noMatch ($i+1, j$) holds. Note we can't say noMatch ($i+1, j+1$) holds because we don't know whether $b_{1}[i]$ is > , <, or $=b_{2}[j-1]$.
- Symmetrically, if $b_{1}[j]>b_{2}[i]$, which is $\geq b_{1}[0 . . i-1]$, then no value in $b_{2}[0 . . j]$ equals any value in $b_{1}[0 . . i-1]$, so noMatch $(i, j+1)$ holds. We can't say noMatch $(i+1, j+1)$ because we don't know whether $b_{2}[j]$ is $>$, <, or $=b_{1}[i-1]$.
- As partial solutions, we have (the nondeterministic)

$$
\begin{aligned}
& \{p \wedge \neg B\} \text { if } b_{1}[i]<b_{2}[j] \rightarrow\{p[i+1 / i]\} i:=i+1 \text { fi }\{p\} \text { and } \quad[2023-03-29] \text { tests } \\
& \{p \wedge \neg B\} \text { if } b_{1}[i]>b_{2}[j] \rightarrow\{p[j+1 / j]\} j:=j+1 \text { fi }\{p\}
\end{aligned}
$$

- Combining these gives us

$$
\begin{aligned}
& \{p \wedge \neg B\} \\
& \text { if } b_{1}[i]<b_{2}[j] \rightarrow\{p[i+1 / i]\} i:=i+1 \quad[2023-03-29] \text { tests } \\
& \square b_{1}[i]>b_{2}[j] \rightarrow\{p[j+1 / j]\} j:=j+1 \\
& f i \\
& \{p\}
\end{aligned}
$$

- We can make this if-fi the body of a loop that runs while $b_{1}[i] \neq b_{2}[j]$, and we know the if-fi won't cause a domain error (where neither of the tests hold). For a deterministic version, since we know $b_{1}[i] \neq b_{2}[j]$, then if $b_{1}[i]>b_{2}[j]$ is false, then $b_{2}[j]>b_{1}[i]$ must hold. We get
$\{p \wedge \neg B\}$ if $b_{1}[i]<b_{2}[j]$ then $i:=i+1$ else $j:=j+1$ fi $\{p\}$ [2023-03-29] test
- Adding this to the loop framework (initialization and test), we get

$$
\begin{aligned}
& \left\{n \geq 0 \wedge m \geq 0 \wedge \operatorname{Sorted}(b, n) \wedge \operatorname{Sorted}\left(b_{2}, m\right)\right\} \\
& i:=0 ; j:=0 \\
& \{\operatorname{inv} p \equiv \operatorname{InRange}(i, j) \wedge \text { noMatch }(i, j) \wedge n-i+m-j \geq 0\}\{b d n-i+m-j\} \\
& \text { while } \neg B \text { do }\left\{p \wedge \neg B \wedge t(i, j)=t_{0}\right\} \quad \| \neg B \Leftrightarrow i<n \wedge j<m \& \& b_{1}[i] \neq b_{2}[j] \\
& \text { if } b_{1}[i]<b_{2}[j] \text { then [2023-03-29] test } \\
& \left\{p \wedge \neg B \wedge t(i, j)=t_{0} \wedge b_{1}[i]>b_{2}[j]\right\} \\
& \left\{(p \wedge \neg B)[i+1 / i] \wedge t(i+1, j)<t_{0}\right\} \\
& i:=i+1 \\
& \left\{p \wedge t(i, j)<t_{0}\right\}
\end{aligned}
$$

- This program can easily be extended to 3 or more arrays.

Example 5: Multiply Integers x and y (version 1: Slowly)

- Our specification is $\left\{x=x_{0} \wedge y=y_{0}\right\} S\left\{z=x_{0}{ }^{*} y_{0}\right\}$. (x_{0} and y_{0} are the initial values of x and y.)
- When the loop ends, we want $z=x_{0}{ }^{*} y_{0}$.
- When the loop begins, we have $x_{0}{ }^{*} y_{0}=x^{*} y$ because $x=x_{0} \wedge y=y_{0}$.
- To get an invariant, define z so that it covers both cases: $z=x_{0}{ }^{*} y_{0}-x * y$.
- When the loop begins, $x=x_{0}$ and $y=y_{0}$, so $x_{0}{ }^{*} y_{0}=x^{*} y$, so we'll set $z:=0$.
- We can end the loop if x or $y=0$, because $z=x_{0}{ }^{*} y_{0}-x^{*} y=x_{0}{ }^{*} y_{0}-0$.
- Let's assume $x_{0} \geq 0$ initially, so that we can maintain $0 \leq x \leq x_{0}$ and make progress toward termination by moving x from x_{0} toward 0 . For the progress step, let's use $x:=x-1$.
- Combining everything so far with $x \neq 0$ as the loop test gives us

$$
\begin{aligned}
& \left\{x=x_{0} \geq 0 \wedge y=y_{0}\right\} z:=0 ; \\
& \left\{\text { inv } p \equiv x \geq 0 \wedge z=x_{0} * y_{0}-x^{*} y\right\}\{\boldsymbol{b} \boldsymbol{d} x\} \\
& \text { while } x \neq 0
\end{aligned}
$$

```
do
    \(\{p \wedge x \neq 0\}\)
    ...code to write ...;
    \(\{w\} \quad / /\) where \(w \equiv w p(x:=x-1, p)\)
    \(x:=x-1\{p\}\)
od
\(\{p \wedge x=0\}\left\{z=x_{0}{ }^{*} y_{0}\right\}\)
```

- Above, $w \equiv w p(x:=x-1, p) \equiv p[x-1 / x] \equiv\left(z=x_{0}{ }^{*} y_{0}-(x-1) * y \wedge x-1 \geq 0\right)$
- The loop body precondition $p \wedge x \neq 0 \equiv\left(z=x_{0}{ }^{*} y_{0}-x^{*} y \wedge x \geq 0\right) \wedge x \neq 0$
- Note p implies $z=x_{0}{ }^{*} y_{0}-x^{*} y$, but w requires $z=x_{0}{ }^{*} y_{0}-(x-1)^{*} y$.
- So we don't have $p \wedge x \neq 0 \rightarrow w$, so we need some code between them to establish this.
- Recall one way to change $z=e_{1}$ to $z=e_{2}$ is $z:=z+\left(e_{2}-e_{1}\right)$. Here, $e_{2}-e_{1}$ is $\left(x_{0}{ }^{*} y_{0}-x * y\right)-$ $\left(x_{0}{ }^{*} y_{0}-(x-1) * y\right)$, which $=x^{*} y-(x-1) * y$, which $=y$.
- So $\{p \wedge x \neq 0\} z:=z+y\{w\} x:=x-1\{p\}$
- Our program is

```
\(\left\{x=x_{0} \geq 0 \wedge y=y_{0}\right\} z:=0 ;\)
\(\left\{\boldsymbol{i n v} p \equiv z=x_{0}{ }^{*} y_{0}-x^{*} y \wedge x \geq 0\right\}\{\boldsymbol{b} \boldsymbol{d} x\}\)
while \(x \neq 0\) do
        \(\left\{p \wedge x \neq 0 \wedge x=t_{0}\right\}\left\{p[x-1 / x][z+y / z] \wedge x-1<t_{0}\right\}\)
        \(z:=z+y ;\left\{p[x-1 / x] \wedge x-1<t_{0}\right\}\)
        \(x:=x-1\left\{p \wedge x<t_{0}\right\}\)
od
\(\{p \wedge x=0\}\left\{z=x_{0}{ }^{*} y_{0}\right\}\)
```

- Partial correctness of this outline is easy to verify. For total correctness, we need to make sure x can be a bound expression. This is easy: The invariant contains $x \geq 0$ as a conjunct, and the loop body always decrements x.

Example 6: Multiply Integers x and y (version 2: More Quickly)

- The program just finished to multiply integers has a runtime linear in x_{0}.
- The Progress Step Governs the Runtime: We can get a faster multiplication program if we make progress toward $x=0$ more quickly. What if we try $x:=x \div 2$?
- We can still use x as the bound expression: The invariant still implies $x \geq 0$, and if $x \neq 0$, then $x:=x \div 2$ brings us strictly closer to 0 .
- Instead of a loop body of
- $\left\{p \wedge x \neq 0 \wedge x=t_{0}\right\} z:=z+y ; x:=x-1\left\{p \wedge x<t_{0}\right\}$
we have

$$
\left\{p \wedge x \neq 0 \wedge x=t_{0}\right\} ? ? ?\left\{w_{1}\right\} x:=x \div 2\left\{p \wedge x<t_{0}\right\}
$$

where

$$
\begin{aligned}
w_{1} \equiv & w p\left(x:=x \div 2, p \wedge x<t_{0}\right) \\
& \equiv\left(p \wedge x<t_{0}\right)[x \div 2 / x] \\
& \equiv p[x \div 2 / x] \wedge x \div 2<t_{0} \\
& \equiv\left(z=x_{0}^{*} y_{0}-(x \div 2)^{*} y\right) \wedge x \div 2 \geq 0 \wedge x \div 2<t_{0}
\end{aligned}
$$

- The missing statement has to take us from $p \wedge x \neq 0 \wedge x=t_{0}$ to w_{1}.
- We're already ensured that the $x \div 2 \geq 0$ and $x \div 2<t_{0}$ clauses of w_{1} hold:
- p implies $x \geq 0$, so we know $x \div 2 \geq 0$.
- $x=t_{0}$ and $x \geq 0 \wedge x \neq 0$ implies $x \div 2<t_{0}$.
- We need code to go from ($z=x_{0}{ }^{*} y_{0}-x^{*} y$) in p to ($\left.z=x_{0}{ }^{*} y_{0}-(x \div 2)^{*} y\right)$ in w_{1}.
- If x is even, then $(x \div 2) *\left(2^{*} y\right)=x^{*} y$.
- So $\{p \wedge \operatorname{even}(x)\} y:=2 * y ;\left\{w_{1}\right\} x:=x \div 2\{p\}$
- But we don't know that x is even. We could check for it:

```
if even( }x\mathrm{ )
    then ...code above, which requires x to be even ... {\mp@subsup{w}{1}{}}
else
    {p\wedgex\not=0^odd(x)}???{\mp@subsup{w}{1}{}}\quad// Missing code handles }x\mathrm{ odd case?
fi
```

- Or we could force x to be even:
\{p\}
if odd (x) then ???; $x:=x-1$ fi; $\quad / /$ Missing code enables $x:=x-1$ to maintain p
$\{p \wedge \operatorname{even}(x)\}$
... above code ...
$\left\{w_{1}\right\}$
- But we already know what we can use before the decrement of x.
- We've already written it once: it's $z:=z+y$.
- This completes the program:

```
\(\left\{x=x_{0} \wedge y=y_{0} \wedge x_{0} \geq 0\right\}\)
\(z:=0\);
\(\left\{\boldsymbol{i n v} p \equiv z=x_{0}{ }^{*} y_{0}-x^{*} y \wedge x \geq 0\right\}\{\boldsymbol{b d} x\}\)
while \(x \neq 0\) do
    if odd \((x)\) then \(z:=z+y ; x:=x-1\) fi; \(\{p \wedge \operatorname{even}(x)\}\)
    \(y:=2^{*} y ; x:=x \div 2\)
od
\(\{p \wedge x=0\}\left\{z=x_{0}{ }^{*} y_{0}\right\}\)
```

- This is a program that implements multiplication by repeated addition and bit-shifting. (Multiplication and division by 2 correspond to left and right bit shifting respectively.) It does roughly $\log _{2}\left(x_{0}\right)$ iterations.

Example 7: Faster Integer Square Root

- For another example of how a faster progress step speeds up a program, recall the integer square root problem (from the previous class). One change: Instead of $n-x+y$ for the bound function, we will be able to use just y because we'll always decrease it (in addition to sometimes increasing x).

```
{invp}{bdy} // where p\equiv\mp@subsup{x}{}{2}\leqn<(x+y)}\mp@subsup{}{}{2}\wedgey\leq
while }y\not=
do {p\wedgey= \mp@subsup{y}{0}{}}
    ... code to write ...
    {p}
od
{p^y=1}
{\mp@subsup{x}{}{2}\leqn<(x+1)}\mp@subsup{)}{}{2}
```

- To make progress, we need to decrease y. Instead of decrementing y by 1 as before, this time we'll divide it by 2 : Using $y:=y \div 2$, makes for a binary-search-like method: We test the midpoint $(x+y \div 2)^{2}$ against n and make it the new left or right endpoint accordingly.
- Here's a partial proof outline:

```
\(\{\boldsymbol{i n v} p \wedge y \geq 1\}\{\boldsymbol{b d} y\}\)
while \(y \neq 1\) do
        if \((x+y \div 2)^{2}>n\) then
            \(\left\{0 \leq x^{2} \leq n<(x+y \div 2)^{2} \wedge y \div 2<t_{0}\right\}\)
            \(y:=y \div 2\)
    else \(\quad /(x+y \div 2)^{2} \leq n\)
        \(\left\{0 \leq(x+y \div 2)^{2} \leq n<(x+y \div 2+(y-y \div 2))^{2} \wedge(y-y \div 2)<t_{0}\right\}\)
            \(x:=x+y \div 2 ; y:=y-y \div 2\)
        fi; \(\left\{0 \leq x^{2} \leq n<(x+y)^{2} \wedge y<t_{0}\right\}\)
od
\(\left.\left\{0 \leq x^{2} \leq n<(x+y)^{2} \wedge y \geq 1\right\} \wedge y=1\right\}\)
\(\left\{0 \leq x^{2} \leq n<(x+1)^{2}\right\}\)
```

- Notes: The invariant implies $y \geq 1$; that with the loop test $y \neq 1$ implies $y \geq 2$. That in turn implies that $y \div 2$ and $y-y \div 2$ are both $<y$, which ensures progress whether the if test succeeds or fails.

[^0]: ${ }^{1}$ In class I said we could initialize $k=0$ but that's backward - we need $x \in b[0 . . k-1]$, not \notin.

[^1]: ${ }^{2}$ In class I said I thought this was a bug because we don't know $x \neq b[L+1]$, but now I remember that that's why things are written as $b[L]=x$ OR $b[L]<x<b[R]$.

