
 CS 536: Science of Programming	 Sat 2023-04-29, 14:00	 Class 19

  Finding Invariants

  Part 1: Adding Parameters by Replacing Constants by variables

  CS 536: Science of Programming, Spring 2023

2023-03-27 pp. 3, 5, 6; 2023-04-29 pp. 1, 4

A. Why

• It is easier to write good programs and check them for defects than to write bad programs and
then debug them.

• The hardest part of programming is finding good loop invariants.

• There are heuristics for finding them but no algorithms that work in all cases.

• Changing how we re-establish an invariant can greatly speed up the code.

B. Objectives

At the end of this class you should

• Know how to generate possible invariants using “replace a constant by a variable” or more gen-
erally “add or modify a parameter” and to be familiar with some examples of these techniques.

C. Finding Invariants

• The key (and often, hardest) part of writing correct programs involves finding invariants for our
loops.

• We need to find an invariant and loop test that establishes the desired postcondition:
{ inv p } while B do ??? od { p ∧ ¬ B } { q }

• The invariant should be easy to establish with some easy initialization code: { p₀ }S₀ { p }.

• The loop body maintains the invariant: { p ∧ B } loop body { p }.

• When the loop terminates, the postcondition we want holds: p ∧ ¬ B→ q. (Sometimes you
have finalization code that you need, then you need { p ∧ ¬ B } code { q }.

• Note: p ∧ ¬ B is stronger than q but p itself is weaker than q ([2023-04-29] i.e., q→ p). This sug-
gests the main way people find invariants: Take the postcondition q and weaken it somehow. In
particular, weaken it in a way that combining with ¬ B gives us q.

• However, it's not required that p ∧ B→ ¬ q. If ¬ B is too strong, we could be missing out on some
states in q, which would make our loop too restrictive in the states it terminates in. So finding
the right B is a balancing act.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20231

 CS 536: Science of Programming	 Sat 2023-04-29, 14:00	 Class 19

General Heuristics for Finding Invariants

• There exist various general heuristics for finding invariants. Not every way applies to every
situation, but all have the pattern of weakening the postcondition, with the loop test shaped by
how and how much we weaken the postcondition.

Add More States to q

• Adding states to q will weaken it. We want B to include the states that are added, and ¬ B
avoids those states so that p ∧ ¬ B only includes states from q. We can try to:

• Add parameters, as in Replace a Constant by a Variable, or more generally, Replace an
Expression With Another Expression..

• Generalize Relations (e.g., change an = to a ≤ or to an equivalence relation).

• Add a Disjunction (for some r, use q ∨ r an invariant).

Remove Fewer States from q

• Say q is constructed as a conjunction of various properties q₁ ∧ q₂ ∧ q₃ etc. We can see this as
starting with q₁, then adding q₂ to remove some states, then adding q₃ to remove more
states, and so on. If we drop a conjunct from this removal process, then the result is weaker
than q .

D. Replace A Constant By A variable

• The technique “Replace a constant by a variable” produces a candidate invariant by adding a
new parameter to a predicate. We take the postcondition and replace a literal or symbolic con-
stant c with a fresh variable x.

• We can't phrase this as saying p ≡ q [x / c] because substitution replaces a variable with an
expression and also, in the simplest case, we only replace one occurrence of c with x, not all
occurrences. So the correct phrasing is q ≡ p [c / x], with p being the candidate invariant.
Our candidate loop will be { inv p } while x ≠ c do … od { p ∧ x = c} { q }.

• Depending on how many constants appear where in q , there can be multiple candidate invari-
ants, which will typically have different loop tests, initialization code, and/or progress steps.

• In addition, not all the candidate invariants may be unusable, generally because there's no good
initialization code or progress step.

Loop Initialization

• When we add a variable, we should look for the range of values the new variable can have. We
always have x = c where the constant is the one we're replacing. Initialization should provide a
second value d the variable can have.

• If c and d form a natural boundary for a range of values, say c ≤ d, then we can initialize x := d
and the range for x would be c ≤ x ≤ d. Progressing toward termination would take x from d
down to c. Symmetrically, if d ≤ c, then progression would take x from d up to c.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20232

 CS 536: Science of Programming	 Sat 2023-04-29, 14:00	 Class 19

• Note we might find a d to initialize x to yet still have no obvious range of values for x.

• Another possibility is that there's no clear value we can initialize x to. When that happens,
the candidate invariant fails.

• Example 1: Summation loops

• The postcondition s = sum (0 , n) has two constants 0 and n.

• We can try replacing n by a variable k. Initialize k = 0 and increase it until k = n, the range
of k will be 0 , …, n.

{ inv s = sum (0 , k) ∧ 0 ≤ k ≤ n } { bd n – k } 
while k ≠ n do 
	 … make k larger … 
od  
{ s = sum (0 , k) ∧ 0 ≤ k ≤ n ∧ k = n } 
{ s = sum (0 , n)}

• Or, we can try replacing 0 by a variable k. Initialize k = n and decrease it until k = 0. Again,
the range of k will be 0 , … , n.

{ inv s = sum (k , n) ∧ 0 ≤ k ≤ n } { bd k } 
while k > 0 do 
	 … make k smaller … 
od  
{ s = sum (k , n) ∧ 0 ≤ k ≤ n ∧ k = 0 } 
{ s = sum (0 , n) }

• Example 2: Initialization of summation loops

• For an invariant s = sum (0 , k) ∧ 0 ≤ k ≤ n, setting k := 0 or k := n seems natural.

• If we set k := 0, it's easy to establish wp(i := 0 , p) ≡ s = sum (0 , 0) ∧ 0 ≤ 0 ≤ n via s := 0 (and
the assumption n ≥ 0).

• But setting k := n leads us to wp (i := n , p) ≡ s = sum (0 , n) ∧ 0 ≤ n ≤ n, which is hard to sat-
isfy (in fact, it’s our original postcondition).

• Example 3: Integer square root (replacing a constant by a variable)

• To take the integer square root of an n ≥ 0 means to find an x such that x ≤ sqrt (n) < x+1, or
equivalently, x² ≤ n < (x+1) ². Let that be q.

• We can weaken q [2023-03-27] by replacing the 1 in x+1 with a new variable, say y, and get
x² ≤ n < (x+y) ² as a candidate invariant. For a range, we want y ≥ 1. Loop initialization will

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20233

 CS 536: Science of Programming	 Sat 2023-04-29, 14:00	 Class 19

set x to something small like 2 or 1 and set y to something large (like n, if n > 0, or n+1 if
n ≥ 0) .
*

• Whatever we initialize y to, progress toward termination consists of making x larger or x+y
smaller. This suggests a bound function of x+y – x, which simplifies to y.

{ inv x² ≤ n < (x+y) ² ∧ 1 ≤ y } { bd n+y -x } 
while y≠1 do [2023-04-29] 
	 … make x larger or x + y smaller … 
od  
{ x² ≤ n < (x + y) ² ∧ 1 ≤ y ∧ y = 1 } 
{ x² ≤ n < (x+1) ² }

More General Replacements

• To replace a constant by a variable is the easiest way to add a parameter to a predicate. A slight
generalization is to Replace an entire expression by a variable.

• Example 4: Integer square root (replacing an expression by a variable)

• For the integer square root problem, we can weaken 0 ≤ x² ≤ n < (x+1) ² by replacing x+1
with y to get x² ≤ n < y² (and looping until y = x+1). For a range, we know y ≥ x+1, and initial-
ization is similar to that used in Example 3.

{ inv 0 ≤ x² ≤ n < y² } { bd y – x } 
while y > x+1 do 
	 … make x larger or make y smaller … 
od 
{ 0 ≤ x² ≤ n < y² ∧ y = x+1 } 
{ 0 ≤ x² ≤ n < (x+1) ² }

The Loop Body

• Recall that a progress statement is a statement that gets us closer to termination. We need to
execute at least one every iteration, along every execution path for the loop body.

• One way to organize a loop is { inv p }{ bd t } while B do S ; R od, where R is a progress step and
S establishes the wp of R and the invariant:

{ inv p } { bd t } while B do { p ∧ B ∧ t = t₀ } S ; { wp (R , p ∧ t < t₀) } R { p ∧ t < t₀ } od

• For replacing a constant by a variable in particular, R takes us closer to the target constant by
modifying the new variable.

• Say we want S such that { v = e₁ } S { v = e₂ }. Two simple ways are:

 The more we know about n, the better we might be at figuring out a range. For example, if n > 4, then (n /*

2)² > n , so we could initialize y := n / 2 – 1.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20234

 CS 536: Science of Programming	 Sat 2023-04-29, 14:00	 Class 19

• { v = e₁ } v := v + e₂ – e₁ { v = e₂ }

• { v = e₁ } v := v * e₂ ÷ e₁ { v = e₂ }	 // (assuming e₁ divides e₂)

• One example was in the summation loop: We needed s = sum (0 , k+1) but had s = sum (0 , k).
Following the first pattern above, we could guarantee progress by using

{ s = sum (0 , k) } s := s + sum (0 , k+1) – sum (0 , k) { s = sum (0 , k+1) }

• Of course, this isn't practical, but since sum (0 , k+1) -sum (0 , k) = k+1, we can (and did) instead
use

{ s = sum (0 , k) } s := s + (k+1) { s = sum (0 , k+1) }

• Example 5: (Integer log base 2) Find the largest power of 2 that is ≤ 2 .

• Say our invariant is y = 2 ^ k ≤ x ∧ 0 ≤ k (we loop while 2 * y ≤ x) and our progress step is
k := k+1, so the wp of the progress step is y = 2 ^ (k+1) ≤ x ∧ 0 ≤ k+1.

• So we need to establish { y = 2 ^ k ∧…}; y := ??? { y = 2 ^ (k+1) ∧… } k := k+1 { y = 2 ^ k ∧…}.

• Both patterns above for changing y can be used here:

• One possibility is y := y + 2 ^ (k+1) - 2 ^ k. Since 2 ^ (k+1) - 2 ^ k = 2 ^ k = y, this simplifies
to y := y+y.

• Another possibility is y := y * 2 ^ (k+1) ÷ 2 ^ k, which simplifies to y := y * 2.

Replacing a Constant by a Variable Can Fail

• Not every constant when replaced yields an invariant that works well.

• E.g. take the postcondition x² ≤ n < (x+1) ² and replace one (or say both) of the 2's with a new
variable y. We loop while y≠2 [2023-03-27] with candidate invariants x ^ y ≤ n < (x+1) ² or
x² ≤ n < (x+1) ^ y.

• Initialization:

• If we're trying x ^ y ≤ n we could try y := 0, and so we'd need 1 = x⁰ ≤ n.

• If we're trying n < (x+1) ^ y, the situation is much less obvious Maybe x := n ; y := 1 ? But
we’d need n² ≤ n < (n+1)¹, and n² ≤ n requires n = 0 or 1. Clearly this is a dead end.

• Progress step:

• Going back to trying x ^ y ≤ n as the invariant, if we initialize y to 0, then we need to make it
larger. The simplest way is y := y+1, and the rest of the loop body establishes the wp of this
assignment and the invariant:

{ x ^ y ≤ n < (x+1)² ∧ y≠2 }[2023-03-27]	 	 	 	 // Invariant∧ loop test 
…	 	 	 	 	 	 	 	 	 	 // Needed code 
{ x ^ (y+1) ≤ n < (x+1) ² }		 	 	 	 // wp (progress step, invariant) 
y := y+1 	 	 	 	 	 	 	 	 	 // The progress step 
{ x ^ y ≤ n < (x+1) ² }	 	 	 	 	 	 // The invariant

• What could the missing code possibly be? Time to give up and look for a different invariant.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20235

 CS 536: Science of Programming	 Sat 2023-04-29, 14:00	 Class 19

Adding or Modifying Parameters more Generally

• Replacing a constant by a variable is a simple version of the more general notion of adding or
modifying the parameters of a predicate. Other versions of this technique include other
changes:

• Replace:	 One occurrence | Multiple occurrences

• Of:	 	 A Constant | A Constant-valued Expression | A Variable | An Expression

• With:		 A New variable | An Expression with one or more New variables

• For example [2023-03-27]

• Variable with another variable: q ≡ x < f (x) becomes x < f (y) or y < f (x) loop while y ≠ x.

• Expression with variable: q ≡ x < f (x) becomes x < y while y ≠ f (x).

• Expression with one or more new variables.: q ≡ x < f (x) becomes g (y, z)< f (x) while
x ≠ g (y, z).

• Whether any of these above candidates work will depend on what f (…) and g (… , …) do.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20236

