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A. Why


• A formal proof lets us write out in detail the reasons for believing that something is valid.


• Proof outlines condense the same information as a proof.


B. Objectives

At the end of this class you should


• Know the structure of full proof outlines and formal proofs and how they are related.


• Know the difference between full, partial, and minimal proof outlines and how they are related. 


C. Minimal Proof Outlines


• In a full proof outline of correctness, we include all the triples found in a formal proof of 
correctness, but we omit much of the redundant text, which makes them much easier to work 
with than formal proofs.  But if you think about it, you'll realize that we can shorten the outline 
by omitting conditions that can be inferred to exist from the structure of the program.


• In a minimal proof outline, we have the minimum amount of program annotation that allows 
us to infer the rest of the formal proof outline.  In general, we can't infer the initial precondition 
and initial postcondition, nor can we infer the invariants of loops, so a minimal outline will 
include those conditions and possibly no others.


• A partial proof outline is somewhere in the middle: More filled-in than a minimal outline but 
not completely full.


• Example 1: Here’s a full proof outline from the previous class, with the removable parts in blue. 
(The outline comes from the previous class.)


{ n ≥ 0 } 


k := 0 ;  { n ≥ 0 ∧ k = 0 } 	 	 	 	 	 // Inferred as the sp of k := 0 


s := 0 ;  { n ≥ 0 ∧ k = 0 ∧ s = 0 } 	 	 	 // Inferred as the sp of s := 0


{̀ inv p₁ ≡ 0 ≤ k ≤ n ∧ s = s u m ( 0 , k ) } 	 // The invariant remains — it can't be inferred


while k < n  do


	 { p₁ ∧ k < n } 	 	 	 	 	 	 // Loop rule requires inv ∧ loop test here


	 { p₁ [ k+1 ∕ k ] [ s+k+1 ∕ s ] } 	 	 	 // Inferred as the wp of s:=s+k+1 


	 s := s+k+1 ;  { p₁ [ k+1 ∕ k ] } 	 	 	 // Inferred as the wp of k:=k+1 
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	 k := k + 1  { p₁ } 		 	 	 	 	 // Loop rule requires invariant at end of loop body


od


{ p₁ ∧ k ≥ n } 	 	 	 	 	 	 // Loop rule requires inv ∧ ¬ loop test after the loop


{ s = sum ( 0 , n ) }	 [Mon 2023-03-20, 14:04 not inferable]


• Dropping the inferable parts leaves us with the minimal outline:


{ n ≥ 0 } k : = 0 ; s : = 0 ;  
{ inv p₁ ≡ 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) }  
while k < n  do 
	 s := s+k+1 ; k := k+1  
od 
{ s = sum ( 0 , n ) } 


• In a language like C or Java, the conditions become comments; something like::


// Assume: n ≥ 0 
int k, s;       		 // 0 ≤ k ≤ n and s = sum(0,k) 
k = s = 0;      		 // establish k,s 
while (k < n) { 
   s += k+1;     	 // reset s 
   ++k;    		 	 	 // Get closer to termination; reestablish k, s 
} 
// Established: s = sum(0,n)


• The following example shows how different total proof outlines can all have the same minimal 
proof outline.


• Example 2:  The three full proof outlines below all have the same minimal proof outline, 
namely, { T }  k := 0 ; x := 1 { k ≥ 0 ∧ x = 2 ^ k } 


{ T } { 0 ≥ 0 ∧ 1 = 2 ^ 0 } k := 0 ; { k ≥ 0 ∧ 1 = 2 ^ k } x := 1 { k ≥ 0 ∧ x = 2 ^ k } 


{ T } k := 0 ; { k = 0 } x := 1  { k = 0 ∧ x = 1 } { k ≥ 0 ∧ x = 2 ^ k } 


{ T } k := 0 ; { k = 0 } { k ≥ 0 ∧ 1 = 2 ^ k } x := 1 { k ≥ 0 ∧ x = 2 ^ k } 


• The reason multiple full proof outlines can have the same minimal outline is because different 
organizations of wp  and sp  can have the same minimal outline.  There can also be differences 
in whether and where preconditions are strengthened or postconditions are weakened.


• Example 3: For the three full outlines below, the minimal outline is the same: 
	 { y = x }  if x < 0  then y := – x fi { y = abs ( x ) } .


• The first outline uses wp on the branches of the conditional:


{ y = x }  
if x < 0 then 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	 { y = x ∧ x < 0 } { – x = abs ( x ) }  y := – x  { y = abs ( x ) }  
else 
	 { y = x ∧ x ≥ 0 } { y = x ∧ x ≥ 0 } skip { y = abs ( x ) }  
fi 
{ y = abs ( x ) } 


• The second outline uses sp on the branches of the conditional.  Using sp makes the predicate 
logic obligation for the true branch a bit more complicated.


{ y = x }  
if x < 0 then 
	 { y = x ∧ x < 0 } y := – x  { y₀ = x ∧ x < 0 ∧ y = – x } { y = abs ( x ) }  
else 
	 { y = x ∧ x ≥ 0 } skip { y = x ∧ x ≥ 0 } { y = abs ( x ) }  
fi 
{ y = abs ( x ) } 


• The third full outline calculates the wp of the conditional.  There's only one predicate logic 
obligation, but it contains the same information as the two obligations of the previous outlines.


{ y = x }  
{ ( x < 0→ – x = abs ( x ) ) ∧ ( x ≥ 0→ y = abs ( x ) ) } 	 	 // wp of the if-else 
if x < 0  then 
	 { – x = abs ( x ) } y := – x { y = abs ( x ) }  
else 
	 { y = abs ( x ) } skip { y = abs ( x ) }  
fi 
{ y = abs ( x ) } 


// end of example e


• Example 4: The minimal proof outline for


{ n ≥ 0 } k := n ; { n ≥ 0 ∧ k = n } s := n ; { n ≥ 0 ∧ k = n ∧ s = n }  
{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum ( k , n ) }  
while k > 0 do 
	 { p ∧ k > 0 } { p [ s+k / s ] [ k – 1 / k ] }  
	 k : = k – 1 ;  { p [ s+k / s ] }  
	 s : = s+k  { p }  
od 
{ p ∧ k ≤ 0 } { s = sum ( 0 , n ) } 


is
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{ n ≥ 0 } k := n ; s := n ;  
{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum ( k , n ) }  
while k > 0  do 
	 k := k–1 ; s : = s+k  
od 
{ s = sum ( 0 , n ) } 


D. Expanding Partial Proof Outlines


• To expand a partial proof outline into a full proof outline, basically we need to infer all the 
missing conditions. Postconditions are inferred from preconditions using sp ( . . . ) , and 
preconditions are inferred from postconditions using wp ( . . . ) .  Loop invariants tell us how to 
annotate the loop body and postcondition, and the test for a conditional statement can become 
part of a precondition.


• Expanding a partial outline can lead to a number of different full outlines, but all the full 
outlines will be correct, and the differences between them are generally stylistic.  Expansion can 
have different results because multiple full outlines can have the same minimal outline.


• For example, { p } v := e { q }  can be expanded to { p } { wp ( v := e , q ) } v := e { q } or 
{ p }  v := e { sp ( p , v := e ) } { q } .


• The situation similar to how a full proof outline can expand to various formal proofs, all of 
which are correct but can be slightly different  The different full outlines here are actually 
different, though generally only in small ways.


• So we can't have a deterministic algorithm for expanding minimal outlines, but with that 
warning, here's an informal nondeterministic algorithm.  Added conditions are shown in blue.


• Notation:


• In { p } { … } S { … } and { … } { p } S { … }, p is the first or last precondition of S respectively.


• In { p } { … } S { … } and { … } { p } S { … }, we add p as the new first or last precondition of S.


• In { … } S { p } { … } and { … } S { … } { p } , p is the first or last postcondition of S.


• In { … } S { p } { … } and { … } S { … } { p } , we add p as the new first or last postcondition of S.


• The algorithm:


Until every statement can be proved by a triple, apply one of the cases below:


	 A.  Add a precondition:


1.	 Add wp  to an assignment: { … } { wp ( v := e , q ) } v : = e { q } { … } .


2.	 Add wp to a skip: { … } { q )  skip { q } { … }.


3.	 Add precondition to second statement of a sequence: S₁ ; { … } { p } S₂ { … } .


4.	 Add strongest preconditions to the branches of an if-else:


	 	 { p } if B then { p ∧ B } { … } S₁ { … } else { p ∧ ¬ B } { … } S₂ { … } fi.
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The nondeterministic version of this is


{ p } if B₁  ➞ { p ∧ B₁ } { … } S₁ { … } ☐ B₂  ➞ { p ∧ B₂ } { … } S₂ { … } fi.


5.	 Add a precondition to an if-else.


	 	 { … }  ( B→ p₁ ) ∧ ( ¬ B→ p₂ )  if B then { p₁ } { … } S₁  … else { p₂ } { … } S₂  … fi.


If p₁ and p₂ are the wp of S₁ and S₂ respectively, then the new addition is the wp of 
the conditional.


The nondeterministic version of this is


{ … }  ( B₁→ p₁ ) ∧ ( B₂→ p₂ )  if B₁➞ { p₁ } { … } S₁  … ☐ B₂➞ { p₂ } { … } S₂  … fi.


	 B. Or add a postcondition:


6.	 Add sp  to an assignment: { p } v := e { sp ( p , v := e ) } { … } 


7.	 Add sp  to a skip: { … } { p } skip { p } { … } 


8.	 Add a postcondition to the first statement of a sequence: { … } S₁ { q } ; { … } S₂.

We add q just after S₁; if we want q just before S₂, we can add it as a new 
precondition of S₂ ( step 3 above).


9.	 Add a postcondition to a conditional statement:


	 	 if B then S₁ { … } { q₁ } else S₂ { … } { q₂ } fi { q₁ ∨ q₂ } { … } .


If q₁ and q₂ are the sp of S₁ and S₂, then we are adding the sp of the conditional.


The nondeterministic version of this is


if B₁➞ S₁ { … } { q₁ } ☐ B₂➞ S₂ { … } { q₂ } fi { q₁ ∨ q₂ } { … } .


10.	 Add postconditions to the branches of a conditional statement:


	 	 if B then S₁ { … } { q₁ } else S₂ { … } { q₂ } fi { q₁ ∨ q₂ } { … } .


The nondeterministic version of this is


if B₁  ➞ S₁ { … } { q₁ } ☐ B₂  ➞ S₂ { … } { q₂ } fi { q₁ ∨ q₂ } { … } .


	 C.  Or add loop conditions:


11.	 Add loop body pre-and post-conditions and a loop postcondition:


	 	 { inv p } while B do { p ∧ B } { … } S₁ { … } { p } od { p ∧ ¬ B } { … } .


	 D.  Or strengthen or weaken some condition:


12.	 Strengthen q: … { p } { q }  … where p→ q. 


13.	 Weaken p:  … { p } { q } … where p→ q.


// End loop


• Example 4 reversed: Let’s expand


{ n ≥ 0 } k := n ; s := n ;  
{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum ( k , n ) }  
while k > 0 do 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	 k := k–1 ;  
	 s := s+k 


od


{ s = sum ( 0 , n ) } 


• First, we can apply case 6 (sp of an assignment) to k := n  and to s := n  to get


{ n ≥ 0 } k := n ;  { n ≥ 0 ∧ k = n } s := n ; { n ≥ 0 ∧ k = n ∧ s = n } 
{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum ( k , n ) }  
while k > 0 do


	 k := k–1 ;  
	 s := s+k  
od 
{ s = sum ( 0 , n ) } 


• The next three steps are independent of the first two steps we took: First, apply case 11 to the 
loop:


{ n ≥ 0 } k := n ; { n ≥ 0 ∧ k = n } s := n ; { n ≥ 0 ∧ k = n ∧ s = n }  
{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum ( k , n ) } 


while k > 0 do 
	 { p ∧ k > 0 } 
	 k := k–1 ;  
	 s := s+k  
	 { p } 
od 
{ p ∧ k ≤ 0 } 
{ s = sum ( 0 , n ) } 


• Then apply case 1 (wp of an assignment) to s := s+k  and to k := k–1 :


{ n ≥ 0 } k : = n ; { n ≥ 0 ∧ k = n } s : = n ; { n ≥ 0 ∧ k = n ∧ s = n }  
{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum ( k , n ) }  
while k > 0 do 
	 { p ∧ k > 0 }	 	 	 	 	 	 / /  ≡ 0 ≤ k ≤ n ∧ s = sum ( k , n ) ∧ k > 0  
	 { p [ s+k / s ] [ k–1 / k ] }	 	 	 / /  ≡ 0 ≤ k–1 ≤ n ∧ s+( k–1 ) = sum ( k–1 , n )  
	 k := k – 1 ;  
	 { p [ s+k / s ] }	 	 	 	 	 / /  ≡ 0 ≤ k ≤ n ∧ s+k = sum ( k , n )  
	 s := s+k  
	 { p }  
od
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{ p ∧ k ≤ 0 }  
{ s = sum ( 0 , n ) } 


• And this finishes the expansion.


• Note using sp on the loop assignments works too:


{ n ≥ 0 } k : = n ; { n ≥ 0 ∧ k = n } s : = n ; { n ≥ 0 ∧ k = n ∧ s = n }


{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum ( k , n ) }


while k > 0 do 
	 { p ∧ k > 0 } 


	 k := k–1 ;  
	 { p [ k₀ / k ] ∧ k₀ > 0 ∧ k = k₀–1 }   / /  0 ≤ k₀ ≤ n ∧ s = sum ( k₀ , n ) ∧ k₀ > 0 ∧ k = k₀–1  
	 s := s+k 


	 { p [ k₀ / k ] [ s₀ / s ] ∧ k₀ > 0 ∧ k = k₀–1 ∧ s = s₀+k }  // Notice: s₀+k not s₀+k₀  
	 	 	 / /  ≡ 0 ≤ k₀ ≤ n ∧ s₀ = sum ( k ₀ , n ) ∧ k₀ > 0 ∧ k = k₀–1 ∧ s = s₀+k  
	 	 	 // ⇒ 0 ≤ k ≤ n ∧ s = sum ( k, n ) ≡ p 
	 { p } 
od 
{ p ∧ k ≤ 0 }  
{ s = sum ( 0 , n ) } 


Other Features of Expansion


• In Example 2, we saw that a number of full proof outlines can have the same minimal proof 
outline.  The inverse is that a partial proof outline might expand into a number of different full 
proof outlines.  Which one to use is pretty much a style issue.


• Example 5: In Example 4 reversed, we took


{ n ≥ 0 } k := n ; s := n { p ≡ 0 ≤ k ≤ n ∧ s = sum ( k , n ) } 


and applied case 6 (sp) to both assignments to get


{ n ≥ 0 } k := n ;  { n ≥ 0 ∧ k = n }s := n ; { n ≥ 0 ∧ k = n ∧ s = n } { p }


• Another possibility would have been to use case 1 (wp) on both assignments; we would have 
gotten


{n≥0}{0≤n≤n ∧ n=sum(n,n)} k:=n; {0≤k≤n ∧ n=sum(k,n)} s:=n {0≤k≤n ∧ s=sum(k,n)}


• Or we could have used case 6 (sp) on the first assignment and case 1 (wp) on the second:


{ n ≥ 0 } k := n ; { n ≥ 0 ∧ k = n } { 0 ≤ k ≤ n ∧ n = sum ( k , n ) } s : = n { p }


• The three versions produce slightly different predicate logic obligations, all easy to prove.


• sp and sp:	 n ≥ 0 ∧ k = n ∧ s = n→ 0 ≤ k ≤ n ∧ s = sum ( k , n )


• wp and wp:	 n ≥ 0→ 0 ≤ n ≤ n ∧ n = sum ( n , n)


• sp and wp:	 n ≥ 0 ∧ k = n → 0 ≤ k ≤ n ∧ n = sum ( k , n ) 
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• Similarly, with a conditional triple { p } if B then { p₁ } S₁  else { p₂ } S₂ fi, we can get


• With case 4:	 	 { p } if B then { p ∧ B } { p₁ } S₁ else { p ∧ ¬ B } { p₂ } S₂ fi


• Or with case 5:	 { p } { ( B → p₁ ) ∧ ( ¬ B → p₂ ) } if B then { p₁ } S₁ else { p₂ } S₂ fi


• We get different predicate logic obligations for the two approaches, but the obligations are 
basically equally difficult to prove.


• With case 4:	 p ∧ B→ p₁  and p ∧ ¬ B→ p₂


• With case 5:	 p→ ( B→ p₁ ) ∧ ( ¬ B→ p₂ )
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