Proofs and Proof Outlines for Partial Correctness

Part 1: Full Proofs and Proof Outlines of Partial Correctness
 CS 536: Science of Programming, Spring 2023

A. Why

- A formal proof lets us write out in detail the reasons for believing that something is valid.
- Proof outlines condense the same information as a proof.

B. Objectives

At the end of this class you should

- Know how to write and check a formal proof of partial correctness.
- Know how to translate between full formal proofs and full proof outlines

C. Formal Proofs of Partial Correctness

- As you've seen, the format of a formal proof is very rigid syntactically. The relationship between formal proofs and informal proofs is like the description of an algorithm in a program (very rigid syntax) versus in pseudocode (much more informal syntax).
- Just as a reminder, we're using Hilbert-style proofs: Each line's assertion is an assumption, an axiom, or follows by some rule that appeals to earlier lines in the proof. In high-school geometry, we might have used

1. Length of $A B=$ length of $X Y$
2. Angle $A B C=$ Angle $X Y Z$
3. Length of $B C=$ length of $Y Z$
4. Triangles ABC, XYZ are congruent

Assumption
Assumption
Assumption
Side-Angle-Side, lines 1, 2, 3

D. Sample Formal Proofs

- We can write out the reasoning for the sample summation loop we looked at. We've seen formal proofs of the loop body's correctness; all we really have to do is attach the proof of loop initialization correctness:

Example 1: Simple summation program

```
\(\{n \geq 0\}\)
\(k:=0\); \(s:=0\);
\(\left\{\operatorname{inv} p_{1} \equiv 0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)\right\}\)
while \(k<n\) do
    \(s:=s+k+1 ; k:=k+1\)
od
\(\{s=\operatorname{sum}(0, n)\}\)
```

- Below, let $S_{1} \equiv s:=s+k+1 ; k:=k+1$ (the loop body) and let $W \equiv$ while $k<n$ do S_{1} od (the loop).

1. $\{n \geq 0\} k:=0\{n \geq 0 \wedge k=0\}$
2. $\{n \geq 0 \wedge k=0\} s:=0\{n \geq 0 \wedge k=0 \wedge s=0\}$
3. $\{n \geq 0\} k:=0 ; s:=0\{n \geq 0 \wedge k=0 \wedge s=0\}$
4. $n \geq 0 \wedge k=0 \wedge s=0 \rightarrow p_{1}$
where $p_{1} \equiv 0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)$
5. $\{n \geq 0\} k:=0 ; s:=0\left\{p_{1}\right\}$
6. $\left\{p_{1}[k+1 / k]\right\} k:=k+1\left\{p_{1}\right\}$
7. $\left\{p_{1}[k+1 / k][s+k+1 / s]\right\} s:=s+k+1\left\{p_{1}[k+1 / k]\right\}$ assignment (backward)
8. $\left\{p_{1}[k+1 / k][s+k+1 / s]\right\} S_{1}\left\{p_{1}\right\}$
9. $p_{1} \wedge k<n \rightarrow p_{1}[k+1 / k][s+k+1 / s]$
10. $\left\{p_{1} \wedge k<n\right\} S_{1}\left\{p_{1}\right\}$
11. $\left\{\right.$ inv $\left.p_{1}\right\}$ while $k<n$ do S_{1} od $\left\{p_{1} \wedge k \geq n\right\}$
12. $\{n \geq 0\} k:=0 ; s:=0 ; W\left\{p_{1} \wedge k \geq n\right\}$
(where W is the loop in line 11)
13. $p_{1} \wedge k \geq n \rightarrow s=\operatorname{sum}(0, n)$
14. $\{n \geq 0\} k:=0 ; s:=0 ; W\{s=\operatorname{sum}(0, n)\}$
assignment (forward)
assignment (forward)
sequence 1, 2
predicate logic
postcondition weakening, 3, 4
assignment (backward)
sequence 7,6
predicate logic
precondition strengthening, 9, 8
while loop, 10
sequence 5, 11
predicate logic
postcond. weakening, 12, 13

- The proof uses two substitutions:
- $p_{1}[k+1 / k] \equiv 0 \leq k+1 \leq n \wedge s=\operatorname{sum}(0, k+1)$
- $p_{1}[k+1 / k][s+k+1 / s] \equiv(0 \leq k \leq n \wedge s=\operatorname{sum}(0, k+1))[s+k+1 / s]$

$$
\equiv 0 \leq k+1 \leq n \wedge s+k+1=\operatorname{sum}(0, k+1)
$$

- The proof also gives us three predicate logic obligations (implications we need to be true, otherwise the overall proof is incorrect). Happily, all three are in fact valid.
- $n \geq 0 \wedge k=0 \wedge s=0 \rightarrow p_{1}$

$$
\equiv n \geq 0 \wedge k=0 \wedge s=0 \rightarrow 0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)
$$

- $p_{1} \wedge k<n \rightarrow p_{1}[k+1 / k][s+k+1 / s]$

$$
\equiv(0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)) \wedge k<n \rightarrow 0 \leq k+1 \leq n \wedge s+k+1=\operatorname{sum}(0, k+1)
$$

- $p_{1} \wedge k \geq n \rightarrow s=\operatorname{sum}(0, n)$

$$
\equiv(0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)) \wedge k \geq n \rightarrow s=\operatorname{sum}(0, n)
$$

- To review, the order of the lines in the proof is somewhat arbitrary - you can only refer to lines above you in the proof, but they can be anywhere above you.
- For example, lines 1 and 2 don't have to be in that order, they just have to be before we use them in the sequence rule at line 3 (which in turn has to be somewhere before line 5 , and so on).

E. Full Proof Outlines

- Formal proofs are long and contain repetitive information (we keep copying the same conditions over and over). All in all, they're too tedious to use.
- A proof outline is a way to write out all the information that you would need to generate a full formal proof, but with less repetition, so they're much shorter, and they don't mask the overall structure of the program the way a full proof does.
- To get a proof outline, we annotate program statements with their preconditions and postconditions, so that every statement in the program is part of one or correctness triples.
- Every triple must be provable using the proof rules.
- We include all statements, not just basic ones like assignments and skip.

Proof Outlines for Individual Statements

- Each instance of a proof rule corresponds to a proof outline that combines the antecedents (if any) and consequent of the rule. (For a loop, the loop body, for conditionals, each branch.)

Assignment and skip

- These triples are annotated exactly as they are in the proof rules.
- $\{p\} x:=e\{q\}$
- $\{p\}$ skip $\{p\}$

Sequence

- To combine $\left\{p_{1}\right\} S_{1}\{q\}$ and $\{q\} S_{2}\left\{q_{1}\right\}$ to get $\left\{p_{1}\right\} S_{1} ; S_{2}\left\{q_{1}\right\}$, we include the condition q that sits between S_{1} and S_{2} :
- $\left\{p_{1}\right\} S_{1} ;\{q\} S_{2}\left\{q_{1}\right\}$

While loops

- There is only one loop rule hence only one triple. It combines triple for the body, $\{p \wedge B\} S\{p\}$, and the triple for the overall statement, $\{$ inv $p\}$ while B do S od $\{p \wedge \neg B\}$.
- $\{$ inv $p\}$ while B do $\{p \wedge B\} S\{p\}$ od $\{p \wedge \neg B\}$

Conditionals

- There are multiple possibilities for conditionals because we have multiple rules for them. Each outline includes the triples for the branches and the triple for the overall conditional statement.
- $\{p\}$ if B then $\{p \wedge B\} S_{1}\left\{q_{1}\right\}$ else $\{p \wedge \neg B\} S_{2}\left\{q_{2}\right\}$ fi $\left\{q_{1} \vee q_{2}\right\}$
- $\left\{\left(B \rightarrow p_{1}\right) \wedge\left(\neg B \rightarrow p_{2}\right)\right\}$ if B then $\left\{p_{1}\right\} S_{1}\left\{q_{1}\right\}$ else $\left\{p_{2}\right\} S_{2}\left\{q_{2}\right\}$ fi $\left\{q_{1} \vee q_{2}\right\}$
- $\{p\}$ if $B_{1} \rightarrow\left\{p \wedge B_{1}\right\} S_{1}\left\{q_{1}\right\} \square B_{2} \rightarrow\left\{p \wedge B_{2}\right\} S_{2}\left\{q_{2}\right\}$ fi $\left\{q_{1} \vee q_{2}\right\}$
- $\left\{\left(B_{1} \rightarrow p_{1}\right) \wedge\left(B_{2} \rightarrow p_{2}\right\}\right.$ if $B_{1} \rightarrow\left\{p_{1}\right\} S_{1}\left\{q_{1}\right\} \square B_{2} \rightarrow\left\{p_{2}\right\} S_{2}\left\{q_{2}\right\} f i\left\{q_{1} \vee q_{2}\right\}$

Strengthening and Weakening

- For strengthening or weakening operations, we include a condition for the new condition, next to the condition it replaces:
- $\left\{p_{1}\right\}\{p\} S\{q\} \quad$ For strengthening using $p_{1} \rightarrow p$
- $\{p\} S\{q\}\left\{q_{1}\right\} \quad$ For weakening using $q \rightarrow q_{1}$.
- Just generally in an outline, if two conditions sit next to each other, say $\{p\}\{q\}$, this indicates a predicate logic implication $p \rightarrow q$.

Full Outlines Aren't Unique

- A proof outline does not stand for a unique proof. (Unless you have a one-line proof.)
- One reason is pretty trivial: If a rule has more than one antecedent, they can be shown in any order. I.e., for a conditional, the triples for the true branch and false branch can appear in that order or the reverse.
- The other reason is that strengthening and weakening operations within a sequence aren't unique. The overall proof ends up with the same triple, but the path there might be different.
- E.g., take $\left\{p_{1}\right\} S_{1} ;\left\{p_{2}\right\}\left\{p_{3}\right\} S_{2}\left\{p_{4}\right\}$. We can read this as
- Weakening the postcondition of S_{1} from p_{2} to p_{3} or
- Strengthening the precondition of S_{2} from p_{3} to p_{2}
- Luckily, the difference is hardly ever a problem. It's often just a style issue*.

Example 1

- One kind of problem to study is "What is the full proof that corresponds to this outline?"
- E.g., what is the outline for $\{T\} k:=0 ;\{k=0\} x:=1\{k=0 \wedge x=1\}\{k \geq 0 \wedge x=2 \wedge k\}$?
- The basic structure is that we form the sequence $k:=0 ; x:=1$ and then weaken its postcondition.

1. $\{T\} k:=0\{k=0\}$
assignment (forward)
2. $\{k=0\} x:=1\{k=0 \wedge x=1\}$
3. $\{T\} k:=0 ; x:=1\{k=0 \wedge x=1\}$
4. $k=0 \wedge x=1 \rightarrow k \geq 0 \wedge x=2 \wedge k$
5. $\{T\} k:=0 ; x:=1\{k \geq 0 \wedge x=2 \wedge k\}$
assignment (forward)
sequence 1,2
predicate logic
postcondition weakening 3 , 4
[^0]
Example 2

- This is like Example 1 but uses weakest preconditions instead of strongest postconditions.
- The full proof outline is $\{T\}\{0 \geq 0 \wedge 1=2 \wedge 0\} k:=0 ;\left\{k \geq 0 \wedge 1=2^{\wedge} k\right\} x:=1\left\{k \geq 0 \wedge x=2^{\wedge} k\right\}$.

1. $\left\{k \geq 0 \wedge 1=2^{\wedge} k\right\} x:=1\left\{k \geq 0 \wedge x=2^{\wedge} k\right\}$
2. $\left\{0 \geq 0 \wedge 1=2^{\wedge} 0\right\} k:=0\left\{k \geq 0 \wedge 1=2^{\wedge} k\right\}$
3. $\{0 \geq 0 \wedge 1=2 \wedge 0\} k:=0 ; x:=1\left\{k \geq 0 \wedge x=2^{\wedge} k\right\}$
4. $T \rightarrow 0 \geq 0 \wedge 1=2 \wedge 0$
5. $\{T\} k:=0 ; x:=1\{k \geq 0 \wedge x=2 \wedge k\}$
assignment (backward)
assignment (backward)
sequence 2 , 1
predicate logic
pre. strength. 4, 3

Example 3

- Here's a full proof outline for the summation loop; note how the structure of the outline follows the partial correctness proof, which is shown below.

```
\(\{n \geq 0\} k:=0 ;\{n \geq 0 \wedge k=0\} s:=0 ;\{n \geq 0 \wedge k=0 \wedge s=0\}\)
\(\left\{\operatorname{inv} p_{1} \equiv 0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)\right\}\)
while \(k<n\) do
    \(\left\{p_{1} \wedge k<n\right\}\left\{p_{1}[k+1 / k][s+k+1 / s]\right\}\)
    \(s:=s+k+1 ;\left\{p_{1}[k+1 / k]\right\}\)
    \(k:=k+1\left\{p_{1}\right\}\)
od
\(\left\{p_{1} \wedge k \geq n\right\}\)
\(\{s=\operatorname{sum}(0, n)\}\)
```

- A full proof is below

1. $\{n \geq 0\} k:=0\{n \geq 0 \wedge k=0\}$ assignment (forward)
2. $\{n \geq 0 \wedge k=0\} s:=0\{n \geq 0 \wedge k=0 \wedge s=0\} \quad$ assignment (forward)
3. $\{n \geq 0\} k:=0 ; s:=0\{n \geq 0 \wedge k=0 \wedge s=0\}$ sequence 1,2
4. $n \geq 0 \wedge k=0 \wedge s=0 \rightarrow p_{1}$
5. $\{n \geq 0\} k:=0 ; s:=0\left\{p_{1}\right\}$
6. $\left\{p_{1}[k+1 / k]\right\} k:=k+1\left\{p_{1}\right\}$
7. $\left\{p_{1}[k+1 / k][s+k+1 / s]\right\} s:=s+k+1\left\{p_{1}[k+1 / k]\right.$
8. $\left\{p_{1}[k+1 / k][s+k+1 / s]\right\} s:=s+k+1 ; k:=k+1\left\{p_{1}\right\}$
9. $p_{1} \wedge k<n \rightarrow p_{1}[k+1 / k][s+k+1 / s]$
10. $\left\{p_{1} \wedge k<n\right\} s:=s+k+1 ; k:=k+1\left\{p_{1}\right\}$
predicate logic
post. weakening 3, 4
assignment (backward)
assignment (backward)
sequence 7,6
predicate logic
pre. strength. 9, 8
11. $\left\{\operatorname{inv} p_{1}\right\} W\left\{p_{1} \wedge k \geq n\right\}$ where $W \equiv$ while $k<n$ do $s:=s+k+1 ; k:=k+1$ od
12. $\{n \geq 0\} k:=0 ; s:=0$; $\left\{\operatorname{inv} p_{1}\right\} W\left\{p_{1} \wedge k \geq n\right\}$
13. $p_{1} \wedge k \geq n \rightarrow s=\operatorname{sum}(0, n)$
14. $\{n \geq 0\} k:=0 ; s:=0 ;\left\{\operatorname{inv} p_{1}\right\} W\{s=\operatorname{sum}(0, n)\}$
sequence 5,11
predicate logic
post. weak. 12, 13

[^0]: * The weakened or strengthened triple might look nicer than the other. Also, if one of S_{1} or S_{2} is more painful to write, both proofs involve writing one of S_{1} and S_{2} once and the other twice.

