
  Proofs and Proof Outlines for Partial 

Correctness

  Part 1: Full Proofs and Proof Outlines of Partial Correctness

  CS 536: Science of Programming, Spring 2023

A. Why

• A formal proof lets us write out in detail the reasons for believing that something is valid.

• Proof outlines condense the same information as a proof.

B. Objectives
At the end of this class you should

• Know how to write and check a formal proof of partial correctness.

• Know how to translate between full formal proofs and full proof outlines

C. Formal Proofs of Partial Correctness

• As you've seen, the format of a formal proof is very rigid syntactically.  The relationship 
between formal proofs and informal proofs is like the description of an algorithm in a program 
(very rigid syntax) versus in pseudocode (much more informal syntax).

• Just as a reminder, we're using Hilbert-style proofs: Each line’s assertion is an assumption, an 
axiom, or follows by some rule that appeals to earlier lines in the proof.  In high-school 
geometry,  we might have used

1. Length of AB=length of XY Assumption
2. Angle ABC=Angle XYZ Assumption
3. Length of BC=length of YZ Assumption
4. Triangles ABC, XYZ are congruent Side-Angle-Side, lines 1, 2, 3

D. Sample Formal Proofs

• We can write out the reasoning for the sample summation loop we looked at.  We've seen 
formal proofs of the loop body's correctness; all we really have to do is attach the proof of loop 
initialization correctness:
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Example 1: Simple summation program

{ n ≥ 0 }
k := 0 ;  s := 0 ;
{ inv p₁ ≡ 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) }
while k < n  do
 s := s+k+1 ;  k := k+1
od
{ s = sum ( 0 , n ) }

• Below, let S₁  ≡ s := s+k+1 ;  k := k+1  (the loop body) and let W  ≡ while k < n  do S₁ od (the loop).

1. { n ≥ 0 } k := 0 { n ≥ 0 ∧ k = 0 } assignment (forward)
2. { n ≥ 0 ∧ k = 0 } s := 0 { n ≥ 0 ∧ k = 0 ∧ s = 0 } assignment (forward)
3. { n ≥ 0 } k := 0 ;  s := 0 { n ≥ 0 ∧ k = 0 ∧ s = 0 } sequence 1, 2
4.  n ≥ 0 ∧ k = 0 ∧ s = 0→ p₁ predicate logic
  where p₁ ≡ 0 ≤ k ≤ n ∧ s = sum ( 0 , k )
5. { n ≥ 0 } k := 0 ;  s := 0 { p₁ } postcondition weakening, 3, 4
6. { p₁ [ k+1 ⧸ k ] } k := k+1 { p₁ } assignment (backward)
7. { p₁ [ k+1 ⧸ k ] [ s+k+1 ⧸ s ] } s := s+k+1 { p₁ [ k+1 ⧸ k ] } assignment (backward)
8. { p₁ [ k+1 ⧸ k ] [ s+k+1 ⧸ s ] } S₁ { p₁ } sequence 7, 6
9.  p₁ ∧ k < n→ p₁ [ k+1 ⧸ k ] [ s+k+1 ⧸ s ] predicate logic
10. { p₁ ∧ k < n } S₁ { p₁ } precondition strengthening, 9, 8
11. { inv p₁ } while k < n  do S₁ od { p₁ ∧ k ≥ n } while loop, 10
12. { n ≥ 0 } k := 0 ;  s := 0 ;  W { p₁ ∧ k ≥ n } sequence 5, 11
         (where W is the loop in line 11)
13.  p₁ ∧ k ≥ n→ s = sum ( 0 , n ) predicate logic
14. { n ≥ 0 } k := 0 ;  s := 0 ;  W { s = sum ( 0 , n ) } postcond. weakening, 12, 13

• The proof uses two substitutions:

• p₁ [ k+1 ⧸ k ] ≡ 0 ≤ k+1 ≤ n ∧ s = sum ( 0 , k+1 )

• p₁ [ k+1 ⧸ k ] [ s+k+1 ⧸ s ] ≡ ( 0 ≤ k ≤ n ∧ s = sum ( 0 , k+1 ) ) [ s+k+1 ⧸ s ]
 ≡  0 ≤ k+1 ≤ n ∧ s+k+1 = sum ( 0 , k+1 )

• The proof also gives us three predicate logic obligations (implications we need to be true, 
otherwise the overall proof is incorrect).  Happily, all three are in fact valid.

• n ≥ 0 ∧ k = 0 ∧ s = 0→ p₁
  ≡  n ≥ 0 ∧ k = 0 ∧ s = 0→ 0 ≤ k ≤ n ∧ s = sum ( 0 , k )

• p₁ ∧ k < n→ p₁ [ k+1 ⧸ k ] [ s+k+1 ⧸ s ]  
  ≡  ( 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) ) ∧ k < n→ 0 ≤ k+1 ≤ n ∧ s+k+1 = sum ( 0 , k+1 )

• p₁ ∧ k ≥ n→ s = sum ( 0 , n )
  ≡  ( 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) ) ∧ k ≥ n→ s = sum ( 0 , n )
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• To review, the order of the lines in the proof is somewhat arbitrary — you can only refer to 
lines above you in the proof, but they can be anywhere above you.

• For example, lines 1 and 2 don't have to be in that order, they just have to be before we use 
them in the sequence rule at line 3 (which in turn has to be somewhere before line 5, and so 
on).

E. Full Proof Outlines

• Formal proofs are long and contain repetitive information (we keep copying the same 
conditions over and over).  All in all, they're too tedious to use.

• A proof outline is a way to write out all the information that you would need to generate a full 
formal proof, but with less repetition, so they're much shorter, and they don't mask the overall 
structure of the program the way a full proof does.

• To get a proof outline, we annotate program statements with their preconditions and 
postconditions, so that every statement in the program is part of one or correctness triples.

• Every triple must be provable using the proof rules.

• We include all statements, not just basic ones like assignments and skip.

Proof Outlines for Individual Statements

• Each instance of a proof rule corresponds to a proof outline that combines the antecedents (if 
any) and consequent of the rule.  (For a loop, the loop body, for conditionals, each branch.)

Assignment and skip

• These triples are annotated exactly as they are in the proof rules.

• { p } x := e { q }

• { p } skip{ p }

Sequence

• To combine { p₁ } S₁ { q }  and { q } S₂ { q₁ }  to get { p₁ } S₁ ; S₂ { q₁ } , we include the condition q 
that sits between S₁  and S₂ :

• { p₁ } S₁ ; { q } S₂ { q₁ }

While loops

• There is only one loop rule hence only one triple.  It combines triple for the body, { p ∧ B } S { p }, 
and the triple for the overall statement, { inv p } while B do S od { p ∧ ¬ B }.

• { inv p } while B do { p ∧ B } S { p } od { p ∧ ¬ B }

Conditionals

• There are multiple possibilities for conditionals because we have multiple rules for them.  Each 
outline includes the triples for the branches and the triple for the overall conditional statement.

• { p } if B then { p ∧ B } S₁ { q₁ } else { p ∧ ¬B } S₂ { q₂ } fi { q₁ ∨ q₂ }

• { ( B→ p₁ ) ∧ ( ¬ B→ p ₂ ) } if B then { p₁ } S₁ { q₁ } else { p₂ } S₂ { q₂ } fi {  q₁ ∨ q₂ }
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• { p } if B₁➞ { p ∧ B₁ } S₁ { q₁ }  ☐  B₂➞ { p ∧ B₂ } S₂ { q₂ } fi { q₁ ∨ q₂ }

• { ( B₁➞ p₁ ) ∧ ( B₂➞ p₂ } if B₁➞ { p₁ } S₁ { q₁ }  ☐  B₂➞ { p₂ } S₂ { q₂ } fi { q₁ ∨ q₂ }

Strengthening and Weakening

• For strengthening or weakening operations, we include a condition for the new condition, next 
to the condition it replaces:

• { p₁ } { p } S { q }  For strengthening using p₁→ p

• { p } S { q } { q₁ }  For weakening using q→ q₁ .

• Just generally in an outline, if two conditions sit next to each other, say { p } { q }, this indicates a 
predicate logic implication p→ q.

Full Outlines Aren't Unique

• A proof outline does not stand for a unique proof.  (Unless you have a one-line proof.)

• One reason is pretty trivial: If a rule has more than one antecedent, they can be shown in 
any order.  I.e., for a conditional, the triples for the true branch and false branch can appear 
in that order or the reverse.

• The other reason is that strengthening and weakening operations within a sequence aren't 
unique.  The overall proof ends up with the same triple, but the path there might be 
different.

• E.g., take { p₁ } S₁ ; { p₂ } { p₃ } S₂ { p₄ } .  We can read this as

• Weakening the postcondition of S₁ from p₂ to p₃ or

• Strengthening the precondition of S₂ from p₃ to p₂ 

• Luckily, the difference is hardly ever a problem.  It's often just a style issue*.

Example 1

• One kind of problem to study is “What is the full proof that corresponds to this outline?”

• E.g., what is the outline for { T } k := 0 ; { k = 0 } x := 1 { k = 0 ∧ x = 1 } { k ≥ 0 ∧ x = 2 ^ k }  ?

• The basic structure is that we form the sequence k := 0 ;  x  := 1  and then weaken its 
postcondition.

1 .  { T } k := 0 { k = 0 } assignment (forward)
2 .  { k = 0 } x := 1 { k = 0 ∧ x = 1 } assignment (forward)
3 .  { T } k := 0 ;  x := 1 { k = 0 ∧ x = 1 } sequence 1, 2
4 .  k = 0 ∧ x = 1→ k ≥ 0 ∧ x = 2 ^ k predicate logic
5 .  { T } k := 0 ;  x := 1 { k ≥ 0 ∧ x = 2 ^ k } postcondition weakening 3, 4
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* The weakened or strengthened triple might look nicer than the other.  Also, if one of S₁ or S₂ is more 
painful to write, both proofs involve writing one of S₁ and S₂ once and the other twice.



Example 2

• This is like Example 1 but uses weakest preconditions instead of strongest postconditions.

• The full proof outline is  { T } { 0 ≥ 0 ∧ 1 = 2 ^ 0 } k := 0 ; { k ≥ 0 ∧ 1 = 2 ^ k } x := 1 { k ≥ 0 ∧ x = 2 ^ k } .

1. { k ≥ 0 ∧ 1 = 2 ^ k } x := 1 { k ≥ 0 ∧ x = 2 ^ k }  assignment (backward)
2. { 0 ≥ 0 ∧ 1 = 2 ^ 0 } k := 0 { k ≥ 0 ∧ 1 = 2 ^ k }  assignment (backward)
3. { 0 ≥ 0 ∧ 1 = 2 ^ 0 } k := 0 ;  x := 1 { k ≥ 0 ∧ x = 2 ^ k }  sequence 2, 1
4. T→ 0 ≥ 0 ∧ 1 = 2 ^ 0  predicate logic
5. { T } k := 0 ;  x := 1 { k ≥ 0 ∧ x = 2 ^ k }  pre. strength. 4, 3

Example 3

• Here's a full proof outline for the summation loop; note how the structure of the outline follows 
the partial correctness proof, which is shown below.

{ n ≥ 0 } k := 0 ; { n ≥ 0 ∧ k = 0 } s := 0 ; { n ≥ 0 ∧ k = 0 ∧ s = 0 }
{ inv p₁ ≡ 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) }
while k < n  do
 { p₁ ∧ k < n } { p₁ [ k+1 ⧸ k ] [ s+k+1 ⧸ s ] }
 s := s+k+1 ; { p₁ [ k+1 ⧸ k ] }
 k := k+1 { p₁ }
od
{ p₁ ∧ k ≥ n }
{ s = sum ( 0 , n ) }

• A full proof is below

1 .  { n ≥ 0 } k := 0 { n ≥ 0 ∧ k = 0 }   assignment (forward)
2 .  { n ≥ 0 ∧ k = 0 } s := 0 { n ≥ 0 ∧ k = 0 ∧ s = 0 }   assignment (forward)
3 .  { n ≥ 0 } k := 0 ;  s := 0 { n ≥ 0 ∧ k = 0 ∧ s = 0 }   sequence 1, 2
4 .  n ≥ 0 ∧ k = 0 ∧ s = 0→ p₁   predicate logic
5 .  { n ≥ 0 } k := 0 ;  s := 0 { p₁ }   post. weakening 3, 4
6 .  { p₁ [ k+1 ⧸ k ] } k := k+1 { p₁ }   assignment (backward)
7 .  { p₁ [ k+1 ⧸ k ] [ s+k+1 ⧸ s ] } s := s+k+1 { p₁ [ k+1 ⧸ k ]  assignment (backward)
8 .  { p₁ [ k+1 ⧸ k ] [ s+k+1 ⧸ s ] } s := s+k+1 ;  k := k+1 { p₁ }  sequence 7, 6
9 .  p₁ ∧ k < n→ p₁ [ k+1 ⧸ k ] [ s+k+1 ⧸ s ]   predicate logic
1 0 . { p₁ ∧ k < n } s := s+k+1 ;  k := k+1 { p₁ }   pre. strength. 9, 8
1 1 . { inv p₁ } W { p₁ ∧ k ≥ n }   while loop 10
  where W ≡ while k < n  do s := s+k+1 ;  k := k+1  od
1 2 . { n ≥ 0 } k := 0 ;  s := 0 ; { inv p₁ } W { p₁ ∧ k ≥ n }   sequence 5, 11
1 3 . p₁ ∧ k ≥ n→ s = sum ( 0 , n )   predicate logic
1 4 . { n ≥ 0 } k := 0 ; s := 0 ; { inv p₁ } W { s = sum ( 0 , n ) }  post. weak. 12, 13
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