
  Proofs and Proof Outlines for Partial

Correctness

  Part 1: Full Proofs and Proof Outlines of Partial Correctness

  CS 536: Science of Programming, Spring 2023

A. Why

• A formal proof lets us write out in detail the reasons for believing that something is valid.

• Proof outlines condense the same information as a proof.

B. Objectives
At the end of this class you should

• Know how to write and check a formal proof of partial correctness.

• Know how to translate between full formal proofs and full proof outlines

C. Formal Proofs of Partial Correctness

• As you've seen, the format of a formal proof is very rigid syntactically. The relationship
between formal proofs and informal proofs is like the description of an algorithm in a program
(very rigid syntax) versus in pseudocode (much more informal syntax).

• Just as a reminder, we're using Hilbert-style proofs: Each line’s assertion is an assumption, an
axiom, or follows by some rule that appeals to earlier lines in the proof. In high-school
geometry, we might have used

1. Length of AB=length of XY Assumption
2. Angle ABC=Angle XYZ Assumption
3. Length of BC=length of YZ Assumption
4. Triangles ABC, XYZ are congruent Side-Angle-Side, lines 1, 2, 3

D. Sample Formal Proofs

• We can write out the reasoning for the sample summation loop we looked at. We've seen
formal proofs of the loop body's correctness; all we really have to do is attach the proof of loop
initialization correctness:

CS 536: Science of Programming Wed 2023-03-08, 10:46 Class 16

CS Dept., Illinois Institute of Technology – 1 – © James Sasaki, 2023

Example 1: Simple summation program

{ n ≥ 0 }
k := 0 ; s := 0 ;
{ inv p₁ ≡ 0 ≤ k ≤ n ∧ s = sum (0 , k) }
while k < n do
 s := s+k+1 ; k := k+1
od
{ s = sum (0 , n) }

• Below, let S₁ ≡ s := s+k+1 ; k := k+1 (the loop body) and let W ≡ while k < n do S₁ od (the loop).

1. { n ≥ 0 } k := 0 { n ≥ 0 ∧ k = 0 } assignment (forward)
2. { n ≥ 0 ∧ k = 0 } s := 0 { n ≥ 0 ∧ k = 0 ∧ s = 0 } assignment (forward)
3. { n ≥ 0 } k := 0 ; s := 0 { n ≥ 0 ∧ k = 0 ∧ s = 0 } sequence 1, 2
4. n ≥ 0 ∧ k = 0 ∧ s = 0→ p₁ predicate logic
 where p₁ ≡ 0 ≤ k ≤ n ∧ s = sum (0 , k)
5. { n ≥ 0 } k := 0 ; s := 0 { p₁ } postcondition weakening, 3, 4
6. { p₁ [k+1 ⧸ k] } k := k+1 { p₁ } assignment (backward)
7. { p₁ [k+1 ⧸ k] [s+k+1 ⧸ s] } s := s+k+1 { p₁ [k+1 ⧸ k] } assignment (backward)
8. { p₁ [k+1 ⧸ k] [s+k+1 ⧸ s] } S₁ { p₁ } sequence 7, 6
9. p₁ ∧ k < n→ p₁ [k+1 ⧸ k] [s+k+1 ⧸ s] predicate logic
10. { p₁ ∧ k < n } S₁ { p₁ } precondition strengthening, 9, 8
11. { inv p₁ } while k < n do S₁ od { p₁ ∧ k ≥ n } while loop, 10
12. { n ≥ 0 } k := 0 ; s := 0 ; W { p₁ ∧ k ≥ n } sequence 5, 11
 (where W is the loop in line 11)
13. p₁ ∧ k ≥ n→ s = sum (0 , n) predicate logic
14. { n ≥ 0 } k := 0 ; s := 0 ; W { s = sum (0 , n) } postcond. weakening, 12, 13

• The proof uses two substitutions:

• p₁ [k+1 ⧸ k] ≡ 0 ≤ k+1 ≤ n ∧ s = sum (0 , k+1)

• p₁ [k+1 ⧸ k] [s+k+1 ⧸ s] ≡ (0 ≤ k ≤ n ∧ s = sum (0 , k+1)) [s+k+1 ⧸ s]
 ≡ 0 ≤ k+1 ≤ n ∧ s+k+1 = sum (0 , k+1)

• The proof also gives us three predicate logic obligations (implications we need to be true,
otherwise the overall proof is incorrect). Happily, all three are in fact valid.

• n ≥ 0 ∧ k = 0 ∧ s = 0→ p₁
 ≡ n ≥ 0 ∧ k = 0 ∧ s = 0→ 0 ≤ k ≤ n ∧ s = sum (0 , k)

• p₁ ∧ k < n→ p₁ [k+1 ⧸ k] [s+k+1 ⧸ s]
 ≡ (0 ≤ k ≤ n ∧ s = sum (0 , k)) ∧ k < n→ 0 ≤ k+1 ≤ n ∧ s+k+1 = sum (0 , k+1)

• p₁ ∧ k ≥ n→ s = sum (0 , n)
 ≡ (0 ≤ k ≤ n ∧ s = sum (0 , k)) ∧ k ≥ n→ s = sum (0 , n)

CS 536: Science of Programming Wed 2023-03-08, 10:46 Class 16

CS Dept., Illinois Institute of Technology – 2 – © James Sasaki, 2023

• To review, the order of the lines in the proof is somewhat arbitrary — you can only refer to
lines above you in the proof, but they can be anywhere above you.

• For example, lines 1 and 2 don't have to be in that order, they just have to be before we use
them in the sequence rule at line 3 (which in turn has to be somewhere before line 5, and so
on).

E. Full Proof Outlines

• Formal proofs are long and contain repetitive information (we keep copying the same
conditions over and over). All in all, they're too tedious to use.

• A proof outline is a way to write out all the information that you would need to generate a full
formal proof, but with less repetition, so they're much shorter, and they don't mask the overall
structure of the program the way a full proof does.

• To get a proof outline, we annotate program statements with their preconditions and
postconditions, so that every statement in the program is part of one or correctness triples.

• Every triple must be provable using the proof rules.

• We include all statements, not just basic ones like assignments and skip.

Proof Outlines for Individual Statements

• Each instance of a proof rule corresponds to a proof outline that combines the antecedents (if
any) and consequent of the rule. (For a loop, the loop body, for conditionals, each branch.)

Assignment and skip

• These triples are annotated exactly as they are in the proof rules.

• { p } x := e { q }

• { p } skip{ p }

Sequence

• To combine { p₁ } S₁ { q } and { q } S₂ { q₁ } to get { p₁ } S₁ ; S₂ { q₁ } , we include the condition q
that sits between S₁ and S₂ :

• { p₁ } S₁ ; { q } S₂ { q₁ }

While loops

• There is only one loop rule hence only one triple. It combines triple for the body, { p ∧ B } S { p },
and the triple for the overall statement, { inv p } while B do S od { p ∧ ¬ B }.

• { inv p } while B do { p ∧ B } S { p } od { p ∧ ¬ B }

Conditionals

• There are multiple possibilities for conditionals because we have multiple rules for them. Each
outline includes the triples for the branches and the triple for the overall conditional statement.

• { p } if B then { p ∧ B } S₁ { q₁ } else { p ∧ ¬B } S₂ { q₂ } fi { q₁ ∨ q₂ }

• { (B→ p₁) ∧ (¬ B→ p ₂) } if B then { p₁ } S₁ { q₁ } else { p₂ } S₂ { q₂ } fi {  q₁ ∨ q₂ }

CS 536: Science of Programming Wed 2023-03-08, 10:46 Class 16

CS Dept., Illinois Institute of Technology – 3 – © James Sasaki, 2023

• { p } if B₁➞ { p ∧ B₁ } S₁ { q₁ } ☐ B₂➞ { p ∧ B₂ } S₂ { q₂ } fi { q₁ ∨ q₂ }

• { (B₁➞ p₁) ∧ (B₂➞ p₂ } if B₁➞ { p₁ } S₁ { q₁ } ☐ B₂➞ { p₂ } S₂ { q₂ } fi { q₁ ∨ q₂ }

Strengthening and Weakening

• For strengthening or weakening operations, we include a condition for the new condition, next
to the condition it replaces:

• { p₁ } { p } S { q } For strengthening using p₁→ p

• { p } S { q } { q₁ } For weakening using q→ q₁ .

• Just generally in an outline, if two conditions sit next to each other, say { p } { q }, this indicates a
predicate logic implication p→ q.

Full Outlines Aren't Unique

• A proof outline does not stand for a unique proof. (Unless you have a one-line proof.)

• One reason is pretty trivial: If a rule has more than one antecedent, they can be shown in
any order. I.e., for a conditional, the triples for the true branch and false branch can appear
in that order or the reverse.

• The other reason is that strengthening and weakening operations within a sequence aren't
unique. The overall proof ends up with the same triple, but the path there might be
different.

• E.g., take { p₁ } S₁ ; { p₂ } { p₃ } S₂ { p₄ } . We can read this as

• Weakening the postcondition of S₁ from p₂ to p₃ or

• Strengthening the precondition of S₂ from p₃ to p₂

• Luckily, the difference is hardly ever a problem. It's often just a style issue*.

Example 1

• One kind of problem to study is “What is the full proof that corresponds to this outline?”

• E.g., what is the outline for { T } k := 0 ; { k = 0 } x := 1 { k = 0 ∧ x = 1 } { k ≥ 0 ∧ x = 2 ^ k } ?

• The basic structure is that we form the sequence k := 0 ; x := 1 and then weaken its
postcondition.

1 . { T } k := 0 { k = 0 } assignment (forward)
2 . { k = 0 } x := 1 { k = 0 ∧ x = 1 } assignment (forward)
3 . { T } k := 0 ; x := 1 { k = 0 ∧ x = 1 } sequence 1, 2
4 . k = 0 ∧ x = 1→ k ≥ 0 ∧ x = 2 ^ k predicate logic
5 . { T } k := 0 ; x := 1 { k ≥ 0 ∧ x = 2 ^ k } postcondition weakening 3, 4

CS 536: Science of Programming Wed 2023-03-08, 10:46 Class 16

CS Dept., Illinois Institute of Technology – 4 – © James Sasaki, 2023

* The weakened or strengthened triple might look nicer than the other. Also, if one of S₁ or S₂ is more
painful to write, both proofs involve writing one of S₁ and S₂ once and the other twice.

Example 2

• This is like Example 1 but uses weakest preconditions instead of strongest postconditions.

• The full proof outline is { T } { 0 ≥ 0 ∧ 1 = 2 ^ 0 } k := 0 ; { k ≥ 0 ∧ 1 = 2 ^ k } x := 1 { k ≥ 0 ∧ x = 2 ^ k } .

1. { k ≥ 0 ∧ 1 = 2 ^ k } x := 1 { k ≥ 0 ∧ x = 2 ^ k } assignment (backward)
2. { 0 ≥ 0 ∧ 1 = 2 ^ 0 } k := 0 { k ≥ 0 ∧ 1 = 2 ^ k } assignment (backward)
3. { 0 ≥ 0 ∧ 1 = 2 ^ 0 } k := 0 ; x := 1 { k ≥ 0 ∧ x = 2 ^ k } sequence 2, 1
4. T→ 0 ≥ 0 ∧ 1 = 2 ^ 0 predicate logic
5. { T } k := 0 ; x := 1 { k ≥ 0 ∧ x = 2 ^ k } pre. strength. 4, 3

Example 3

• Here's a full proof outline for the summation loop; note how the structure of the outline follows
the partial correctness proof, which is shown below.

{ n ≥ 0 } k := 0 ; { n ≥ 0 ∧ k = 0 } s := 0 ; { n ≥ 0 ∧ k = 0 ∧ s = 0 }
{ inv p₁ ≡ 0 ≤ k ≤ n ∧ s = sum (0 , k) }
while k < n do
 { p₁ ∧ k < n } { p₁ [k+1 ⧸ k] [s+k+1 ⧸ s] }
 s := s+k+1 ; { p₁ [k+1 ⧸ k] }
 k := k+1 { p₁ }
od
{ p₁ ∧ k ≥ n }
{ s = sum (0 , n) }

• A full proof is below

1 . { n ≥ 0 } k := 0 { n ≥ 0 ∧ k = 0 } assignment (forward)
2 . { n ≥ 0 ∧ k = 0 } s := 0 { n ≥ 0 ∧ k = 0 ∧ s = 0 } assignment (forward)
3 . { n ≥ 0 } k := 0 ; s := 0 { n ≥ 0 ∧ k = 0 ∧ s = 0 } sequence 1, 2
4 . n ≥ 0 ∧ k = 0 ∧ s = 0→ p₁ predicate logic
5 . { n ≥ 0 } k := 0 ; s := 0 { p₁ } post. weakening 3, 4
6 . { p₁ [k+1 ⧸ k] } k := k+1 { p₁ } assignment (backward)
7 . { p₁ [k+1 ⧸ k] [s+k+1 ⧸ s] } s := s+k+1 { p₁ [k+1 ⧸ k] assignment (backward)
8 . { p₁ [k+1 ⧸ k] [s+k+1 ⧸ s] } s := s+k+1 ; k := k+1 { p₁ } sequence 7, 6
9 . p₁ ∧ k < n→ p₁ [k+1 ⧸ k] [s+k+1 ⧸ s] predicate logic
1 0 . { p₁ ∧ k < n } s := s+k+1 ; k := k+1 { p₁ } pre. strength. 9, 8
1 1 . { inv p₁ } W { p₁ ∧ k ≥ n } while loop 10
 where W ≡ while k < n do s := s+k+1 ; k := k+1 od
1 2 . { n ≥ 0 } k := 0 ; s := 0 ; { inv p₁ } W { p₁ ∧ k ≥ n } sequence 5, 11
1 3 . p₁ ∧ k ≥ n→ s = sum (0 , n) predicate logic
1 4 . { n ≥ 0 } k := 0 ; s := 0 ; { inv p₁ } W { s = sum (0 , n) } post. weak. 12, 13

CS 536: Science of Programming Wed 2023-03-08, 10:46 Class 16

CS Dept., Illinois Institute of Technology – 5 – © James Sasaki, 2023

