CS 536: Science of Programming Class 16

Proofs and Proof Outlines for Partial

Correctness

Part 1: Full Proofs and Proof Outlines of Partial Correctness

CS 536: Science of Programming, Spring 2023

A. Why

« A formal proof lets us write out in detail the reasons for believing that something is valid.

« Proof outlines condense the same information as a proof.

B. Objectives

At the end of this class you should
« Know how to write and check a formal proof of partial correctness.

« Know how to translate between full formal proofs and full proof outlines

C. Formal Proofs of Partial Correctness

» As you've seen, the format of a formal proof is very rigid syntactically. The relationship
between formal proofs and informal proofs is like the description of an algorithm in a program
(very rigid syntax) versus in pseudocode (much more informal syntax).

+ Just as a reminder, we're using Hilbert-style proofs: Each line’s assertion is an assumption, an

axiom, or follows by some rule that appeals to earlier lines in the proof. In high-school
geometry, we might have used

1. Length of AB=length of XY Assumption
2 Angle ABC=Angle XYZ Assumption
3. Length of BC=length of YZ Assumption
4 Triangles ABC, XYZ are congruent Side-Angle-Side, lines 1, 2, 3

D. Sample Formal Proofs

+ We can write out the reasoning for the sample summation loop we looked at. We've seen
formal proofs of the loop body's correctness; all we really have to do is attach the proof of loop
initialization correctness:

CS Dept., Illinois Institute of Technology -1- © James Sasaki, 2023



CS 536: Science of Programming Class 16

Example 1: Simple summation program
{n>0}
k:=0; s:=0;
{invp,=0<k<nas=sum(0,k)}
while k<n do

s:=s+k+1; k:=k+1

od
{s=sum(0,n)}

o Below, letS; =s:=s+k+1; k:=k+1 (the loop body) and let W = while k<n do S, od (the loop).

1. {n>20}k:=0{n>0rk=0} assignment (forward)
2. {n>20rk=0}s:=0{n>20rk=0a5=0} assignment (forward)
3. {n>0}k:=0; s:=0{n>0Ak=0r58=0} sequence 1, 2
4, n>0rk=0as=0—p; predicate logic
where p;=0<k<nas=sum(0,k)
5 {n>0}k:=0; s:=0{p:1} postcondition weakening, 3, 4
6. {p1[k+1/k]}k:=k+t1{p,} assignment (backward)
7. {pi[k+1/k][s+k+1/s]}s:=s+k+1{p,[k+1/k]} assignment (backward)
8 {pi[k+1/k][s+k+1/s]}S1{p:1} sequence 7, 6
9. pirk<n—p,[k+1/k][s+tk+1/s] predicate logic
10. {piak<n}Si{p.} precondition strengthening, 9, 8
11. {inv p.} while k<n do S; od {p;rnk>n} while loop, 10
12. {n>0}k:=0; s:=0; W{piak>n} sequence 5, 11
(where W is the loop in line 11)
13. pirkzn—-s=sum(0,n) predicate logic
14. {n>0}k:=0; s:=0; W{s=sum(0,n)} postcond. weakening, 12, 13

« The proof uses two substitutions:
o p1[k+t1/k]=0<k+1<nas=sum(0,k+1)
o p1lk+t1/k][stk+1/s]=(0<k<nas=sum(0,k+1))[s+k+1/s]
= 0<k+l<nas+k+1=sum(0,k+1)
« The proof also gives us three predicate logic obligations (implications we need to be true,
otherwise the overall proof is incorrect). Happily, all three are in fact valid.
e n20rk=0r5=0—p;
= n20ak=0rs=0—-0<k<snas=sum(0,k)
e piak<n—p[k+1/k][s+k+1/s]
= (0<k<nas=sum(0,k))rnk<n—-0<k+1<nas+k+1=sum(0,k+1)
e piak2n—s=sum(0,n)
= (0<ksnas=sum(0,k))rnkzn—-s=sum(0,n)

CS Dept., Illinois Institute of Technology -2- © James Sasaki, 2023



CS 536: Science of Programming Class 16

» To review, the order of the lines in the proof is somewhat arbitrary — you can only refer to
lines above you in the proof, but they can be anywhere above you.

« For example, lines 1 and 2 don't have to be in that order, they just have to be before we use
them in the sequence rule at line 3 (which in turn has to be somewhere before line 5, and so
on).

E. Full Proof Outlines

« Formal proofs are long and contain repetitive information (we keep copying the same
conditions over and over). All in all, they're too tedious to use.

+ A proof outline is a way to write out all the information that you would need to generate a full
formal proof, but with less repetition, so they're much shorter, and they don't mask the overall
structure of the program the way a full proof does.

» To get a proof outline, we annotate program statements with their preconditions and
postconditions, so that every statement in the program is part of one or correctness triples.

« Every triple must be provable using the proof rules.

« We include all statements, not just basic ones like assignments and skip.

Proof Outlines for Individual Statements

« Each instance of a proof rule corresponds to a proof outline that combines the antecedents (if
any) and consequent of the rule. (For a loop, the loop body, for conditionals, each branch.)

Assignment and skip

« These triples are annotated exactly as they are in the proof rules.

e {plx:=e{q}
o {p}skip{p}
Sequence

o Tocombine {p;}S:{q} and {q}S,{q.} toget{p:}Si1;S.{q:},weinclude the condition g
that sits between S; and S.:

e {p1}S1;{q}S2{q.}
While loops

» There is only one loop rule hence only one triple. It combines triple for the body, {pAaB}S{p},
and the triple for the overall statement, {inv p } while Bdo Sod {p A~ B}.

o {inv p} whileBdo{paB}S{p}od{pnr-B}
Conditionals

« There are multiple possibilities for conditionals because we have multiple rules for them. Each
outline includes the triples for the branches and the triple for the overall conditional statement.

« {p}ifBthen{paB}S:{q.}else{prn-B}S,{q:}fi{q.vq.}
s {(B—=pi)r(~B—p,)lifBthen{p,}S.{q.}else{p,}S{q.}fi{q.vq.}

CS Dept., Illinois Institute of Technology -3- © James Sasaki, 2023



CS 536: Science of Programming Class 16

« {p}if By={paB1}S:1{q:} O Bo—={paB2}S2{q:}fi{quvqz}
¢ {(Bi=pi)Aa(B2=p2tif Bi={pi1}S1{qi} O B2 {p2}S:{q2} fi{qivq:}
Strengthening and Weakening
» For strengthening or weakening operations, we include a condition for the new condition, next
to the condition it replaces:
« {p1Hp}IS{q} For strengthening using p; —p
e {p}S{qtiq.} For weakening using g — ¢, .
« Just generally in an outline, if two conditions sit next to each other, say { p } { ¢}, this indicates a
predicate logic implication p — q.
Full Outlines Aren't Unique
+ A proof outline does not stand for a unique proof. (Unless you have a one-line proof.)

+ One reason is pretty trivial: If a rule has more than one antecedent, they can be shown in
any order. ILe., for a conditional, the triples for the true branch and false branch can appear
in that order or the reverse.

« The other reason is that strengthening and weakening operations within a sequence aren't
unique. The overall proof ends up with the same triple, but the path there might be
different.

o Eg, take {p1}S1;{p,}{ps}S2{p+}. We can read this as
+ Weakening the postcondition of S; from p, to p; or
« Strengthening the precondition of S, from p; to p»

« Luckily, the difference is hardly ever a problem. It's often just a style issue”.

Example 1
« One kind of problem to study is “What is the full proof that corresponds to this outline?”
o E.g,whatistheoutlinefor {T}k:=0;{k=0}x:=1{k=0ax=1}{k>0ax=2 "k} ?

« The basic structure is that we form the sequence k:=0; x :=1 and then weaken its

postcondition.
1. {T}k:=0{k=0} assignment (forward)
2. {k=0}x:=1{k=0arx=1} assignment (forward)
3. {T}k:=0; x:=1{k=0rXx=1} sequence 1, 2
4. k=0ax=1—k20rx=2"k predicate logic
5. {T}k:=0; x:=1{k>20AXx=2"k} postcondition weakening 3, 4

* The weakened or strengthened triple might look nicer than the other. Also, if one of S; or S, is more
painful to write, both proofs involve writing one of S; and S, once and the other twice.

CS Dept., Illinois Institute of Technology -4- © James Sasaki, 2023



CS 536: Science of Programming

Example 2

Class 16

« This is like Example 1 but uses weakest preconditions instead of strongest postconditions.
o The full proof outlineis {T}{020A1=270}k:=0;{k20A1=2"k}x:=1{k>20ax=2"k}.

1.

gl b W N

Example 3

{k20a1=2"k}x:=1{k20Ax=2"k}
{0207A1=270}k:=0{k>20A1=2"k}
{0207A1=270}k:=0; x:=1{k20rx=2"k}

T—020r1=2"0

{T}k:=0; x:=1{k>20aAXx=2"k}

assignment (backward)
assignment (backward)
sequence 2, 1
predicate logic

pre. strength. 4, 3

» Here's a full proof outline for the summation loop; note how the structure of the outline follows

the partial correctness proof, which is shown below.
{n>0}k:=0;{n>0nk=0}s:=0;{n>0rk=0r5=0}
{inv p;=0<k<nas=sum(0,k)}

while k<n do

od

{pink=n}
{s=sum(0,n)}

o A full proofis below

1.

N RO 00N L N

~ o

13.
14.

{nz20}k:=0{n=20rk=0}

{n>20nk=0}s:=0{n>20rk=0ns=0}
{n>0}k:=0; s:=0{n>0Ak=0r8=0}

n>0nk=0as=0—p;
{n>0}k:=0; s:=0{p:1}
{pi[k+1/k]}k:=k+1{p.}

{p1[k+1/k][s+k+1/s]}s:=s+k+1{p.[k+1/k]
{p.[k+1/k][s+tk+t1/s]}s:=s+k+1; k:=k+1{p.}

{pink<n}{p.[k+1/k][stk+1/s]}
s:=s+k+1;{p.:[k+1/k]}
k:=k+1{p:.}

pirnk<n—p,[k+1/k][s+tk+1/s]
{pink<n}s:=s+k+1; k:=k+1{p.}

{inv p, }W{p,ak>n}

assignment (forward)
assignment (forward)
sequence 1, 2
predicate logic

post. weakening 3, 4
assignment (backward)
assignment (backward)
sequence 7, 6
predicate logic

pre. strength. 9, 8
while loop 10

where W=while k<n do s:=s+k+1; k:=k+1 od

{n>0}k:=0; s:=0;{inv p, } W{p,ank=2n}

pirkzn—s=sum(0,n)

{n>20}k:=0;s:=0;{inv p; } W{s=sum(0,n)}

CS Dept., Illinois Institute of Technology

—5-

sequence 5, 11
predicate logic
post. weak. 12, 13

© James Sasaki, 2023



