Proof Rules and Proofs for Correctness Triples, v.2 Part 2: Conditional and Iterative Statements CS 536: Science of Programming, Spring 2023

A. Why?

- Proof rules give us a way to establish truth with textually precise manipulations
- We need inference rules for compound statements such as conditional and iterative.

B. Outcomes

At the end of this topic you should know

- The rules of inference for *if-else* statements.
- The rule of inference for *while* statements.
- The impracticality of the *wp* and *sp* for loops; the definition and use of loop invariants.

C. Rules for Conditionals

• There are two popular ways to characterize correctness for *if-else* statements

If-Else Conditional Rule 1

- The *sp*-oriented basic rule is
 - 1. $\{p \land B\} S_1 \{q_1\}$
 - $2. \quad \{p \land \neg B\} S_2 \{q_2\}$
 - 3. $\{p\}$ if B then S_1 else S_2 fi $\{q_1 \lor q_2\}$ if-else 1,2

(The rule name can be "if-else" or "conditional" or anything similar.)

• In proof tree form:

$$\{p \land B\} S_1 \{q_1\} \quad \{p \land \neg B\} S_2 \{q_2\}$$
 if-else
$$\{p\} if B then S_1 else S_2 fi \{q_1 \lor q_2\}$$

- The rule says that
 - If running the true branch S_1 in a state satisfying p and B establishes q_1 ,
 - And running the false branch S_2 in a state satisfying p and $\neg B$ establishes q_2 ,
 - Then you know that running the *if-else* in a state satisfying p establishes $q_1 \lor q_2$.

- *Example 1*: Here's a proof of $\{T\}$ if $x \ge 0$ then y := x else y := -x fi $\{y \ge 0\}$. We need
 - $\{x \ge 0\}y := x\{y \ge 0\}$ for the true branch (line 1 below).
 - $\{x < 0\}y := -x \{y \ge 0\}$ for the false branch (lines 2 4 below).
 - 1. $\{x \ge 0\} y := x \{y \ge 0\}$
 - 2. $\{x < 0\}y := -x \{x < 0 \land y = -x\}$
 - 3. $x < 0 \land y = -x \rightarrow y \ge 0$
 - 4. $\{x < 0\}y := -x\{y \ge 0\}$
 - 5. {*T*} *if* $x \ge 0$ *then* y := x *else* y := -x *fi* { $y \ge 0$ }
- The proof above used forward assignment; backward assignment works also: Lines 2 4 become
 - 2. $\{-x \ge 0\}y := -x \{y \ge 0\}$ (backward) assignment3. $x < 0 \rightarrow -x \ge 0$ predicate logic4. $\{x < 0\}y := -x \{y \ge 0\}$ precondition strengthening 3, 2

If-Else Conditional Rule 2

- Conditional rule 2: An equivalent, more goal-oriented / wp-oriented conditional rule is:
 - 1. $\{p_1\}S_1\{q_1\}$
 - 2. $\{p_2\}S_2\{q_2\}$
 - 3. $\{p_0\}$ if *B* then S_1 else S_2 fi $\{q_1 \lor q_2\}$ if-else 2, 1 where $p_0 \equiv (B \rightarrow p_1) \land (\neg B \rightarrow p_2)$
- If we add a preconditioning strengthening step of p→(B→p₁)∧(¬B→p₂) to the rule above, we get the same effect as the old precondition (p∧B→p₁)∧(p∧¬B→p₂).
- We can derive this second version of the conditional rule using the first version. The assumptions below become the antecedents of the derived rule above; the conclusion below becomes the consequent of the derived rule above.

1.	${p_1}S_1{q_1}$	assumption 1
2.	$p_0 \wedge B \rightarrow p_1$	predicate logic
	where $p_0 \equiv (p \land B \rightarrow p_1) \land (p \land \neg B \rightarrow p_2)$	
3.	$\{p_0 \land B\} S_1 \{q_1\}$	precondition strengthening 2, 1
4.	${p_2} S_2 {q_2}$	assumption 2
5.	$p_0 \wedge \neg B \rightarrow p_2$	predicate logic
6.	$\{p_0 \land \neg B\}S_2\{q_2\}$	precondition strengthening 5, 4
7.	$\{p_0\}$ if B then S_1 else S_2 fi $\{q_1 \lor q_2\}$	if-else 3, 6

(backward) assignment (forward) assignment predicate logic postcondition weakening, 2, 3 *if-else* 1, 4

If-Then Statements

- An *if-then* statement is an *if-else* with $\{p \land \neg B\}$ *skip* $\{p \land \neg B\}$ as the false branch.
 - 1. $\{p \land B\} S_1 \{q_1\}$
 - 2. $\{p \land \neg B\}$ skip $\{p \land \neg B\}$
 - 3. {*p*} if *B* then S_1 fi { $q_1 \lor (p \land \neg B)$ } if-else 1, 2

Nondeterministic Conditionals

• Perhaps surprisingly, the proof rules for nondeterministic conditionals are almost exactly the same as for deterministic conditionals.

skip

- Nondeterministic if-fi rule 1: (sp-like)
 - 1. $\{p \land B_1\} S_1 \{q_1\}$
 - 2. $\{p \land B_2\}S_2\{q_2\}$
 - 3. $\{p\}$ if $B_1 \rightarrow S_1 \square B_2 \rightarrow S_2$ fi $\{q_1 \lor q_2\}$ if-fi 1, 2

Nondeterministic if-fi rule 1: (wp-like)

- 1. $\{p_1\}S_1\{q_1\}$
- 2. $\{p_2\}S_2\{q_2\}$
- 3. $\{p_0\}$ if $B_1 \rightarrow S_1 \square B_2 \rightarrow S_2$ fi $\{q_1 \lor q_2\}$ if-fi 1, 2 where $p_0 \equiv (p \land B_1 \rightarrow p_1) \land (p \land B_2 \rightarrow p_2)$

D. Problems With Calculating the wp or sp of a Loop

- What is *wp(W,q)* for a typical loop *W* ≡ *while B do S od*? It turns out that some *wp(W,q)* have no finite representation. (*sp(W,p)* has the same problem.)
 - Let's look at the general problem of *wp* (*W*, *q*).
 - First, define w_k to be the weakest precondition of W and q that requires exactly k iterations.
 - Let $w_0 \equiv \neg B \land q$ and for all $k \ge 0$, define $w_{k+1} \equiv B \land wp(S, w_k)$.
 - If we know that *W* will run for, say, ≤ 3 iterations, then $wp(W, q) \Leftrightarrow w_0 \lor w_1 \lor w_2 \lor w_3$.
 - But in general, W might run for any number of iterations, so $wp(W, q) \Leftrightarrow w_0 \lor w_1 \lor w_2 \lor \dots$
 - If this infinitely-long disjunction collapses somehow, then we can write *wp* (*W*, *q*) finitely.
 - E.g., if $w_{k+1} \rightarrow w_k$ when $k \ge 5$, then $wp(W, q) \Leftrightarrow w_0 \lor w_1 \lor w_2 \lor w_3 \lor w_4 \lor w_5$.
 - Or, if there's a predicate function $P(k) \Leftrightarrow w_k$ (i.e., if the w_k are parameterized by k), then $wp(W,q) \Leftrightarrow \exists n. P(n)$.

E. Using Invariants to Approximate the wp and sp With Loops

Basic notions

- If we can't calculate wp(S,q) or sp(p, W) exactly, the best we can do is to approximate it.
- The simplest approximation is a predicate p that implies all the w_k .
 - If $p \Rightarrow w_k$ for all k, then $p \Rightarrow w_0 \lor w_1 \lor w_2 \lor \dots$, so $p \Rightarrow wp(S, q)$.
- **Definition:** A **loop invariant for** $W \equiv$ **while** B do S **od** is a predicate p such that $\models \{p \land B\} S \{p\}$. It follows that $\models \{p\} W \{p \land \neg B\}$.¹
 - Under partial correctness, if W terminates, it must terminate satisfying $p \land \neg B$.
 - Note this is for partial correctness only: To get total correctness, we'll need to prove that the loop terminates, and we'll address that problem later.
- *Notation*: To indicate a loop's invariant, we'll add it as an extra clause: { *inv p* } *while B do S od*. This declares that *p* is not only a precondition of the loop, it's an invariant.

Need Useful Invariants

- Not all invariants are useful. E.g., any tautology is an invariant: $\{T \land B\} S\{T\}$, so $\{T\} W\{T \land \neg B\}$. For that matter, contradictions are invariants too, but they're even less useful.
- The key is to find an invariant that:
 - 1. Can be established using simple loop initialization code: $\{p_0\}$ initialization code $\{p\}$.
 - 2. Can serve as a precondition and postcondition of a loop iteration: $\{p \land B\}$ loop body $\{p\}$.
 - 3. When combined with $\neg B$ and loop termination code, implies the postcondition we want: $\{p \land \neg B\}$ termination code $\{q\}$. If $p \land \neg B \rightarrow q$, then we don't need any termination code.
- There's no general algorithm for generating useful invariants. In a future class, we'll look at some heuristics for trying to find them.

Semantics of Invariants

- How do invariants fit in with the semantics of loops?
- Recall if we take the loop $W \equiv \{inv p\}$ while B do S od and run it in state σ_0 , then one iteration takes us to state σ_1 , the next to σ_2 , and so on: $\sigma_{k+1} = M(S, \sigma_k)$ for all k, and $M(W, \sigma_0)$ is the first σ_k that satisfies $\neg B$; if there is no such state, then we write $\bot_d \in M(W, \sigma_0)^2$.

 $^{^{1}}$ We've been using "p" as a generic name for a predicate. From now on, it may or may not stand for a loop invariant, depending on the context.

² If *W* is nondeterministic, it's a bit more complicated: For each possible sequence of τ_k , *M* (*W*, τ_0) either contains the first τ_k that satisfies $\neg B$ or \bot_d if there is no such τ_k .

• The invariant p must be satisfied by every possible σ_0 , σ_1 , ..., which implies that it's an approximation to various wp and sp for the loop and loop body:

Predicate	Approximates	Because
р	the <i>wp</i> of the loop	$p \rightarrow wp (W, p \wedge \neg B)$
$p \wedge B$	the <i>wp</i> of the loop body	$p \wedge B \rightarrow wp(S,p)$
$p \wedge \neg B$	the <i>sp</i> of the loop	$sp(p, W) \rightarrow p \land \neg B$
р	the <i>sp</i> of the loop body	$sp(S, p \land B) \rightarrow p$

Loop Initialization and Cleanup

- The purpose of loop initialization code is to establish the loop invariant: { p₀ } S₀ { p }, where S₀ is the initialization code. Any variables that appear fresh in the invariant have to be initialized;
 e.g., { n > 0 } k := 0 { 0 ≤ k < n }.
- If $p \land \neg B \rightarrow q$, the desired postcondition for the loop, then no cleanup is necessary, otherwise we need loop termination code: $\{p \land \neg B\}$ termination code $\{q\}$.

F. While Loop Rule; Loop Invariant Example

- The proof rule for a loop only has one antecedent, which requires us to have a loop invariant.
 - 1. $\{p \land B\}S\{p\}$

2.

- { inv p } while B do S od { $p \land \neg B$ } loop (or while), 1
- As a triple, the loop behaves like { p } while B do S od { $p \land \neg B$ }, so any precondition strengthening is relative to p, and any postcondition weakening is relative to $p \land \neg B$.

Example 2: Correctness of a Loop Body Using an Invariant

- We want to show that the loop *W* establishes *s* = *sum(0, n)*, given
 - $p \equiv 0 \leq k \leq n \wedge s = sum(0, k)$
 - *W* ≡ *while k* < *n do k* := *k*+1 ; *s* := *s*+*k od*
- First, let's write out a full proof of correctness for this program, then we can analyze its parts:
 - 1. $\{p[s+k/s]\}s := s+k\{p\}$ (ba

 2. $\{p[s+k/s][k+1/k]\}k := k+1\{p[s+k/s]\}\}$ (ba

 3. $\{p[s+k/s][k+1/k]\}k := k+1;s := s+k\{p\}$ (ba

 4. $p \land k < n \rightarrow p[s+k/s][k+1/k]$ pre

 5. $\{p \land k < n\}k := k+1;s := s+k\{p\}$ pre

 6. $\{inv p\}W\{p \land k \ge n\}$ loo

 7. $p \land k \ge n \rightarrow s = sum(0, n)$ pre
 - 8. { *inv* p } W { s = sum (0, n) }

(backward) assignment (backward) assignment sequence 2, 1 predicate logic precondition str 4, 3 loop 5 predicate logic postcondition weakening 6, 7

- The key requirement is showing that p is indeed invariant (line 5). Using the loop rule will let us conclude { *inv* p } W { p ∧ k ≥ n } (line 6).
- Once the loop terminates, we know p ∧ k ≥ n holds, but our final goal is to show s = sum(0, n). It turns out that postcondition weakening is sufficient (we don't need any cleanup code). This completes the loop
- Turning back to the loop body { p \lapha k < n } k := k + 1; s := s+k { p }, since this is a sequence, we need to show correctness of each assignment statement (lines 1 and 2) and combine them into a sequence (line 3).
 - We use the backward assignment rule twice, but the proof can certainly be done with forward assignment (see Example 3 below). The structure of the triple makes it easy to infer that backward assignment is being used, so "backward" can be omitted.
 - When we combine the assignments to form the sequence (line 3), the resulting precondition is *p*[*s*+*k*/*s*][*k*+1/*k*], so we use precondition strengthening to get *p* ∧ *k* < *n*, which is the form required by the loop rule.
- A reminder: The implication in line 4, p ∧ k < n → p[s+k/s][k+1/k], is a predicate logic obligation. We're concentrating on correctness triples, which is why we're omitting formal proofs of the obligations. Still, it's good to convince ourselves that the implication is correct:
- First, let's expand the substitutions used. For $p \land k < n \rightarrow p[s+k/s][k+1/k]$, we get
 - $p[s+k/s] \equiv (0 \le k \le n \land s = sum(0, k))[s+k/s] \equiv 0 \le k \le n \land s+k = sum(0, k)$
 - $p[s+k/s][k+1/k] \equiv (0 \le k+1 \le n \land s+k+1 = sum(0, k+1))$
 - $(p \land k < n) \equiv (0 \le k \le n \land s = sum(0, k) \land k < n)$
- So $p \land k < n \rightarrow p[s+k/s][k+1/k]$ expands to an implication that's easy to see is correct. $0 \le k \le n \land s = sum(0, k) \land k < n) \rightarrow 0 \le k+1 \le n \land s+k+1 = sum(0, k+1).$
- There's also an obligation in line 7, $(p \land k \ge n \rightarrow s = sum(0, n))$ but this one is easier to see: $p \land k \ge n$ implies $k \le n \land k \ge n$, so k = n. Along with s = sum(0, k) from p, we get s = sum(0, n).

Example 3: Correctness of the Same Loop Body Using sp

- Above, we showed correctness of the loop body using *wp*; it's also possible to prove correctness using *sp* instead. We have to replace lines 1 5 of the proof above, but lines 6 8 don't change because they don't rely on how the loop body was proved to be correct.
 - 1. $\{p \land k < n\}k := k + 1\{p_1\}$ assignment where $p_1 \equiv (p \land k < n)[k_0/k] \land k = (k+1)[k_0/k]$ 2. $\{p_1\}s := s+k\{p_2\}$ assignment
 - where $p_2 \equiv p_1[s_0/s] \land s = (s+k)[s_0/s]$
 - 3. $\{p \land k < n\}k := k+1; s := s+k\{p_2\}$
 - $4. \qquad p_2 \to p$
 - 5. $\{p \land k < n\}k := k+1; s := s+k\{p\}$

sequence 1, 2 predicate logic postcondition weak. 4, 3

• Here are the expansions of p_1 and p_2 used in the new proof:

```
• p_1 \equiv (p \land k < n) [k_0/k] \land k = (k+1) [k_0/k]

\equiv ((0 \le k \le n \land s = sum(0, k)) \land k < n) [k_0/k] \land k = (k+1) [k_0/k]

\equiv 0 \le k_0 \le n \land s = sum(0, k_0) \land k_0 < n \land k = k_0 + 1

• p_2 \equiv p_1 [s_0/s] \land s = (s+k) [s_0/s]

\equiv (0 \le k_0 \le n \land s = sum(0, k_0) \land k_0 < n \land k = k_0 + 1) [s_0/s] \land s = s_0 + k

\equiv 0 \le k_0 \le n \land s_0 = sum(0, k_0) \land k_0 < n \land k = k_0 + 1 \land s = s_0 + k
```

Example 4: Another Loop Example

Here's a simple loop program that calculates s = sum(0, n) = 0 + 1 + ... + n where n ≥ 0. (If n < 0, define sum(0, n) = 0.) Note the loop invariant appears explicitly. Also, the invariant is the same as in Example 3.

```
{n≥0}
k:=0;s:=0;
{inv p ≡ 0 ≤ k ≤ n ∧ s = sum(0,k)}
while k < n do
    s:=s+k+1;
    k:=k+1
od
{s = sum(0,n)}</pre>
```

- Informally, to see that this program works, we need
 - $\{n \ge 0\}k := 0; s := 0 \{p \equiv 0 \le k \le n \land s = sum(0, k)\}$
 - $\{p \land k < n\} s := s+k+1; k := k+1 \{p\}$
 - $p \land k \ge n \rightarrow s = sum(0, n)$
- It's straightforward to use *wp* or *sp* to show that the two triples are correct. A bit of predicate logic gives us the implication, which we need to weaken the loop's postcondition to the one we want.
- We'll do a detailed analysis in a little while.

G. Alternative Invariants Yield Different Programs and Proofs

- The invariant, test, initialization code, and body of a loop are all interconnected: Changing one can change them all. For example, we use *s* = *sum(0, k)* in our invariant, so we have the loop terminate with *k* = *n*.
- If instead we use *s* = *sum(0, k+1)* or *s* = *sum(0, k-1)* in our invariant, we must terminate with *k+1* = *n* or *k-1* = *n* respectively, and we change the increment of *s*.
- **Example 5**: Using s = sum(0, k) as the invariant.

```
{n \ge 0}

k:=0; s:=0;

\{inv \ p = 0 \le k \le n \land s = sum(0,k)\} // same invariant as in Examples 3 and 4
```

while k < n do
 s := s+k+1;
 k := k+1
od
{ s = sum(0, n)}</pre>

• **Example 6**: Using *s* = *sum(0, k*+1) as the invariant.

```
{n>0}
k:=0;s:=1;
{inv p<sub>1</sub>=0 ≤ k+1 < n ∧ s = sum(0, k+1)}
while k+1 < n do
            s:=s+k+2;
            k:=k+1
od
{s = sum(0, n)}</pre>
```

• **Example** 7: Using s = sum(0, k-1) as the invariant.

```
{n \ge 0}

k:=1; s:=0;

{inv \ p_2 \equiv 0 \le k-1 < n \land s = sum(0, k-1)}

while k-1 < n \ do

s:=s+k;

k:=k+1

od

{s = sum(0, n)}
```