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  Part 2: Conditional and Iterative Statements


  CS 536: Science of Programming, Spring 2023


A. Why?


• Proof rules give us a way to establish truth with textually precise manipulations


• We need inference rules for compound statements such as conditional and iterative.


B. Outcomes

At the end of this topic you should know


• The rules of inference for if-else statements.


• The rule of inference for while statements.


• The impracticality of the wp and sp for loops; the definition and use of loop invariants.


C. Rules for Conditionals


• There are two popular ways to characterize correctness for if-else statements


If-Else Conditional Rule 1


• The sp-oriented basic rule is


1.	 { p ∧ B } S₁ { q₁ }  
2.	 { p ∧ ¬ B } S₂ { q₂ }  
3.	 { p } if B then S₁ else S₂ f { q₁ ∨ q₂ } 	 if-else 1,2


(The rule name can be "if-else" or "conditional" or anything similar.)


• In proof tree form:


• The rule says that


• If running the true branch S₁ in a state satisfying p and B establishes q₁,


• And running the false branch S₂ in a state satisfying p and ¬ B establishes q₂,


• Then you know that running the if-else in a state satisfying p establishes q₁ ∨ q₂ .


{ p ∧ B } S₁ { q₁ }          {p ∧ ¬ B } S₂ { q₂ }  if-else


{ p } if B then S₁ else S₂ f { q₁ ∨ q₂ }
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• Example 1: Here's a proof of { T } if x ≥ 0  then y : = x  else y : = - x  f { y ≥ 0 }.  We need


• { x ≥ 0 } y : = x { y ≥ 0 } for the true branch (line 1 below).


• { x < 0 } y : = – x { y ≥ 0 } for the false branch (lines 2 – 4 below).


1.	 { x ≥ 0 } y : = x { y ≥ 0 } 	 (backward) assignment 
2.	 { x < 0 } y : = – x { x < 0 ∧ y = – x } 	 (forward) assignment 
3.	 x < 0 ∧ y = – x→  y ≥ 0 	 predicate logic 
4.	 { x < 0 } y : = – x { y ≥ 0 } 	 postcondition weakening, 2, 3 
5.	 { T }  if x ≥ 0  then y : = x else y : = - x f { y ≥ 0 }	 if-else 1, 4


• The proof above used forward assignment; backward assignment works also: Lines 2 – 4 be-
come


2.	 { – x ≥ 0 } y : = – x { y ≥ 0 }	 (backward) assignment 
3.	 x < 0→  – x ≥ 0	 predicate logic 
4.	 { x < 0 } y : = – x { y ≥ 0 }	 precondition strengthening 3, 2


If-Else Conditional Rule 2


• Conditional rule 2:  An equivalent, more goal-oriented / wp-oriented conditional rule is:


1.	 { p₁ } S₁ { q₁ } 
2.	 { p₂ } S₂ { q₂ } 
3.	 { p₀ } if B  then S₁ else S₂ f { q₁ ∨ q₂ }	 if-else 2, 1 
	 	 where p₀ ≡ ( B→ p₁ ) ∧ ( ¬ B→ p₂ )


• If we add a preconditioning strengthening step of p→ ( B→ p₁ ) ∧ ( ¬ B→ p₂ ) to the rule above, 
we get the same effect as the old precondition ( p ∧ B→ p₁ ) ∧ ( p ∧ ¬ B→ p₂ ).


• We can derive this second version of the conditional rule using the first version.  The assump-
tions below become the antecedents of the derived rule above; the conclusion below becomes 
the consequent of the derived rule above.


1.	 { p₁ } S₁ { q₁ } 	 assumption 1


2.	 p₀ ∧ B→ p₁ 	 predicate logic 
	 	 where p₀ ≡ ( p ∧ B→ p₁ ) ∧ ( p ∧ ¬ B→ p₂ ) 


3.	 { p₀ ∧ B } S₁ { q₁ }	 precondition strengthening 2, 1


4.	 { p₂ } S₂ { q₂ }	 assumption 2


5.	 p₀ ∧ ¬ B→ p₂ 	 predicate logic 
6.	 { p₀ ∧ ¬ B } S₂ { q₂ }	 precondition strengthening 5, 4


7.	 { p₀ } if B  then S₁ else S₂ f { q₁ ∨ q₂ }	 if-else 3, 6 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If-Then Statements


• An if-then statement is an if-else with { p ∧ ¬ B } skip { p ∧ ¬ B } as the false branch.


1.	 { p ∧ B } S₁ { q₁ } 
2.	 { p ∧ ¬ B } skip { p ∧ ¬ B } 	 skip 
3.	 { p }  if B then S₁ f { q₁ ∨ ( p ∧ ¬ B ) }	 if-else 1, 2


Nondeterministic Conditionals


• Perhaps surprisingly, the proof rules for nondeterministic conditionals are almost exactly the 
same as for deterministic conditionals.


Nondeterministic if-f rule 1: (sp-like)


1.	 { p ∧ B₁ } S₁ { q₁ }


2 . 	 { p ∧ B₂ } S₂ { q₂ }


3 . 	 { p }  if B₁➞ S₁☐ B₂➞ S₂  f { q₁ ∨ q₂ }	 	 if-fi 1, 2


Nondeterministic if-f rule 1: (wp-like)


1.	 { p₁ } S₁ { q₁ }


2.	 { p₂ } S₂ { q₂ }


3.	 { p₀ } if B₁➞ S₁☐ B₂➞ S₂  f { q₁ ∨ q₂ }	 	 if-fi 1, 2 
	 	 where p₀ ≡ ( p ∧ B₁→ p₁ ) ∧ ( p ∧ B₂→ p₂ )


D. Problems With Calculating the wp or sp of a Loop


• What is wp ( W, q ) for a typical loop W ≡ while B do S od ?  It turns out that some wp ( W, q ) have 
no finite representation.  (sp ( W, p ) has the same problem.)


• Let's look at the general problem of  wp ( W, q ).


• First, define wk  to be the weakest precondition of W and q that requires exactly k iterations.


• Let w₀ ≡ ¬ B ∧ q and for all k ≥ 0, define wk + 1 ≡ B ∧wp ( S , wk ) .


• If we know that W will run for, say, ≤ 3 iterations, then wp ( W, q )⇔w₀ ∨w₁ ∨w₂ ∨w₃ .


• But in general, W might run for any number of iterations, so wp ( W, q )⇔w₀ ∨w₁ ∨w₂ ∨….


• If this infinitely-long disjunction collapses somehow, then we can write wp ( W, q ) finitely.


• E.g., if wk + 1→wk  when k ≥ 5, then wp ( W, q )⇔w₀ ∨w₁ ∨w₂ ∨w₃ ∨w₄ ∨w₅.


• Or, if there's a predicate function P ( k )⇔wk  (i.e., if the wk  are parameterized by k ), then 
wp ( W, q )  ⇔  ∃ n . P ( n ).
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E. Using Invariants to Approximate the wp and sp With Loops


Basic notions


• If we can't calculate wp ( S , q ) or sp ( p , W ) exactly, the best we can do is to approximate it.


• The simplest approximation is a predicate p that implies all the wk .


• If p⇒wk  for all k , then p⇒w₀ ∨w₁ ∨w₂ ∨… . , so p⇒wp ( S , q ).


• Definition: A loop invariant for W ≡ while B do S od is a predicate p such that ⊨ { p ∧ B } S { p }.  
It follows that ⊨ { p } W { p ∧ ¬ B }. 
1

• Under partial correctness, if W terminates, it must terminate satisfying p ∧ ¬ B.


• Note this is for partial correctness only: To get total correctness, we'll need to prove that the 
loop terminates, and we'll address that problem later.


• Notation: To indicate a loop's invariant, we'll add it as an extra clause: { inv p } while B do S od.  
This declares that p is not only a precondition of the loop, it's an invariant.


Need Useful Invariants


• Not all invariants are useful.  E.g., any tautology is an invariant: { T ∧ B } S { T }, so 
{ T }  W { T ∧ ¬ B }.  For that matter, contradictions are invariants too, but they're even less useful.


• The key is to find an invariant that:


1.	 Can be established using simple loop initialization code: { p₀ } initialization code { p }.


2.	 Can serve as a precondition and postcondition of a loop iteration: { p ∧ B }  loop body { p }.


3.	 When combined with ¬ B and loop termination code, implies the postcondition we want: 
	 { p ∧ ¬ B } termination code { q }.  If p ∧ ¬ B→ q, then we don't need any termination code.


• There's no general algorithm for generating useful invariants.  In a future class, we'll look at 
some heuristics for trying to find them.


Semantics of Invariants


• How do invariants fit in with the semantics of loops?


• Recall if we take the loop W ≡ { inv p } while B do S  od and run it in state σ₀, then one iteration 
takes us to state σ₁, the next to σ₂, and so on: σk +1 = M ( S ,σk ) for all k, and M ( W, σ₀ ) is the first 
σk  that satisfies ¬ B; if there is no such state, then we write ⊥d∈M ( W, σ₀ ) .
2

 We've been using “p” as a generic name for a predicate.  From now on, it may or may not stand for a loop 1

invariant, depending on the context.

 If W is nondeterministic, it's a bit more complicated: For each possible sequence of τk , M ( W, τ ₀) either 2

contains the first τk  that satisfies ¬ B or ⊥d  if there is no such τk .
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• The invariant p must be satisfied by every possible σ₀, σ₁, …, which implies that it's an approxi-
mation to various wp and sp for the loop and loop body: 

Loop Initialization and Cleanup


• The purpose of loop initialization code is to establish the loop invariant: { p₀ } S₀ { p }, where S₀ is 
the initialization code.  Any variables that appear fresh in the invariant have to be initialized; 
e.g., { n > 0 } k : = 0 { 0 ≤ k < n }.


• If p ∧ ¬ B→ q, the desired postcondition for the loop, then no cleanup is necessary, otherwise we 
need loop termination code: { p ∧ ¬ B } termination code { q }.


F. While Loop Rule; Loop Invariant Example


• The proof rule for a loop only has one antecedent, which requires us to have a loop invariant.


1.	 { p ∧ B } S { p }  
2.	 { inv p } while B do S od { p ∧ ¬ B } 	 loop (or while), 1


• As a triple, the loop behaves like { p } while B do S od { p ∧ ¬ B }, so any precondition strengthening 
is relative to p, and any postcondition weakening is relative to p ∧ ¬ B.


Example 2: Correctness of a Loop Body Using an Invariant


• We want to show that the loop W establishes s = sum ( 0 , n ), given


• p ≡ 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) 


• W ≡ while k < n do k := k+1 ; s := s+k od


• First, let's write out a full proof of correctness for this program, then we can analyze its parts:


1.	 { p [ s+k / s ] } s  : = s+k { p }	 (backward) assignment 
2.	 { p [ s+k / s ] [ k+1 / k ] } k : = k+1 { p [ s+k / s ] }	 (backward) assignment 
3.	 { p [ s+k / s ] [ k+1 / k ] } k : = k+1 ; s : = s+k { p }	 sequence 2, 1 
4.	 p ∧ k < n→ p [ s+k / s ] [ k+1 / k ]	 predicate logic 
5.	 { p ∧ k < n } k : = k+1 ; s : = s+k { p }	 precondition str 4, 3 
6.	 { inv p } W { p ∧ k ≥ n }	 loop 5 
7.	 p ∧ k ≥ n→ s = sum ( 0 , n )	 predicate logic 
8.	 { inv p } W { s = sum ( 0 , n ) }	 postcondition weakening 6, 7


Predicate Approximates Because

  p the wp of the loop p→wp ( W, p ∧ ¬ B )

  p ∧ B  the wp of the loop body p ∧ B→wp ( S , p )

 p ∧ ¬ B  the sp of the loop sp ( p , W )→ p ∧ ¬ B

  p the sp of the loop body sp ( S , p ∧ B )→ p
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• The key requirement is showing that p is indeed invariant (line 5).  Using the loop rule will let us 
conclude { inv p } W { p ∧ k ≥ n } (line 6).


• Once the loop terminates, we know p ∧ k ≥ n holds, but our final goal is to show s = sum ( 0 , n ).  It 
turns out that postcondition weakening is sufficient (we don't need any cleanup code).  This 
completes the loop


• Turning back to the loop body { p ∧ k < n } k : = k + 1 ; s : = s+k { p }, since this is a sequence, we 
need to show correctness of each assignment statement (lines 1 and 2) and combine them into a 
sequence (line 3).


• We use the backward assignment rule twice, but the proof can certainly be done with for-
ward assignment (see Example 3 below).  The structure of the triple makes it easy to infer 
that backward assignment is being used, so “backward” can be omitted.


• When we combine the assignments to form the sequence (line 3), the resulting precondition 
is p [ s+k / s ] [ k + 1 / k ], so we use precondition strengthening to get p ∧ k < n, which is the 
form required by the loop rule.


• A reminder: The implication in line 4, p ∧ k < n→ p [ s+k / s ] [ k + 1 / k ] , is a predicate logic obliga-
tion.  We're concentrating on correctness triples, which is why we're omitting formal proofs of 
the obligations.  Still, it's good to convince ourselves that the implication is correct:


• First, let's expand the substitutions used. For p ∧ k < n→ p [ s+k / s ] [ k + 1 / k ], we get


• p [ s+k ∕ s ] ≡ ( 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) ) [ s+k ∕ s ] ≡ 0 ≤ k ≤ n ∧ s+k = sum ( 0 , k )


• p [ s+k ∕ s ] [ k+1 ∕ k ] ≡ ( 0 ≤ k+1 ≤ n ∧ s+k+1 = sum ( 0 , k+1 ) )


• ( p ∧ k < n ) ≡ ( 0 ≤ k ≤ n ∧ s =sum ( 0 , k ) ∧ k < n )


• So p ∧ k < n→ p [ s+k / s ] [ k + 1 / k ] expands to an implication that's easy to see is correct. 
	 	 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) ∧ k < n )→ 0 ≤ k + 1 ≤ n ∧ s+k+1 = sum ( 0 , k + 1 ).


• There's also an obligation in line 7, ( p ∧ k ≥ n→ s =sum ( 0 , n ) ) but this one is easier to see: 
p ∧ k ≥ n implies k ≤ n ∧ k ≥ n, so k = n.  Along with s = sum ( 0 , k ) from p, we get s = sum ( 0 , n ).


Example 3: Correctness of the Same Loop Body Using sp


• Above, we showed correctness of the loop body using wp; it's also possible to prove correctness  
using sp instead. We have to replace lines 1 – 5 of the proof above, but lines 6 – 8 don't change 
because they don't rely on how the loop body was proved to be correct.


1.	 { p ∧ k < n } k : = k + 1 { p₁ }	 assignment 
	 	 where p₁ ≡ ( p ∧ k < n ) [ k₀ / k ] ∧ k = ( k+1 ) [ k₀ / k ] 
2.	 { p₁ } s : = s+k  { p₂ }	 assignment 
	 	 where p₂ ≡ p₁ [ s₀ / s ] ∧ s = ( s+k ) [ s₀ / s ]   
3.	 { p ∧ k < n } k : = k + 1 ; s : = s+k { p₂ }	 sequence 1, 2 
4.	 p₂→ p	 	 predicate logic 
5.	 { p ∧ k < n } k : = k + 1 ; s : = s+k { p }	 postcondition weak. 4, 3


• Here are the expansions of p₁ and p₂ used in the new proof:
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• p₁ ≡ ( p ∧ k < n ) [ k₀ / k ] ∧ k = ( k+1 ) [ k₀ /k ] 
	 ≡ ( ( 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) ) ∧ k < n ) [ k₀ / k ] ∧ k = ( k+1 ) [ k₀ / k ] 
	 ≡ 0 ≤ k₀ ≤ n ∧ s = sum ( 0 , k₀ ) ∧ k₀ < n ∧ k = k₀ + 1


• p₂ ≡ p₁ [ s₀ / s ] ∧ s = ( s+k ) [ s₀ / s ]  
	 ≡ ( 0 ≤ k₀ ≤ n ∧ s = sum ( 0 , k₀ ) ∧ k₀ < n ∧ k = k₀ + 1 ) [ s₀ / s ] ∧ s = s₀ + k 
	 ≡ 0 ≤ k₀ ≤ n ∧ s₀ = sum ( 0 , k₀ ) ∧ k₀ < n ∧ k = k₀ + 1 ∧ s = s₀ + k


Example 4: Another Loop Example


• Here's a simple loop program that calculates s =sum ( 0 , n ) = 0 + 1 + … + n where n ≥ 0.  (If n < 0, 
define sum ( 0 , n ) = 0.)  Note the loop invariant appears explicitly.  Also, the invariant is the same 
as in Example 3.


{ n ≥ 0 }  
k : = 0 ; s : = 0 ;  
{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) }  
while k < n  do 
      s : = s+k+1 ;  
      k : = k + 1  
od 
{ s = sum ( 0 , n ) } 


• Informally, to see that this program works, we need


• { n ≥ 0 } k : = 0 ; s : = 0 { p ≡ 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) }


• { p ∧ k < n } s : = s+k+1 ; k : = k + 1 { p }


• p ∧ k ≥ n→ s = sum ( 0 , n )


• It's straightforward to use wp or sp to show that the two triples are correct.  A bit of predicate 
logic gives us the implication, which we need to weaken the loop's postcondition to the one we 
want.


• We'll do a detailed analysis in a little while.


G. Alternative Invariants Yield Different Programs and Proofs


• The invariant, test, initialization code, and body of a loop are all interconnected: Changing one 
can change them all.  For example, we use s = sum ( 0 , k ) in our invariant, so we have the loop 
terminate with k = n.


• If instead we use s = sum ( 0 , k+1 ) or s = sum ( 0 , k –1 ) in our invariant, we must terminate with 
k+1 = n or k–1 = n respectively, and we change the increment of s.


• Example 5: Using s = sum ( 0 , k ) as the invariant.


{ n ≥ 0 }  
k := 0 ;  s := 0 ;  
{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum ( 0 , k ) } 	 / /  same invariant as in Examples 3 and 4 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while k < n  do 
      s := s+k+1 ;  
      k := k+1  
od 
{ s = sum ( 0 , n ) } 


• Example 6: Using s = sum ( 0 , k+1 ) as the invariant.


{ n > 0 }  
k := 0 ; s := 1 ;  
{ inv p₁ ≡ 0 ≤ k+1 < n ∧ s = sum ( 0 , k+1 ) }  
while k+1 < n  do 
      s := s+k+2 ;  
      k := k+1  
od 
{ s = sum ( 0 , n ) } 


• Example 7: Using s = sum ( 0 , k–1 ) as the invariant.


{ n ≥ 0 }  
k := 1 ;  s := 0 ;  
{ inv p₂ ≡ 0 ≤ k–1 < n ∧ s = sum ( 0 , k–1 ) }  
while k–1 < n  do 
      s := s+k ;  
      k := k+1  
od 
{ s = sum ( 0 , n ) } 
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