Illinois Institute of Technology Class 15

Proof Rules and Proofs for Correctness Triples, v.2

Part 2: Conditional and Iterative Statements

CS 536: Science of Programming, Spring 2023

A. Why?

« Proof rules give us a way to establish truth with textually precise manipulations

« We need inference rules for compound statements such as conditional and iterative.

B. Outcomes

At the end of this topic you should know
» The rules of inference for if-else statements.
« The rule of inference for while statements.

« The impracticality of the wp and sp for loops; the definition and use of loop invariants.

C. Rules for Conditionals

« There are two popular ways to characterize correctness for if-else statements

If-Else Conditional Rule 1

« The sp-oriented basic rule is

1. {pAB}S1{q.}

2. {pA-B}S;{q:}

3. {plifBthenS,elseS,fi{q.v q,} if-else 1,2
(The rule name can be "if-else" or "conditional” or anything similar.)

« In proof tree form:

{pAB}Si{q:} {pr-B}S:{q:} if-else
{p}ifBthen S;else S, fi{qiv q.}

+ The rule says that
« If running the true branch S; in a state satisfying p and B establishes q;,
« And running the false branch S, in a state satisfying p and - B establishes g5,

» Then you know that running the if-else in a state satisfying p establishes q; v q, .

CS 536: Science of Programming -1- © James Sasaki, 2023

Illinois Institute of Technology Class 15

o Example 1: Here's a proof of { T} if x>0 theny:=x elsey:=-x fi{y>0}. We need
o {x>20}y:=x{y>0}for the true branch (line 1 below).
o {x<0}y:=-x{y=>0} for the false branch (lines 2 — 4 below).

1. {x20}y:=x{y=20} (backward) assignment

2. Ax<0}y:=—x{x<0ry=-x} (forward) assignment

3. Xx<0Aay=-x—y20 predicate logic

4. {x<0}y:=-x{y=>0} postcondition weakening, 2, 3
5. {T}ifx=0theny:=xelsey:=-xfi{y=0} if-else 1,4

» The proof above used forward assignment; backward assignment works also: Lines 2 — 4 be-
come

2. {-x20}y:=—x{y=>0} (backward) assignment
3. Xx<0— —-x20 predicate logic
4. {x<0}y:=-x{y=20} precondition strengthening 3, 2

If-Else Conditional Rule 2

« Conditional rule 2: An equivalent, more goal-oriented / wp-oriented conditional rule is:

1. {p1 S {Ch }
2. {p21S:{q2}
3. {po}ifB then S elseS,fi{q.v q,} if-else 2,1
where po=(B—=p1)A(-B—p;)
+ If we add a preconditioning strengthening step of p — (B — p1) A (-~ B — p;) to the rule above,
we get the same effect as the old precondition (p AB—=p1)A(pAr-~B—p,).
« We can derive this second version of the conditional rule using the first version. The assump-
tions below become the antecedents of the derived rule above; the conclusion below becomes
the consequent of the derived rule above.

1L Api}Sid{qi} assumption 1
2. ponB—p; predicate logic
where po=(pAB—=p1)r(pAr-B—p;)
3. {ponB}Si{q:} precondition strengthening 2, 1
4. {p2}S:{qz} assumption 2
5. por-B—p; predicate logic
6. {pon-B}S:{q;} precondition strengthening 5, 4
7. {po}ifB then S elseS,fi{q.v q,} if-else 3, 6

CS 536: Science of Programming -2- © James Sasaki, 2023

Illinois Institute of Technology Class 15

If-Then Statements

« An if-then statement is an if-else with { p A - B } skip { p A - B } as the false branch.

1. {p/\B}Sl{CI1}
2. A{pn-B}skip{pr-B} skip
3. {p}ifBthenS,fi{q.v(pr-B)} if-else 1, 2

Nondeterministic Conditionals
« Perhaps surprisingly, the proof rules for nondeterministic conditionals are almost exactly the
same as for deterministic conditionals.
Nondeterministic if-fi rule 1: (sp-like)
1. {paBi}Si{q:}
2. {p/\Bz}Sz{CIz}
3. {plifBi—=S:10B,=S, fi{qivq:} iffi1, 2

Nondeterministic if-fi rule 1: (wp-like)
1. {p1}Si{q:}
2. {p2}S{q:}
3. Apo}ifBi—=S:10B,—=S, fi{qiv @z} if-fil, 2
where po=(pArB1—=pi1)A(pArB;—p,)

D. Problems With Calculating the wp or sp of a Loop
« Whatis wp (W, q) for a typical loop W=while B do S od ? It turns out that some wp (W, q) have
no finite representation. (sp (W, p) has the same problem.)
+ Let's look at the general problem of wp (W, q).
« First, define wy, to be the weakest precondition of W and q that requires exactly k iterations.
o Let wo=-Baqand for all k>0, define wy,.;=Bawp (S, w;).

« If we know that W will run for, say, < 3 iterations, then wp (W, q) < wov wiv w, v ws.

But in general, W might run for any number of iterations, so wp (W, q) < wovwivw, v

If this infinitely-long disjunction collapses somehow, then we can write wp (W, q) finitely.
o Eg,ifwr,;—w, when k>5,then wp (W, q) < wovw;vw,vwsvwsv ws.

« Or, if there's a predicate function P (k) < wy (i.e., if the w; are parameterized by k), then
wp(W,q) < An.P(n).

CS 536: Science of Programming -3- © James Sasaki, 2023

Illinois Institute of Technology Class 15

E. Using Invariants to Approximate the wp and sp With Loops

Basic notions

« If we can't calculate wp (S, q) or sp (p, W) exactly, the best we can do is to approximate it.
« The simplest approximation is a predicate p that implies all the w,.
e fp=w,forallk,thenp=wovw;vw,v...,sop=wp(S,q).
» Definition: A loop invariant for W= while B do S od is a predicate p such that={pAB}S{p}.
It follows that={p} W{pAr-B}1
» Under partial correctness, if W terminates, it must terminate satisfying p A - B.

» Note this is for partial correctness only: To get total correctness, we'll need to prove that the
loop terminates, and we'll address that problem later.

» Notation: To indicate a loop's invariant, we'll add it as an extra clause: {inv p } while B do S od.
This declares that p is not only a precondition of the loop, it's an invariant.

Need Useful Invariants
« Not all invariants are useful. E.g., any tautology is an invariant: { TAB}S{ T}, so
{T} W{Ta-B}. For that matter, contradictions are invariants too, but they're even less useful.
» The key is to find an invariant that:
1. Can be established using simple loop initialization code: { p, } initialization code {p }.
2. Can serve as a precondition and postcondition of a loop iteration: { p A B} loop body {p }.

3. When combined with - B and loop termination code, implies the postcondition we want:
{p A - B} termination code {q}. If p A -~ B — q, then we don't need any termination code.

« There's no general algorithm for generating useful invariants. In a future class, we'll look at
some heuristics for trying to find them.

Semantics of Invariants

+ How do invariants fit in with the semantics of loops?
« Recall if we take the loop W={invp } while Bdo S od and run it in state g,, then one iteration

takes us to state g, the next to g,, and so on: oy.;=M (S,a;) for all k, and M (W, g,) is the first
o, that satisfies - B; if there is no such state, then we write 1, M (W, gy)2

1 We've been using “p” as a generic name for a predicate. From now on, it may or may not stand for a loop
invariant, depending on the context.

2 If W is nondeterministic, it's a bit more complicated: For each possible sequence of 7, M (W, T) either
contains the first 7, that satisfies = B or 1, if there is no such 7.

CS 536: Science of Programming -4- © James Sasaki, 2023

Illinois Institute of Technology Class 15

« The invariant p must be satisfied by every possible gy, g3, ..., which implies that it's an approxi-
mation to various wp and sp for the loop and loop body:

Predicate Approximates Because

p the wp of the loop p—-wp(W,par-B)
pAB the wp of the loopbody paB—wp(S,p)
pA-B the sp of the loop sp(p,W)—-pa-B
p the sp of theloop body sp(S,paB)—p

Loop Initialization and Cleanup

« The purpose of loop initialization code is to establish the loop invariant: { po } So { p }, where S, is
the initialization code. Any variables that appear fresh in the invariant have to be initialized;
eg,{n>0}k:=0{0<k<n}.

o If p A - B — q, the desired postcondition for the loop, then no cleanup is necessary, otherwise we
need loop termination code: { p A ~ B } termination code { q }.

F. While Loop Rule; Loop Invariant Example

« The proof rule for a loop only has one antecedent, which requires us to have a loop invariant.

1. {paB}S{p}
2. {invp}whileBdoSod{pnA-B} loop (or while), 1

+ As atriple, the loop behaves like { p } while B do S od { p A -~ B }, so any precondition strengthening
is relative to p, and any postcondition weakening is relative to p A = B.
Example 2: Correctness of a Loop Body Using an Invariant
+ We want to show that the loop W establishes s =sum (0, n), given
e p=0<k<nas=sum(0,k)
e W=whilek<ndok:=k+1;s:=s+k od

« First, let's write out a full proof of correctness for this program, then we can analyze its parts:

1. {plstk/s]}s :=stk{p} (backward) assignment

2. Aplstk/s][k+1/k]}k:=k+t1{p[stk/s]} (backward) assignment

3. {plstk/s][k+1/k]}k:=k+1;s:=s+tk{p} sequence 2, 1

4. pak<n—-p[stk/s][k+1/k] predicate logic

5. {prk<n}k:=k+1l;s:=s+tk{p} precondition str 4, 3

6. {invp}W{pnrk=n} loop 5

7. pakzn—-s=sum(0,n) predicate logic

8. A{invp}W{s=sum(0,n)} postcondition weakening 6, 7

CS 536: Science of Programming -5- © James Sasaki, 2023

Illinois Institute of Technology Class 15

« The key requirement is showing that p is indeed invariant (line 5). Using the loop rule will let us
conclude {invp } W{p r k>n} (line 6).

« Once the loop terminates, we know p A k > n holds, but our final goal is to show s =sum (0, n). It
turns out that postcondition weakening is sufficient (we don't need any cleanup code). This
completes the loop

o Turning back to the loopbody {park<n}k:=k+1;s:=s+k{p}, since this is a sequence, we
need to show correctness of each assignment statement (lines 1 and 2) and combine them into a
sequence (line 3).

+ We use the backward assignment rule twice, but the proof can certainly be done with for-
ward assignment (see Example 3 below). The structure of the triple makes it easy to infer
that backward assignment is being used, so “backward” can be omitted.

+ When we combine the assignments to form the sequence (line 3), the resulting precondition
isp[s+k/s][k+1/k], sowe use precondition strengthening to get p A k <n, which is the
form required by the loop rule.

« Areminder: The implication in line4,pak<n—p[s+k/s][k+1/k], is a predicate logic obliga-
tion. We're concentrating on correctness triples, which is why we're omitting formal proofs of
the obligations. Still, it's good to convince ourselves that the implication is correct:

« First, let's expand the substitutions used. For pak<n—p[s+k/s][k+1/k], we get

o p[stk/s]=(0<k<snas=sum(0,k))[s+tk/s]=0<k<nastk=sum(0,k)

o p[s+tk/s][k+1/k]=(0<k+1<nas+k+l=sum(0,k+1))

s (prk<n)=(0<ksnas=sum(0,k)rk<n)

e Sopak<n—p[s+k/s][k+1/k]expands to an implication that's easy to see is correct.

O<ksnas=sum(0,k)ank<n)—0<k+1<nas+k+l1=sum(0,k+1).

« There's also an obligation in line 7, (p A k>n—s=sum (0, n)) but this one is easier to see:

pAk>=nimplies k<nak>n,so k=n. Along with s=sum (0, k) from p, we get s=sum (0, n).

Example 3: Correctness of the Same Loop Body Using sp

« Above, we showed correctness of the loop body using wp; it's also possible to prove correctness
using sp instead. We have to replace lines 1 - 5 of the proof above, but lines 6 — 8 don't change
because they don't rely on how the loop body was proved to be correct.

1. {pak<n}k:=k+1{p.} assignment
wherep;=(pak<n)[ko/k]nk=(k+1)[ko/k]

2. {pi}s:=stk {p.} assignment
where p,=pi[So/SIans=(stk)[So/s]

3. {pak<nj}tk:=k+1;s:=stk{p,} sequence 1, 2

4. p.—p predicate logic

5. {pak<nj}tk:=k+1;s:=stk{p} postcondition weak. 4, 3

» Here are the expansions of p; and p, used in the new proof:

CS 536: Science of Programming -6- © James Sasaki, 2023

Illinois Institute of Technology Class 15

e p1=(prk<n)[ko/k]nk=(k+1)[ko/k]
=((0sks<nas=sum(0,k))ank<n)[ko/kK]nk=(k+1)[ko/K]
=0<kosnas=sum(0,ko)nko<nnak=ko+1

o p2=p1l[So/SIns=(s+tk)[So/S]
=(0<kosnas=sum(0,ko) nko<nak=ko+1)[So/SIrnsS=So+k
=0<kosnaSo=sum(0,ko) ako<nak=ko+1rs=so+k

Example 4: Another Loop Example

» Here's a simple loop program that calculates s=sum(0,n)=0+1+... +nwheren>0. (If n<0,
define sum (0, n)=0.) Note the loop invariant appears explicitly. Also, the invariant is the same
as in Example 3.

{nz0}
k:=0;s:=0;
{invp=0<k<nas=sum(0,k)}
while k <n do

S:=8+k+1;

k:=k+1
od
{s=sum(0,n)}

+ Informally, to see that this program works, we need
e {n>20}k:=0;s:=0{p=0<k<nas=sum(0,k)}
o {pak<n}s:=stk+l;k:=k+1{p}

e pak>2n—s=sum(0,n)

« It's straightforward to use wp or sp to show that the two triples are correct. A bit of predicate
logic gives us the implication, which we need to weaken the loop's postcondition to the one we
want.

« We'll do a detailed analysis in a little while.

G. Alternative Invariants Yield Different Programs and Proofs

» The invariant, test, initialization code, and body of a loop are all interconnected: Changing one
can change them all. For example, we use s =sum (0, k) in our invariant, so we have the loop
terminate with k=n.

o Ifinstead we use s=sum (0, k+1) or s=sum (0, k-1) in our invariant, we must terminate with
k+1=n or k-1 =nrespectively, and we change the increment of s.

« Example 5: Using s =sum (0, k) as the invariant.
{n20}
k:=0; s:=0;
{invp=0<k<nas=sum(0,k)} //sameinvariant asin Examples 3 and 4

CS 536: Science of Programming -7- © James Sasaki, 2023

Illinois Institute of Technology Class 15

while k<n do
s:=8s+k+1;
k:=k+1

od

{s=sum(0,n)}

« Example 6: Using s =sum (0, k+1) as the invariant.

{n>0}
k=0;s:=1;
{invp;=0<k+1<nas=sum(0,k+1)}
while k+1<n do

s:=s+k+2;

k:=k+1
od
{s=sum(0,n)}

+ Example 7: Using s =sum (0, k-1) as the invariant.

{n>0}
k:i=1;s:=0;
{invp,=0<k-1<nas=sum(0,k-1)}
while k-1 <n do

s:=s+k;

k:=k+1
od
{s=sum(0,n)}

CS 536: Science of Programming -8- © James Sasaki, 2023

