Proof Rules and Proofs for Correctness Triples, v. 2
 Part 2: Conditional and Iterative Statements CS 536: Science of Programming, Spring 2023

A. Why?

- Proof rules give us a way to establish truth with textually precise manipulations
- We need inference rules for compound statements such as conditional and iterative.

B. Outcomes

At the end of this topic you should know

- The rules of inference for if-else statements.
- The rule of inference for while statements.
- The impracticality of the $w p$ and $s p$ for loops; the definition and use of loop invariants.

C. Rules for Conditionals

- There are two popular ways to characterize correctness for if-else statements

If-Else Conditional Rule 1

- The $s p$-oriented basic rule is

1. $\{p \wedge B\} S_{1}\left\{q_{1}\right\}$
2. $\{p \wedge \neg B\} S_{2}\left\{q_{2}\right\}$
3. $\{p\}$ if B then S_{1} else $S_{2} f i\left\{q_{1} \vee q_{2}\right\}$
if-else 1,2
(The rule name can be "if-else" or "conditional" or anything similar.)

- In proof tree form:
$\frac{\{p \wedge B\} S_{1}\left\{q_{1}\right\} \quad\{p \wedge \neg B\} S_{2}\left\{q_{2}\right\}}{\{p\} \text { if } B \text { then } S_{1} \text { else } S_{2} f i\left\{q_{1} \vee q_{2}\right\}}$ if-else
- The rule says that
- If running the true branch S_{1} in a state satisfying p and B establishes q_{1},
- And running the false branch S_{2} in a state satisfying p and $\neg B$ establishes q_{2},
- Then you know that running the if-else in a state satisfying p establishes $q_{1} \vee q_{2}$.
- Example 1: Here's a proof of $\{T\}$ if $x \geq 0$ then $y:=x$ else $y:=-x$ fi $\{y \geq 0\}$. We need
- $\{x \geq 0\} y:=x\{y \geq 0\}$ for the true branch (line 1 below).
- $\{x<0\} y:=-x\{y \geq 0\}$ for the false branch (lines $2-4$ below).

1. $\{x \geq 0\} y:=x\{y \geq 0\}$ (backward) assignment
2. $\{x<0\} y:=-x\{x<0 \wedge y=-x\}$ (forward) assignment
3. $x<0 \wedge y=-x \rightarrow y \geq 0 \quad$ predicate logic
4. $\{x<0\} y:=-x\{y \geq 0\}$ postcondition weakening, 2, 3
5. $\{T\}$ if $x \geq 0$ then $y:=x$ else $y:=-x$ fi $\{y \geq 0\}$ if-else 1,4

- The proof above used forward assignment; backward assignment works also: Lines $2-4$ become

2. $\{-x \geq 0\} y:=-x\{y \geq 0\}$ (backward) assignment
3. $x<0 \rightarrow-x \geq 0 \quad$ predicate logic
4. $\{x<0\} y:=-x\{y \geq 0\}$
precondition strengthening 3, 2

If-Else Conditional Rule 2

- Conditional rule 2: An equivalent, more goal-oriented / wp-oriented conditional rule is:

1. $\left\{p_{1}\right\} S_{1}\left\{q_{1}\right\}$
2. $\left\{p_{2}\right\} S_{2}\left\{q_{2}\right\}$
3. $\left\{p_{0}\right\}$ if B then S_{1} else S_{2} fi $\left\{q_{1} \vee q_{2}\right\}$
if-else 2, 1 where $p_{0} \equiv\left(B \rightarrow p_{1}\right) \wedge\left(\neg B \rightarrow p_{2}\right)$

- If we add a preconditioning strengthening step of $p \rightarrow\left(B \rightarrow p_{1}\right) \wedge\left(\neg B \rightarrow p_{2}\right)$ to the rule above, we get the same effect as the old precondition $\left(p \wedge B \rightarrow p_{1}\right) \wedge\left(p \wedge \neg B \rightarrow p_{2}\right)$.
- We can derive this second version of the conditional rule using the first version. The assumptions below become the antecedents of the derived rule above; the conclusion below becomes the consequent of the derived rule above.

1. $\left\{p_{1}\right\} S_{1}\left\{q_{1}\right\}$
2. $p_{0} \wedge B \rightarrow p_{1}$ where $p_{0} \equiv\left(p \wedge B \rightarrow p_{1}\right) \wedge\left(p \wedge \neg B \rightarrow p_{2}\right)$
3. $\left\{p_{0} \wedge B\right\} S_{1}\left\{q_{1}\right\}$
4. $\left\{p_{2}\right\} S_{2}\left\{q_{2}\right\}$
5. $p_{0} \wedge \neg B \rightarrow p_{2}$
6. $\left\{p_{0} \wedge \neg B\right\} S_{2}\left\{q_{2}\right\}$
7. $\left\{p_{0}\right\}$ if B then S_{1} else $S_{2} f i\left\{q_{1} \vee q_{2}\right\}$
assumption 1
predicate logic
precondition strengthening 2,1
assumption 2
predicate logic
precondition strengthening 5, 4
if-else 3, 6

If-Then Statements

- An if-then statement is an if-else with $\{p \wedge \neg B\}$ skip $\{p \wedge \neg B\}$ as the false branch.

1. $\{p \wedge B\} S_{1}\left\{q_{1}\right\}$
2. $\{p \wedge \neg B\}$ skip $\{p \wedge \neg B\}$ skip
3. $\{p\}$ if B then $S_{1} f i\left\{q_{1} \vee(p \wedge \neg B)\right\} \quad$ if-else 1,2

Nondeterministic Conditionals

- Perhaps surprisingly, the proof rules for nondeterministic conditionals are almost exactly the same as for deterministic conditionals.

Nondeterministic if-fi rule 1: ($s p$-like)

1. $\left\{p \wedge B_{1}\right\} S_{1}\left\{q_{1}\right\}$
2. $\left\{p \wedge B_{2}\right\} S_{2}\left\{q_{2}\right\}$
3. $\{p\}$ if $B_{1} \rightarrow S_{1} \square B_{2} \rightarrow S_{2} f i\left\{q_{1} \vee q_{2}\right\}$
if-fi 1, 2

Nondeterministic if-fi rule 1: (wp-like)

1. $\left\{p_{1}\right\} S_{1}\left\{q_{1}\right\}$
2. $\left\{p_{2}\right\} S_{2}\left\{q_{2}\right\}$
3. $\left\{p_{0}\right\}$ if $B_{1} \rightarrow S_{1} \square B_{2} \rightarrow S_{2} f i\left\{q_{1} \vee q_{2}\right\} \quad$ if-fi 1, 2
where $p_{0} \equiv\left(p \wedge B_{1} \rightarrow p_{1}\right) \wedge\left(p \wedge B_{2} \rightarrow p_{2}\right)$

D. Problems With Calculating the wp or sp of a Loop

- What is $w p(W, q)$ for a typical loop $W \equiv$ while B do S od? It turns out that some $w p(W, q)$ have no finite representation. ($s p(W, p)$ has the same problem.)
- Let's look at the general problem of $w p(W, q)$.
- First, define w_{k} to be the weakest precondition of W and q that requires exactly k iterations.
- Let $w_{0} \equiv \neg B \wedge q$ and for all $k \geq 0$, define $w_{k+1} \equiv B \wedge w p\left(S, w_{k}\right)$.
- If we know that W will run for, say, ≤ 3 iterations, then $w p(W, q) \Leftrightarrow w_{0} \vee w_{1} \vee w_{2} \vee w_{3}$.
- But in general, W might run for any number of iterations, so $w p(W, q) \Leftrightarrow w_{0} \vee w_{1} \vee w_{2} \vee \ldots$
- If this infinitely-long disjunction collapses somehow, then we can write $w p(W, q)$ finitely.
- E.g., if $w_{k+1} \rightarrow w_{k}$ when $k \geq 5$, then $w p(W, q) \Leftrightarrow w_{0} \vee w_{1} \vee w_{2} \vee w_{3} \vee w_{4} \vee w_{5}$.
- Or, if there's a predicate function $P(k) \Leftrightarrow w_{k}$ (i.e., if the w_{k} are parameterized by k), then $w p(W, q) \Leftrightarrow \exists n . P(n)$.

E. Using Invariants to Approximate the wp and sp With Loops

Basic notions

- If we can't calculate $w p(S, q)$ or $s p(p, W)$ exactly, the best we can do is to approximate it.
- The simplest approximation is a predicate p that implies all the w_{k}.
- If $p \Rightarrow w_{k}$ for all k, then $p \Rightarrow w_{0} \vee w_{1} \vee w_{2} \vee \ldots$, so $p \Rightarrow w p(S, q)$.
- Definition: A loop invariant for $W \equiv$ while B do S od is a predicate p such that $\vDash\{p \wedge B\} S\{p\}$. It follows that $\vDash\{p\} W\{p \wedge \neg B\} .{ }^{1}$
- Under partial correctness, if W terminates, it must terminate satisfying $p \wedge \neg B$.
- Note this is for partial correctness only: To get total correctness, we'll need to prove that the loop terminates, and we'll address that problem later.
- Notation: To indicate a loop's invariant, we'll add it as an extra clause: \{inv p \} while B do S od. This declares that p is not only a precondition of the loop, it's an invariant.

Need Useful Invariants

- Not all invariants are useful. E.g., any tautology is an invariant: $\{T \wedge B\} S\{T\}$, so $\{T\} W\{T \wedge \neg B\}$. For that matter, contradictions are invariants too, but they're even less useful.
- The key is to find an invariant that:

1. Can be established using simple loop initialization code: $\left\{p_{0}\right\}$ initialization code $\{p\}$.
2. Can serve as a precondition and postcondition of a loop iteration: $\{p \wedge B\}$ loop body $\{p\}$.
3. When combined with $\neg B$ and loop termination code, implies the postcondition we want: $\{p \wedge \neg B\}$ termination code $\{q\}$. If $p \wedge \neg B \rightarrow q$, then we don't need any termination code.

- There's no general algorithm for generating useful invariants. In a future class, we'll look at some heuristics for trying to find them.

Semantics of Invariants

- How do invariants fit in with the semantics of loops?
- Recall if we take the loop $W \equiv\{\operatorname{inv} p\}$ while B do S od and run it in state σ_{0}, then one iteration takes us to state σ_{1}, the next to σ_{2}, and so on: $\sigma_{k+1}=M\left(S, \sigma_{k}\right)$ for all k, and $M\left(W, \sigma_{0}\right)$ is the first σ_{k} that satisfies $\neg B$; if there is no such state, then we write $\perp_{d} \in M\left(W, \sigma_{0}\right)^{2}$.

[^0]- The invariant p must be satisfied by every possible $\sigma_{0}, \sigma_{1}, \ldots$, which implies that it's an approximation to various $w p$ and $s p$ for the loop and loop body:

Predicate	Approximates	Because
p	the $w p$ of the loop	$p \rightarrow w p(W, p \wedge \neg B)$
$p \wedge B$	the $w p$ of the loop body	$p \wedge B \rightarrow w p(S, p)$
$p \wedge \neg B$	the $s p$ of the loop	$s p(p, W) \rightarrow p \wedge \neg B$
p	the $s p$ of the loop body	$s p(S, p \wedge B) \rightarrow p$

Loop Initialization and Cleanup

- The purpose of loop initialization code is to establish the loop invariant: $\left\{p_{0}\right\} S_{0}\{p\}$, where S_{0} is the initialization code. Any variables that appear fresh in the invariant have to be initialized; e.g., $\{n>0\} k:=0\{0 \leq k<n\}$.
- If $p \wedge \neg B \rightarrow q$, the desired postcondition for the loop, then no cleanup is necessary, otherwise we need loop termination code: $\{p \wedge \neg B\}$ termination code $\{q\}$.

F. While Loop Rule; Loop Invariant Example

- The proof rule for a loop only has one antecedent, which requires us to have a loop invariant.

1. $\{p \wedge B\} S\{p\}$
2. $\{$ inv $p\}$ while B do S od $\{p \wedge \neg B\} \quad$ loop (or while), 1

- As a triple, the loop behaves like $\{p\}$ while B do S od $\{p \wedge \neg B\}$, so any precondition strengthening is relative to p, and any postcondition weakening is relative to $p \wedge \neg B$.

Example 2: Correctness of a Loop Body Using an Invariant

- We want to show that the loop W establishes $s=\operatorname{sum}(0, n)$, given
- $p \equiv 0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)$
- W \equiv while $k<n$ do $k:=k+1$; $s:=s+k$ od
- First, let's write out a full proof of correctness for this program, then we can analyze its parts:

1. $\{p[s+k / s]\} s:=s+k\{p\}$ (backward) assignment
2. $\{p[s+k / s][k+1 / k]\} k:=k+1\{p[s+k / s]\} \quad$ (backward) assignment
3. $\{p[s+k / s][k+1 / k]\} k:=k+1 ; s:=s+k\{p\} \quad$ sequence 2,1
4. $p \wedge k<n \rightarrow p[s+k / s][k+1 / k] \quad$ predicate logic
5. $\{p \wedge k<n\} k:=k+1 ; s:=s+k\{p\}$
precondition str 4, 3
6. $\{\operatorname{inv} p\} W\{p \wedge k \geq n\}$
7. $p \wedge k \geq n \rightarrow s=\operatorname{sum}(0, n)$
loop 5
predicate logic
8. $\{\operatorname{inv} p\} W\{s=\operatorname{sum}(0, n)\}$

- The key requirement is showing that p is indeed invariant (line 5). Using the loop rule will let us conclude $\{\operatorname{inv} p\} W\{p \wedge k \geq n\}$ (line 6).
- Once the loop terminates, we know $p \wedge k \geq n$ holds, but our final goal is to show $s=\operatorname{sum}(0, n)$. It turns out that postcondition weakening is sufficient (we don't need any cleanup code). This completes the loop
- Turning back to the loop body $\{p \wedge k<n\} k:=k+1 ; s:=s+k\{p\}$, since this is a sequence, we need to show correctness of each assignment statement (lines 1 and 2) and combine them into a sequence (line 3).
- We use the backward assignment rule twice, but the proof can certainly be done with forward assignment (see Example 3 below). The structure of the triple makes it easy to infer that backward assignment is being used, so "backward" can be omitted.
- When we combine the assignments to form the sequence (line 3), the resulting precondition is $p[s+k / s][k+1 / k]$, so we use precondition strengthening to get $p \wedge k<n$, which is the form required by the loop rule.
- A reminder: The implication in line $4, p \wedge k<n \rightarrow p[s+k / s][k+1 / k]$, is a predicate logic obligation. We're concentrating on correctness triples, which is why we're omitting formal proofs of the obligations. Still, it's good to convince ourselves that the implication is correct:
- First, let's expand the substitutions used. For $p \wedge k<n \rightarrow p[s+k / s][k+1 / k]$, we get
- $p[s+k / s] \equiv(0 \leq k \leq n \wedge s=\operatorname{sum}(0, k))[s+k / s] \equiv 0 \leq k \leq n \wedge s+k=\operatorname{sum}(0, k)$
- $p[s+k / s][k+1 / k] \equiv(0 \leq k+1 \leq n \wedge s+k+1=\operatorname{sum}(0, k+1))$
- $(p \wedge k<n) \equiv(0 \leq k \leq n \wedge s=\operatorname{sum}(0, k) \wedge k<n)$
- So $p \wedge k<n \rightarrow p[s+k / s][k+1 / k]$ expands to an implication that's easy to see is correct.

$$
0 \leq k \leq n \wedge s=\operatorname{sum}(0, k) \wedge k<n) \rightarrow 0 \leq k+1 \leq n \wedge s+k+1=\operatorname{sum}(0, k+1) .
$$

- There's also an obligation in line $7,(p \wedge k \geq n \rightarrow s=\operatorname{sum}(0, n))$ but this one is easier to see: $p \wedge k \geq n$ implies $k \leq n \wedge k \geq n$, so $k=n$. Along with $s=\operatorname{sum}(0, k)$ from p, we get $s=\operatorname{sum}(0, n)$.

Example 3: Correctness of the Same Loop Body Using sp

- Above, we showed correctness of the loop body using $w p$; it's also possible to prove correctness using $s p$ instead. We have to replace lines $1-5$ of the proof above, but lines $6-8$ don't change because they don't rely on how the loop body was proved to be correct.

1. $\{p \wedge k<n\} k:=k+1\left\{p_{1}\right\}$ assignment where $p_{1} \equiv(p \wedge k<n)\left[k_{0} / k\right] \wedge k=(k+1)\left[k_{0} / k\right]$
2. $\left\{p_{1}\right\} s:=s+k\left\{p_{2}\right\}$ assignment
where $p_{2} \equiv p_{1}\left[s_{0} / s\right] \wedge s=(s+k)\left[s_{0} / s\right]$
3. $\{p \wedge k<n\} k:=k+1 ; s:=s+k\left\{p_{2}\right\}$
4. $p_{2} \rightarrow p$
5. $\quad\{p \wedge k<n\} k:=k+1 ; s:=s+k\{p\}$
sequence 1, 2
predicate logic
postcondition weak. 4, 3

- Here are the expansions of p_{1} and p_{2} used in the new proof:

```
- \(p_{1} \equiv(p \wedge k<n)\left[k_{0} / k\right] \wedge k=(k+1)\left[k_{0} / k\right]\)
    \(\equiv((0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)) \wedge k<n)\left[k_{0} / k\right] \wedge k=(k+1)\left[k_{0} / k\right]\)
    \(\equiv 0 \leq k_{0} \leq n \wedge s=\operatorname{sum}\left(0, k_{0}\right) \wedge k_{0}<n \wedge k=k_{0}+1\)
- \(p_{2} \equiv p_{1}\left[s_{0} / s\right] \wedge s=(s+k)\left[s_{0} / s\right]\)
    \(\equiv\left(0 \leq k_{0} \leq n \wedge s=\operatorname{sum}\left(0, k_{0}\right) \wedge k_{0}<n \wedge k=k_{0}+1\right)\left[s_{0} / s\right] \wedge s=s_{0}+k\)
    \(\equiv 0 \leq k_{0} \leq n \wedge s_{0}=\operatorname{sum}\left(0, k_{0}\right) \wedge k_{0}<n \wedge k=k_{0}+1 \wedge s=s_{0}+k\)
```


Example 4: Another Loop Example

- Here's a simple loop program that calculates $s=\operatorname{sum}(0, n)=0+1+\ldots+n$ where $n \geq 0$. (If $n<0$, define $\operatorname{sum}(0, n)=0$.) Note the loop invariant appears explicitly. Also, the invariant is the same as in Example 3.

```
\(\{n \geq 0\}\)
\(k:=0 ; s:=0\);
\(\{\operatorname{inv} p \equiv 0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)\}\)
while \(k<n\) do
    \(s:=s+k+1\);
    \(k:=k+1\)
od
\(\{s=\operatorname{sum}(0, n)\}\)
```

- Informally, to see that this program works, we need
- $\{n \geq 0\} k:=0 ; s:=0\{p \equiv 0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)\}$
- $\{p \wedge k<n\} s:=s+k+1 ; k:=k+1\{p\}$
- $p \wedge k \geq n \rightarrow s=\operatorname{sum}(0, n)$
- It's straightforward to use $w p$ or $s p$ to show that the two triples are correct. A bit of predicate logic gives us the implication, which we need to weaken the loop's postcondition to the one we want.
- We'll do a detailed analysis in a little while.

G. Alternative Invariants Yield Different Programs and Proofs

- The invariant, test, initialization code, and body of a loop are all interconnected: Changing one can change them all. For example, we use $s=\operatorname{sum}(0, k)$ in our invariant, so we have the loop terminate with $k=n$.
- If instead we use $s=\operatorname{sum}(0, k+1)$ or $s=\operatorname{sum}(0, k-1)$ in our invariant, we must terminate with $k+1=n$ or $k-1=n$ respectively, and we change the increment of s.
- Example 5: Using $s=\operatorname{sum}(0, k)$ as the invariant.

$$
\begin{aligned}
& \{n \geq 0\} \\
& k:=0 ; s:=0 ;
\end{aligned}
$$

$$
\{\operatorname{inv} p \equiv 0 \leq k \leq n \wedge s=\operatorname{sum}(0, k)\} \quad / / \text { same invariant as in Examples } 3 \text { and } 4
$$

```
while \(k<n\) do
        \(s:=s+k+1 ;\)
    \(k:=k+1\)
od
\(\{s=\operatorname{sum}(0, n)\}\)
```

- Example 6: Using $s=\operatorname{sum}(0, k+1)$ as the invariant.

```
\(\{n>0\}\)
\(k:=0 ; s:=1\);
\(\left\{\operatorname{inv} p_{1} \equiv 0 \leq k+1<n \wedge s=\operatorname{sum}(0, k+1)\right\}\)
while \(k+1<n\) do
            \(s:=s+k+2\);
            \(k:=k+1\)
od
\(\{s=\operatorname{sum}(0, n)\}\)
```

- Example 7: Using $s=\operatorname{sum}(0, k-1)$ as the invariant.

```
{n\geq0}
k:= 1; s:= 0;
{inv p}\mp@subsup{p}{2}{}\equiv0\leqk-1<n\wedges=\operatorname{sum}(0,k-1)
while k-1<n do
        s:= s+k;
        k:= k+1
od
{s=\operatorname{sum}(0,n)}
```


[^0]: ${ }^{1}$ We've been using " p " as a generic name for a predicate. From now on, it may or may not stand for a loop invariant, depending on the context.
 ${ }^{2}$ If W is nondeterministic, it's a bit more complicated: For each possible sequence of $\tau_{k}, M\left(W, \tau_{0}\right)$ either contains the first τ_{k} that satisfies $\neg B$ or \perp_{d} if there is no such τ_{k}.

