
Illinois Institute of Technology Mon 2023-03-06, 22:30 Class 15

  Proof Rules and Proofs for Correctness Triples, v.2

  Part 2: Conditional and Iterative Statements

  CS 536: Science of Programming, Spring 2023

A. Why?

• Proof rules give us a way to establish truth with textually precise manipulations

• We need inference rules for compound statements such as conditional and iterative.

B. Outcomes
At the end of this topic you should know

• The rules of inference for if-else statements.

• The rule of inference for while statements.

• The impracticality of the wp and sp for loops; the definition and use of loop invariants.

C. Rules for Conditionals

• There are two popular ways to characterize correctness for if-else statements

If-Else Conditional Rule 1

• The sp-oriented basic rule is

1. { p ∧ B } S₁ { q₁ }
2. { p ∧ ¬ B } S₂ { q₂ }
3. { p } if B then S₁ else S₂ fi { q₁ ∨ q₂ } if-else 1,2

(The rule name can be "if-else" or "conditional" or anything similar.)

• In proof tree form:

• The rule says that

• If running the true branch S₁ in a state satisfying p and B establishes q₁,

• And running the false branch S₂ in a state satisfying p and ¬ B establishes q₂,

• Then you know that running the if-else in a state satisfying p establishes q₁ ∨ q₂ .

{ p ∧ B } S₁ { q₁ } {p ∧ ¬ B } S₂ { q₂ } if-else

{ p } if B then S₁ else S₂ fi { q₁ ∨ q₂ }

CS 536: Science of Programming – – © James Sasaki, 20231

Illinois Institute of Technology Mon 2023-03-06, 22:30 Class 15

• Example 1: Here's a proof of { T } if x ≥ 0 then y : = x else y : = - x fi { y ≥ 0 }. We need

• { x ≥ 0 } y : = x { y ≥ 0 } for the true branch (line 1 below).

• { x < 0 } y : = – x { y ≥ 0 } for the false branch (lines 2 – 4 below).

1. { x ≥ 0 } y : = x { y ≥ 0 } (backward) assignment
2. { x < 0 } y : = – x { x < 0 ∧ y = – x } (forward) assignment
3. x < 0 ∧ y = – x→ y ≥ 0 predicate logic
4. { x < 0 } y : = – x { y ≥ 0 } postcondition weakening, 2, 3
5. { T } if x ≥ 0 then y : = x else y : = - x fi { y ≥ 0 } if-else 1, 4

• The proof above used forward assignment; backward assignment works also: Lines 2 – 4 be-
come

2. { – x ≥ 0 } y : = – x { y ≥ 0 } (backward) assignment
3. x < 0→ – x ≥ 0 predicate logic
4. { x < 0 } y : = – x { y ≥ 0 } precondition strengthening 3, 2

If-Else Conditional Rule 2

• Conditional rule 2: An equivalent, more goal-oriented / wp-oriented conditional rule is:

1. { p₁ } S₁ { q₁ }
2. { p₂ } S₂ { q₂ }
3. { p₀ } if B then S₁ else S₂ fi { q₁ ∨ q₂ } if-else 2, 1
 where p₀ ≡ (B→ p₁) ∧ (¬ B→ p₂)

• If we add a preconditioning strengthening step of p→ (B→ p₁) ∧ (¬ B→ p₂) to the rule above,
we get the same effect as the old precondition (p ∧ B→ p₁) ∧ (p ∧ ¬ B→ p₂).

• We can derive this second version of the conditional rule using the first version. The assump-
tions below become the antecedents of the derived rule above; the conclusion below becomes
the consequent of the derived rule above.

1. { p₁ } S₁ { q₁ } assumption 1

2. p₀ ∧ B→ p₁ predicate logic
 where p₀ ≡ (p ∧ B→ p₁) ∧ (p ∧ ¬ B→ p₂)

3. { p₀ ∧ B } S₁ { q₁ } precondition strengthening 2, 1

4. { p₂ } S₂ { q₂ } assumption 2

5. p₀ ∧ ¬ B→ p₂ predicate logic
6. { p₀ ∧ ¬ B } S₂ { q₂ } precondition strengthening 5, 4

7. { p₀ } if B then S₁ else S₂ fi { q₁ ∨ q₂ } if-else 3, 6

CS 536: Science of Programming – – © James Sasaki, 20232

Illinois Institute of Technology Mon 2023-03-06, 22:30 Class 15

If-Then Statements

• An if-then statement is an if-else with { p ∧ ¬ B } skip { p ∧ ¬ B } as the false branch.

1. { p ∧ B } S₁ { q₁ }
2. { p ∧ ¬ B } skip { p ∧ ¬ B } skip
3. { p } if B then S₁ fi { q₁ ∨ (p ∧ ¬ B) } if-else 1, 2

Nondeterministic Conditionals

• Perhaps surprisingly, the proof rules for nondeterministic conditionals are almost exactly the
same as for deterministic conditionals.

Nondeterministic if-fi rule 1: (sp-like)

1. { p ∧ B₁ } S₁ { q₁ }

2 . { p ∧ B₂ } S₂ { q₂ }

3 . { p } if B₁➞ S₁☐ B₂➞ S₂ fi { q₁ ∨ q₂ } if-fi 1, 2

Nondeterministic if-fi rule 1: (wp-like)

1. { p₁ } S₁ { q₁ }

2. { p₂ } S₂ { q₂ }

3. { p₀ } if B₁➞ S₁☐ B₂➞ S₂ fi { q₁ ∨ q₂ } if-fi 1, 2
 where p₀ ≡ (p ∧ B₁→ p₁) ∧ (p ∧ B₂→ p₂)

D. Problems With Calculating the wp or sp of a Loop

• What is wp (W, q) for a typical loop W ≡ while B do S od ? It turns out that some wp (W, q) have
no finite representation. (sp (W, p) has the same problem.)

• Let's look at the general problem of wp (W, q).

• First, define wk to be the weakest precondition of W and q that requires exactly k iterations.

• Let w₀ ≡ ¬ B ∧ q and for all k ≥ 0, define wk + 1 ≡ B ∧wp (S , wk) .

• If we know that W will run for, say, ≤ 3 iterations, then wp (W, q)⇔w₀ ∨w₁ ∨w₂ ∨w₃ .

• But in general, W might run for any number of iterations, so wp (W, q)⇔w₀ ∨w₁ ∨w₂ ∨….

• If this infinitely-long disjunction collapses somehow, then we can write wp (W, q) finitely.

• E.g., if wk + 1→wk when k ≥ 5, then wp (W, q)⇔w₀ ∨w₁ ∨w₂ ∨w₃ ∨w₄ ∨w₅.

• Or, if there's a predicate function P (k)⇔wk (i.e., if the wk are parameterized by k), then
wp (W, q) ⇔ ∃ n . P (n).

CS 536: Science of Programming – – © James Sasaki, 20233

Illinois Institute of Technology Mon 2023-03-06, 22:30 Class 15

E. Using Invariants to Approximate the wp and sp With Loops

Basic notions

• If we can't calculate wp (S , q) or sp (p , W) exactly, the best we can do is to approximate it.

• The simplest approximation is a predicate p that implies all the wk .

• If p⇒wk for all k , then p⇒w₀ ∨w₁ ∨w₂ ∨… . , so p⇒wp (S , q).

• Definition: A loop invariant for W ≡ while B do S od is a predicate p such that ⊨ { p ∧ B } S { p }.
It follows that ⊨ { p } W { p ∧ ¬ B }. 1

• Under partial correctness, if W terminates, it must terminate satisfying p ∧ ¬ B.

• Note this is for partial correctness only: To get total correctness, we'll need to prove that the
loop terminates, and we'll address that problem later.

• Notation: To indicate a loop's invariant, we'll add it as an extra clause: { inv p } while B do S od.
This declares that p is not only a precondition of the loop, it's an invariant.

Need Useful Invariants

• Not all invariants are useful. E.g., any tautology is an invariant: { T ∧ B } S { T }, so
{ T } W { T ∧ ¬ B }. For that matter, contradictions are invariants too, but they're even less useful.

• The key is to find an invariant that:

1. Can be established using simple loop initialization code: { p₀ } initialization code { p }.

2. Can serve as a precondition and postcondition of a loop iteration: { p ∧ B } loop body { p }.

3. When combined with ¬ B and loop termination code, implies the postcondition we want:
 { p ∧ ¬ B } termination code { q }. If p ∧ ¬ B→ q, then we don't need any termination code.

• There's no general algorithm for generating useful invariants. In a future class, we'll look at
some heuristics for trying to find them.

Semantics of Invariants

• How do invariants fit in with the semantics of loops?

• Recall if we take the loop W ≡ { inv p } while B do S od and run it in state σ₀, then one iteration
takes us to state σ₁, the next to σ₂, and so on: σk +1 = M (S ,σk) for all k, and M (W, σ₀) is the first
σk that satisfies ¬ B; if there is no such state, then we write ⊥d∈M (W, σ₀) . 2

 We've been using “p” as a generic name for a predicate. From now on, it may or may not stand for a loop 1

invariant, depending on the context.

 If W is nondeterministic, it's a bit more complicated: For each possible sequence of τk , M (W, τ ₀) either 2

contains the first τk that satisfies ¬ B or ⊥d if there is no such τk .

CS 536: Science of Programming – – © James Sasaki, 20234

Illinois Institute of Technology Mon 2023-03-06, 22:30 Class 15

• The invariant p must be satisfied by every possible σ₀, σ₁, …, which implies that it's an approxi-
mation to various wp and sp for the loop and loop body:

Loop Initialization and Cleanup

• The purpose of loop initialization code is to establish the loop invariant: { p₀ } S₀ { p }, where S₀ is
the initialization code. Any variables that appear fresh in the invariant have to be initialized;
e.g., { n > 0 } k : = 0 { 0 ≤ k < n }.

• If p ∧ ¬ B→ q, the desired postcondition for the loop, then no cleanup is necessary, otherwise we
need loop termination code: { p ∧ ¬ B } termination code { q }.

F. While Loop Rule; Loop Invariant Example

• The proof rule for a loop only has one antecedent, which requires us to have a loop invariant.

1. { p ∧ B } S { p }
2. { inv p } while B do S od { p ∧ ¬ B } loop (or while), 1

• As a triple, the loop behaves like { p } while B do S od { p ∧ ¬ B }, so any precondition strengthening
is relative to p, and any postcondition weakening is relative to p ∧ ¬ B.

Example 2: Correctness of a Loop Body Using an Invariant

• We want to show that the loop W establishes s = sum (0 , n), given

• p ≡ 0 ≤ k ≤ n ∧ s = sum (0 , k)

• W ≡ while k < n do k := k+1 ; s := s+k od

• First, let's write out a full proof of correctness for this program, then we can analyze its parts:

1. { p [s+k / s] } s : = s+k { p } (backward) assignment
2. { p [s+k / s] [k+1 / k] } k : = k+1 { p [s+k / s] } (backward) assignment
3. { p [s+k / s] [k+1 / k] } k : = k+1 ; s : = s+k { p } sequence 2, 1
4. p ∧ k < n→ p [s+k / s] [k+1 / k] predicate logic
5. { p ∧ k < n } k : = k+1 ; s : = s+k { p } precondition str 4, 3
6. { inv p } W { p ∧ k ≥ n } loop 5
7. p ∧ k ≥ n→ s = sum (0 , n) predicate logic
8. { inv p } W { s = sum (0 , n) } postcondition weakening 6, 7

Predicate Approximates Because

 p the wp of the loop p→wp (W, p ∧ ¬ B)

 p ∧ B the wp of the loop body p ∧ B→wp (S , p)

 p ∧ ¬ B the sp of the loop sp (p , W)→ p ∧ ¬ B

 p the sp of the loop body sp (S , p ∧ B)→ p

CS 536: Science of Programming – – © James Sasaki, 20235

Illinois Institute of Technology Mon 2023-03-06, 22:30 Class 15

• The key requirement is showing that p is indeed invariant (line 5). Using the loop rule will let us
conclude { inv p } W { p ∧ k ≥ n } (line 6).

• Once the loop terminates, we know p ∧ k ≥ n holds, but our final goal is to show s = sum (0 , n). It
turns out that postcondition weakening is sufficient (we don't need any cleanup code). This
completes the loop

• Turning back to the loop body { p ∧ k < n } k : = k + 1 ; s : = s+k { p }, since this is a sequence, we
need to show correctness of each assignment statement (lines 1 and 2) and combine them into a
sequence (line 3).

• We use the backward assignment rule twice, but the proof can certainly be done with for-
ward assignment (see Example 3 below). The structure of the triple makes it easy to infer
that backward assignment is being used, so “backward” can be omitted.

• When we combine the assignments to form the sequence (line 3), the resulting precondition
is p [s+k / s] [k + 1 / k], so we use precondition strengthening to get p ∧ k < n, which is the
form required by the loop rule.

• A reminder: The implication in line 4, p ∧ k < n→ p [s+k / s] [k + 1 / k] , is a predicate logic obliga-
tion. We're concentrating on correctness triples, which is why we're omitting formal proofs of
the obligations. Still, it's good to convince ourselves that the implication is correct:

• First, let's expand the substitutions used. For p ∧ k < n→ p [s+k / s] [k + 1 / k], we get

• p [s+k ∕ s] ≡ (0 ≤ k ≤ n ∧ s = sum (0 , k)) [s+k ∕ s] ≡ 0 ≤ k ≤ n ∧ s+k = sum (0 , k)

• p [s+k ∕ s] [k+1 ∕ k] ≡ (0 ≤ k+1 ≤ n ∧ s+k+1 = sum (0 , k+1))

• (p ∧ k < n) ≡ (0 ≤ k ≤ n ∧ s =sum (0 , k) ∧ k < n)

• So p ∧ k < n→ p [s+k / s] [k + 1 / k] expands to an implication that's easy to see is correct.
 0 ≤ k ≤ n ∧ s = sum (0 , k) ∧ k < n)→ 0 ≤ k + 1 ≤ n ∧ s+k+1 = sum (0 , k + 1).

• There's also an obligation in line 7, (p ∧ k ≥ n→ s =sum (0 , n)) but this one is easier to see:
p ∧ k ≥ n implies k ≤ n ∧ k ≥ n, so k = n. Along with s = sum (0 , k) from p, we get s = sum (0 , n).

Example 3: Correctness of the Same Loop Body Using sp

• Above, we showed correctness of the loop body using wp; it's also possible to prove correctness
using sp instead. We have to replace lines 1 – 5 of the proof above, but lines 6 – 8 don't change
because they don't rely on how the loop body was proved to be correct.

1. { p ∧ k < n } k : = k + 1 { p₁ } assignment
 where p₁ ≡ (p ∧ k < n) [k₀ / k] ∧ k = (k+1) [k₀ / k]
2. { p₁ } s : = s+k { p₂ } assignment
 where p₂ ≡ p₁ [s₀ / s] ∧ s = (s+k) [s₀ / s]
3. { p ∧ k < n } k : = k + 1 ; s : = s+k { p₂ } sequence 1, 2
4. p₂→ p predicate logic
5. { p ∧ k < n } k : = k + 1 ; s : = s+k { p } postcondition weak. 4, 3

• Here are the expansions of p₁ and p₂ used in the new proof:

CS 536: Science of Programming – – © James Sasaki, 20236

Illinois Institute of Technology Mon 2023-03-06, 22:30 Class 15

• p₁ ≡ (p ∧ k < n) [k₀ / k] ∧ k = (k+1) [k₀ /k]
 ≡ ((0 ≤ k ≤ n ∧ s = sum (0 , k)) ∧ k < n) [k₀ / k] ∧ k = (k+1) [k₀ / k]
 ≡ 0 ≤ k₀ ≤ n ∧ s = sum (0 , k₀) ∧ k₀ < n ∧ k = k₀ + 1

• p₂ ≡ p₁ [s₀ / s] ∧ s = (s+k) [s₀ / s]
 ≡ (0 ≤ k₀ ≤ n ∧ s = sum (0 , k₀) ∧ k₀ < n ∧ k = k₀ + 1) [s₀ / s] ∧ s = s₀ + k
 ≡ 0 ≤ k₀ ≤ n ∧ s₀ = sum (0 , k₀) ∧ k₀ < n ∧ k = k₀ + 1 ∧ s = s₀ + k

Example 4: Another Loop Example

• Here's a simple loop program that calculates s =sum (0 , n) = 0 + 1 + … + n where n ≥ 0. (If n < 0,
define sum (0 , n) = 0.) Note the loop invariant appears explicitly. Also, the invariant is the same
as in Example 3.

{ n ≥ 0 }
k : = 0 ; s : = 0 ;
{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum (0 , k) }
while k < n do
 s : = s+k+1 ;
 k : = k + 1
od
{ s = sum (0 , n) }

• Informally, to see that this program works, we need

• { n ≥ 0 } k : = 0 ; s : = 0 { p ≡ 0 ≤ k ≤ n ∧ s = sum (0 , k) }

• { p ∧ k < n } s : = s+k+1 ; k : = k + 1 { p }

• p ∧ k ≥ n→ s = sum (0 , n)

• It's straightforward to use wp or sp to show that the two triples are correct. A bit of predicate
logic gives us the implication, which we need to weaken the loop's postcondition to the one we
want.

• We'll do a detailed analysis in a little while.

G. Alternative Invariants Yield Different Programs and Proofs

• The invariant, test, initialization code, and body of a loop are all interconnected: Changing one
can change them all. For example, we use s = sum (0 , k) in our invariant, so we have the loop
terminate with k = n.

• If instead we use s = sum (0 , k+1) or s = sum (0 , k –1) in our invariant, we must terminate with
k+1 = n or k–1 = n respectively, and we change the increment of s.

• Example 5: Using s = sum (0 , k) as the invariant.

{ n ≥ 0 }
k := 0 ; s := 0 ;
{ inv p ≡ 0 ≤ k ≤ n ∧ s = sum (0 , k) } / / same invariant as in Examples 3 and 4

CS 536: Science of Programming – – © James Sasaki, 20237

Illinois Institute of Technology Mon 2023-03-06, 22:30 Class 15

while k < n do
 s := s+k+1 ;
 k := k+1
od
{ s = sum (0 , n) }

• Example 6: Using s = sum (0 , k+1) as the invariant.

{ n > 0 }
k := 0 ; s := 1 ;
{ inv p₁ ≡ 0 ≤ k+1 < n ∧ s = sum (0 , k+1) }
while k+1 < n do
 s := s+k+2 ;
 k := k+1
od
{ s = sum (0 , n) }

• Example 7: Using s = sum (0 , k–1) as the invariant.

{ n ≥ 0 }
k := 1 ; s := 0 ;
{ inv p₂ ≡ 0 ≤ k–1 < n ∧ s = sum (0 , k–1) }
while k–1 < n do
 s := s+k ;
 k := k+1
od
{ s = sum (0 , n) }

CS 536: Science of Programming – – © James Sasaki, 20238

