
CS 536: Science of Programming	 Fri 2023-04-07, 17:00	 Class 13

 Forward Assignment; Strongest Postconditions


  CS 536: Science of Programming, Spring 2023

2023-02-27 p.7, 2023-04-07 p.8


A. Why?


• Sometimes, the forward version of the assignment rule is preferable to the backward version.


• The forward assignment rule is part of calculating the sp (strongest postcondition) of a loop-
free program.


• The sp is the postcondition that includes all possible results of a program under a 
precondition.


B. Outcomes

At the end of this class you should


• Know the basic assignment axioms.


• Know what a strongest postcondition is and how to calculate the sp of loop- free programs.


C. Forward Assignment Rules


• We already have a “backwards” assignment rule, { P ( e ) } v := e { P ( v ) } where P  is a predicate 
function.  If we just use the body of P  as the predicate, the rule is { ( body_of_P ) [ e / v ] }
v := e { P }.


• Since p [ e / v ] ≡ wlp ( v := e , p ), this is the most general possible rule.


• What about the other direction, { p } v := e { ??? } — what can we use for the postcondition?


• Most people’s first guess is { p } v := e { p ∧ v = e }, which can work under certain conditions.


New Variable Introduction


• If v is a new (fresh) variable (doesn’t appear free in p and doesn’t appear in e ) then 
{ p }  v := e { p ∧ v = e }.


• For example, { x > y } z := 2 { x > y ∧ z = 2 }


• To justify this, using wlp, we know { ( p ∧ v = e ) [ e / v ] } v := e { p ∧ v = e }.


• Expanding, ( p ∧ v = e ) [ e / v ] ≡ p [ e / v ] ∧ e = e [ e / v ].


• Since v  is fresh, it doesn't occur in p or e , so p [ e / v ] ≡ p  and e [ e / v ] ≡ e .  So we need 
{ p ∧ e =e } v := e { p ∧ v = e } , which certainly holds.


Forward Assignment - General Case


• As an example of why { p } v := e { p ∧ v = e } doesn’t work in general, consider the triple 
{ x > 0 }  x := x – 2  { ??? } .


CS Dept., Illinois Institute of Technology	 –  –	 © James Sasaki, 20231



CS 536: Science of Programming	 Fri 2023-04-07, 17:00	 Class 13

• We certainly don't have { x > 0 } x := x – 2  { x > 0 ∧ x = x – 2 }.  If we look more carefully, the 
relationship we're trying to capture with x > 0 ∧ x = x – 2 is:


	 ( value of x before asgt ) > 0 ∧ ( the current value of x ) ( value of x  before asgt) – 2 


• This example uses subtraction, which we can invert, so we can write 
( x + 2 > 0 ∧ x = ( x + 2 ) – 2 ) for the postcondition.


• But not all assignments are invertible: Consider { x > 0 } x := x / 2 { ??? }.  Because of 
truncating integer division, ( 2 * x > 0 ∧ x = ( 2 * x / 2 ) ) is only true for even values of x .


• What we can do instead is to introduce a name for ( the value of x before the 
assignment ) .  If we use x₀ as this name, we can say { x₀ = x ∧ x > 0 } x := x / 2  { x₀ > 0 ∧  
x = x₀ / 2 } .


• Definition: Aging x is the process of introducing a logical constant to name the value of x 
before a change.


• Note we don’t have to actually store x₀ in memory; it’s just a name we use for logical 
reasoning purposes — x₀ is a “fresh logical constant”; fresh in the sense that it doesn’t 
appear in p or e, logical because it only appears in the correctness discussion, not the 
program, and constant because though x changes, x₀ doesn’t.  (Note in this context, 
“logical” doesn’t mean “boolean”.)


The General Forward Assignment Rule


• The general rule for forward assignment is { p ∧ v = v₀ } v := e { p [ v₀ / v ] ∧ v = e [ v₀ / v ] }.  If it's 
omitted, the v =v₀ part of the precondition is understood.


• Example 1a: { x > 0 ∧ x = x₀ } x := x – 1 { x₀ > 0 ∧ x = x₀ – 1 }


• Example 2a: { s = sum ( 0 , i ) ∧ s = s₀ } s := s + i + 1 { s₀ = sum ( 0 , i ) ∧ s = s₀ + i + 1 }.


• Aging x and s using the  x = x₀  and s = s₀  clauses is a bit annoying; we can drop them by using 
an existential in the postcondition, but that’s no fun either:


• Example 1b: { x > 0 } x := x – 1 { ∃ x₀ . x₀ > 0 ∧ x = x₀ – 1 } 


• Example 2b: { s = sum ( 0 , i ) } s := s + i + 1 { ∃  s₀ . s₀ = sum ( 0 , i ) ∧ s = s₀ + i + 1 }.


• Let’s drop the existential as implied — when a symbol appears in the postcondition but not the 
precondition, then we’re implicitly quantifying it existentially in the postcondition.


• We’ve actually been doing something similar with the precondition: Variables free in the 
precondition are treated as being universally quantified across both the precondition and 
postcondition.


• Example 1c: (For all x, there is an x₀ such that) { x > 0 } x := x - 1 { x₀ > 0 ∧ x = x₀ - 1 } 


• Example 2c: (For all s and i, there is an s₀ such that) { s = sum ( 0 , i ) }
s := s + i + 1 { s₀ = sum ( 0 ,  i ) ∧ s =s₀ + i + 1 }.


• Example 3: (For all s, s₀, and i, there is an i₀ such that)  
		 { s₀ = sum ( 0 , i ) ∧ s = s₀ + i + 1 } i := i + 1 { s₀ = sum ( 0 , i₀ ) ∧ s = s₀ + i₀ + 1 ∧ i =i₀ + 1 }.


• Discussion: Simplifying the postcondition; Equivalence with wp


CS Dept., Illinois Institute of Technology	 –  –	 © James Sasaki, 20232



CS 536: Science of Programming	 Fri 2023-04-07, 17:00	 Class 13

• The postcondition of Example 3 can be weakened to s = sum ( 0 , i ).  Combining Examples 
2c and 3 gives us { s = sum ( 0 , i ) } s := s + i + 1  ;  i := i + 1 { s = sum ( 0 , i ) }.


• Using backward assignment to calculate p in { p } s := s + i + 1 ;  i := i + 1 { s = sum ( 0 , i ) } 
produces the same triple (after simplification)


 p ≡ wp ( s := s + i + 1 ;  i := i + 1 , s = sum ( 0 , i ) )  
	 ≡ wp ( s := s + i + 1 , wp ( i := i + 1 , s = sum ( 0 , i ) ) )  
	 ≡ wp ( s := s + i + 1 , s = sum ( 0 , i + 1 ) )  
	 ≡ s + i + 1 = sum ( 0 , i + 1 ) 	 	 	 	 	 	 	 Finishes calculation of s p  
	 ⇔ s = sum ( 0 , i ) 	 	 	 	 	 	 	 	 	 Logical simplification


D. Correctness of the Assignment Rules


• This section is mostly technical.  The key takeaway is that the forward and backward 
assignment rules are equally strong because you can derive each from the other.  In addition, 
new variable introduction is just a special case of forward assignment.


• Discussion:


• Combining Examples 2c and 3 above and weakening the postcondition gives us the triple  
		 	 { s = sum ( 0 , i ) } s := s + i + 1 ;  i := i + 1 { s = sum ( 0 , i ) }


• It turns out that wp can be used on the same program and postcondition to produce the 
same triple after precondition strengthening.


• This is not accidental: The forward and backward assignment rules are equivalent in 
power in the sense that anything proved using forward assignment can also be proved 
using backward assignment, and vice versa.


• The standard way to argue this is to show how a triple obtained using one assignment rule 
can be derived using the other assignment rule.


Derivation of the Forward Assignment Rule from the Backward Assignment 
Rule


• The forward assignment rule appears to be very different from our earlier “backward” 
assignment rule, but actually, we can derive the forward assignment rule using the backward 
assignment rule.


• Theorem (Forward Assignment): ⊨ { p ∧ v = v₀ } v := e { p [ v₀ / v ] ∧ v = e [ v₀ / v ] }, where v₀ is a 
fresh logical constant.


• Proof: Forward assignment tells us the triple { p ∧ v = v₀ } v := e { p [ v₀ / v ] ∧ v = e [ v₀ / v ] } is 
correct.  We'd like to prove the same triple using backward assignment.  Applying the 
backward assignment rule to the given postcondition p [ v₀ / v ] ∧ v = e [ v₀ / v ]  will give us a 
precondition that is logically equivalent (but not syntactically equal) to p ∧ v = v₀ . So we'll 
know that the triple { p ∧ v = v₀ } v := e { p [ v₀ / v ] ∧ v = e [ v₀ / v ] is provable using both forward 
and backward assignment. 
		 With backward assignment, we know { wlp ( v := e , q ) } v := e { q } where q ≡ p [ v₀ / v ] ∧  

CS Dept., Illinois Institute of Technology	 –  –	 © James Sasaki, 20233



CS 536: Science of Programming	 Fri 2023-04-07, 17:00	 Class 13

v = e [ v₀ / v ].  The only occurrence of v within p [ v₀ / v ] ∧ v = e [ v₀ / v ] is the v  in v = … .  This 
makes wlp ( v := e , q ) ≡ q [ e / v ]⇔ p [ v₀ / v ] ∧ e = e [ v₀ / v ].  If p ∧ v = v₀ , then p [ v₀ / v ], and if 
v = v₀ , then e [ v₀ / v ] = e [ v / v ] = e.  So p ∧ v = v₀  implies wlp ( v := e , q ), and we can use 
precondition strengthening to get { p ∧ v = v₀ } v := e { q }.  So the backward assignment rule 
justifies the forward assignment rule.


• For a particular example, with { x > 0 ∧ x = x₀ } x := x - 1 { x₀ > 0 ∧ x = x₀ - 1 }, we find 
wlp ( x := x - 1 , x₀ > 0 ∧ x = x₀ - 1 ) ≡ x₀ >  0 ∧ x - 1 = x₀ - 1, which is implied by x > 0 ∧ x = x₀ .


Derivation of New Variable Introduction


• The simpler rule for introducing a new variable is a special case of forward assignment.


• We want { p } v := e { p ∧ v = e } if v doesn’t occur in e or and v is not free in p.  By forward 
assignment, { p } v := e { p [ v₀ / v ] ∧ v = e [ v₀ / v ] }, where v₀ is a fresh logical constant. Since v 
does not occur in e, we know e [ v₀ / v ] ≡ e.  Similarly, since v isn’t free in p, we know that 
p [ v₀ / v ] ≡ p.  Substituting into { p } v := e { p [ v₀ / v ] ∧ v = e [ v₀ / v ] } gives us { p } v := e { p ∧ v = e }.


Derivation of the Backward Assignment Rule from the Forward Assignment 
Rule


• We know the forward assignment rule can be derived from the backward assignment rule.  
The converse is also true: We can derive the forward assignment rule from the backward 
assignment rule.


• Theorem (Backward Assignment):	 ⊨ { p [ e / v ] } v := e { p } follows from the forward 
assignment rule.


• Proof: Using forward assignment on the precondition p [ e / v ] ∧ v = v₀ and assignment v := e 
gives us the postcondition p [ e / v ] [ v₀ / v ] ∧ v = e [ v₀ / v ].  To justify backward assignment, we 
need this last predicate to imply p [ e / v ].


• In p [ e / v ], the only occurrences of v are the ones in e, so in p [ e / v ] [ v₀ / v ], the only 
occurrences of v₀ are the ones that replace the v 's in e .


• Thus p [ e / v ] [ v₀ / v ]  is logically equivalent to p [ e [ v₀ / v ] / v ] (where we replace the v's in e 
with v₀'s and then replace the v's in p with the result).  Let e ′ ≡ e [ v₀ / v ]. Now, if v = e′ , then 
( p [ e′ / v ] ∧ v = e′ )  is equivalent to p ∧ v = e′ , which implies p [ e / v ]. So the backward 
assignment rule can be derived from the forward assignment rule.


E. The Strongest Postcondition (sp)


• Definition: Given a precondition p and program S, the strongest postcondition of p and S is 
(the predicate that stands for) the set of states we can terminate in if we run S starting in a 
state that satisfies p.  In symbols,


• sp ( p , S ) = { τ | τ∈M ( S , σ ) – ⊥  for some σ where σ ⊨ p }.


• Equivalently, sp ( p , S ) =∪ σ  ( M ( S , σ ) – ⊥) where σ ⊨ p .


CS Dept., Illinois Institute of Technology	 –  –	 © James Sasaki, 20234



CS 536: Science of Programming	 Fri 2023-04-07, 17:00	 Class 13

• If we treat M ( S , … ) – ⊥ as a function over states, then sp ( p , S ) is the image of this function 
over the states that satisfy p.


• Figure 1 shows the relationship between p, S, and sp ( p , S ) :


• If σ ⊨ p, then every state in M ( S , σ ) – ⊥ is by definition in sp ( p , S ), so ⊨ { p } S { sp ( p , S ) } .


• This is only valid for partial correctness: Starting in a state that satisfies p might 
yield ⊥.


• To get total correctness, ⊨ tot { p } S { sp ( p , S ) } , we need termination, ⊨ tot { p } S { T } .


• Example 4: Let W ≡while i ≠ 0  do i := i - 1  od, then sp ( i ≥ 0 , W ) ≡ i = 0, which implies that 
{ i ≥ 0 } W { sp ( i ≥ 0 , W ) } is not only partially correct, it's totally correct.


• Example 5: For the same W, weakening i ≥ 0 produces the same sp.  In the limit, 
sp ( T, W ) ≡ i = 0 .  Here, the sp is partially correct but not totally correct: ⊨ { T } W { sp ( T, W ) } 
but ⊭ tot { T } W { sp ( T, W ) } .  Of course, this is because W doesn't terminate when one starts 
with i < 0.


• Why strongest? For partial correctness, sp ( p , S ) is a postcondition.  What makes it the 
strongest postcondition is that it implies any other postcondition: for any q,  ⊨ { p } S { q } iff 
⊨ sp ( p , S ) →q .





• Lemma: ⊨ { p } S { q } iff ⊨ sp ( p , S ) →q.


• The ⇐ direction holds by postcondition weakening: We have ⊨ { p } S { sp ( p , S ) } and 
⊨ sp ( p , S ) →q , therefore ⊨ { p } S { q }.


• For the ⇒ direction, assume ⊨ { p } S { q } and let τ ⊨ sp ( p , S ).  Since τ ⊨ sp ( p , S ), we have  
τ∈M ( S , σ ) – ⊥ for some σ ⊨ p.  But σ ⊨ { p } S { q } tells us that M ( S , σ ) – ⊥ ⊨ q , so τ ⊨ q.  So 
τ ⊨ sp ( p , S ) implies τ ⊨ q, so we have ⊨ sp ( p , S ) → q.


F. Calculating Strongest Postconditions of Loop-Free Programs


Definition: (Calculation of sp, part 1):


• As with wlp, the sp of a program can be textually calculated for loop-free programs.


• The simplest cases for calculating sp are for the skip, assignment, and sequence statements.


sp(p,S)

¬sp(p,S)

p

¬ p

⊥

S

X

Figure 1: sp(p,S) is the set of states reachable via S from p

CS Dept., Illinois Institute of Technology	 –  –	 © James Sasaki, 20235



CS 536: Science of Programming	 Fri 2023-04-07, 17:00	 Class 13

• sp ( p , skip) ≡ p. 


• Since skip doesn't change the state, whatever was true before the skip is true after it.


• sp ( p , v := e ) ≡ p [ v₀ / v ] ∧ v = e [ v₀ / v ], where v₀ is a fresh constant (the "aged" version of v )


• The forward assignment rule turns out to give the strongest description of the state after 
an assignment.  We won't prove this formally, but intuitively, the value of v  before the 
assignment isn't changed by an assignment to v : It's still the value of v before the 
assignment.  So everything that was true about v₀ before the assignment is still true after 
the assignment.  Similarly, the new value of v, when described relative to v₀ , is the same 
before and after the assignment.


• Example 6: sp ( x > y, x := x + k ) ≡ ( x > y ) [ x₀ / x ] ∧ x = ( x + k ) [ x₀ / x ] ≡ x₀ > y ∧ x = x₀ + k.


• Example 7: Here's the conclusion of Example 6 used as a postcondition for a different 
assignment: 
		 sp ( x₀ > y ∧ x = x₀ + k , y := y + k ) ≡ ( x₀ > y ∧ x = x₀ + k ) [ y₀ / y ] ∧ y = ( y + k ) [ y₀ / y ]  
		 	 ≡ x₀ > y₀ ∧ x = x₀ + k ∧ y = y₀ + k.


• sp ( p , S₁ ; S₂ ) ≡ sp ( sp ( p , S₁ ) , S₂ ).


• The most we can know after S₁ ; S₂ is the most we know after executing S₂ in the state that 
is the most we know after S₁.


• Example 8: Combining Examples 6 and 7, 
		 sp ( p , x := x + k ;  y := y + k ) 
		 	 ≡ sp ( sp ( p , x := x + k ) , y := y + k )	 	 	 	 	 Defn sp of sequence 
		 	 ≡ sp ( x₀ > y ∧ x = x₀ + k , y := y + k )	 	 	 	 	 Example 6 
		 	 ≡ x₀ > y₀ ∧ x = x₀ + k ∧ y = y₀ + k	 	 	 	 	 	 Example 7


• If we don't want to keep the old values x₀ and y₀, we can weaken the sp to x > y 
instead.


• If we have a sequence of assignments to one variable, then we introduce multiple logical 
variables to talk about its values at different times in the sequence.


• Example 9: To complete { x > f ( x , y ) } x := x + 1 ; x := x * x { ??? }, we’ll calculate the strongest 
postcondition.


• We need sp ( x > f ( x , y ) , S₁ ; S₂ ) ≡ sp ( sp ( x > f ( x , y ) , S₁ ) , S₂ ) where S₁ ≡ x := x + 1 and 
S₂ ≡ x := x * x.  Because x is assigned to twice, there will be three versions of x : x₀ names the 
value x had before the first assignment, x₁ names the value x had between the two 
assignments, and x will end being the name of the value after the two assignments.


sp ( x > f ( x , y ) , S₁ ) 
	 ≡ sp ( x > f ( x , y ) , x := x + 1 ) 
	 ≡ ( x > f ( x , y ) ) [ x₀ / x ] ∧ x = ( x + 1 ) [ x₀ / x ]		 	 	 ( using x₀ as the fresh variable)  
	 ≡ x₀ > f ( x₀ , y ) ∧ x = x₀ + 1


sp ( sp ( x > f ( x , y ) , S₁ ) , S₂ ) 
	 ≡ sp ( x₀ > f ( x₀ , y ) ∧ x = x₀ + 1 , x := x * x ) 

CS Dept., Illinois Institute of Technology	 –  –	 © James Sasaki, 20236



CS 536: Science of Programming	 Fri 2023-04-07, 17:00	 Class 13

	 ≡ ( x₀ > f ( x₀ , y ) ∧ x = x₀ + 1 ) [ x₁ / x ] ∧ x = ( x * x ) [ x₁ / x ]	 ( using x₁ as the fresh variable)  
	 ≡ x₀ > f ( x₀ , y ) ∧ x₁ = x₀ + 1 ∧ x = x₁ * x₁


Strongest postconditions of conditional statements


• The sp of a conditional is the disjunction of the sp's of its branches .  Disjunction is needed *

because, though execution will make one of those sp's hold, when the conditional statement 
ends, we lose track of which branch was executed.


• Since the branches of a conditional can include assignments, bindings for initial values of 
variables (x = x₀, etc.) will be needed somewhere when calculating the sp of the conditional. 


• However, instead of having these bindings turn up recursively, as we analyze the branches, 
they need to be part of the top level of calculation.


• Let's look at an illustrative example before seeing how to calculate the sp of a conditional.


• Notation: An alternate style for indicating logical constants is to use capital letters.  E.g., 
X instead of x₀.  Which notation to use is a style issue ; let's try it for an example or two.
†

• Example 10:  Let  IF ≡ if x ≥ y + z then x := x – 1 else y := y + 2 fi and let p ≡ T be our 
precondition, then the sp of the true branch and false branch are


• sp ( T ∧ x ≥ y + z , x := x – 1 ) ≡ X ≥ y + z ∧ x = X – 1


• sp ( T ∧ x < y + z , y := y + 2 ) ≡ x < Y + z ∧ y = Y + 2


• The disjunction of these two is ( X ≥ y + z ∧ x = X – 1 ) ∨ ( x < Y + z ∧ y = Y + 2 ), which doesn't 
include the information that the true branch doesn't modify y  and the false branch doesn't 
modify x. So though it is a postcondition for T and IF, it's not the strongest one.


• To define sp ( p , IF ) , it will be handy to pre-calculate some things.


• Definitions:


• lhs ( S ) = the set of variables that appear as the lhs of assignments in statement S .


• rhs ( S ) = the set of variables that appear in the rhs of assignments in S or in tests in S .


• free ( p ) = the set of variables that are free in predicate p.


• aged ( p , S ) = lhs ( S ) ∩ ( rhs ( S )∪ free ( p ) ) is the subset of variables of S whose 
assignments cause aging.


Definition: (Calculation of sp, part 2):


• sp ( p , IF ) :  Let IF ≡ if B then S₁ else S₂ f and let aged ( p , IF ) = { x , y , … , z }, then 
		 sp ( p , IF ) ≡ sp ( p₀ ∧ B , S₁ ) ∨ sp ( p₀ ∧ ¬ B , S₂ ) where p₀ = p ∧ x = X ∧ y = Y ∧… ∧ z = Z.


 Since they mean the same thing, I'm going to shorten "arms / branches" to just "branches".*

 A typeset X is easier to read than x₀, but on paper, handwritten X and x can be confused if you're not †

careful.  Also, if you need multiple logical names based on x, using x, x₀ ,  x₁ ,  x₂ , … is easy but x, X, X, … 
gets out of hand very quickly.

CS Dept., Illinois Institute of Technology	 –  –	 © James Sasaki, 20237



CS 536: Science of Programming	 Fri 2023-04-07, 17:00	 Class 13

• The nondeterministic case is very similar.  For NF ≡ if B₁  ➞ S₁  ☐ B₂  ➞ S₂  f, p₀ is the same 
but sp ( p , NF ) ≡ sp ( p₀ ∧ B₁ , S₁ ) ∨ sp ( p₀ ∧ B₂ , S₂ ).


• Example 10 revisited: p≡T and IF≡if x≥y+z then x:=x–1 else y:=y+2 fi, so lhs(IF)={x,y}, 
rhs(IF)={x,y,z}, and free(p)≡∅ so p≡x≥y+z, so free(p)={x,y,z} [2023-04-07].  This makes 
aged(x≥y+z,IF)={x,y}∩({x,y,z}∪∅)={x,y}, so we'll add x=X∧y=Y as a conjunct to p to get 
p₀≡T∧x=X∧y=Y, or simply x=X∧y=Y. 
		 	 	 sp(x=X∧y=Y,IF)≡(X≥y+z∧x=X–1∧y=Y)∨(x<Y+z∧x=X∧y=Y+2) [2023-02-27]


• This postcondition does include the information that the true branch modifies x but not y and 
the false branch modifies y but not x.  This makes it stronger than Example 10's condition. 


• Fresh variables, generalized:  Given a predicate p and an assignment v:=e, we've said that v is 
a fresh variable if it doesn't appear in p or e.  The definition aged(p,S)=lhs(S)∩ (rhs(S)∪free(p)) 
generalizes this.  If all the assignments in S are to variables that aren't otherwise used in S and 
don't appear free in p, then the assignments are all to fresh variables.


• Example 11:  sp(T,if y≥1 then x:=1 else z:=0 fi) 
		 ≡sp(y≥1,x:=1)∨sp(y<1,z:=0) 
		 ≡(y≥1∧x=1)∨(y<1∧z=0). 
With


• lhs(IF)={x,z}


• rhs(IF)={y}


• free(p)= ∅ {y} [2023-04-07]


• aged ( y ≥ 1 , S ) = { x , z } ∩ ( { y }∪ { y } ) = { x , z } ∩ { y } =∅.


CS Dept., Illinois Institute of Technology	 –  –	 © James Sasaki, 20238


