
CS 536: Science of Programming Mon 2023-02-20, 13:50 Class 12

  Syntactic Substitution

  CS 536: Science of Programming, Spring 2023

A. Why

• Syntactic substitution is used in the assignment rules to calculate weakest preconditions (and
later, strongest postcondition).

B. Objectives
At the end of today's class you should

• Know what syntactic substitution is and how to do it.

• Be able to carry out substitution on an expression or predicate.

C. Syntactic Substitution

• Recall that wp (v := e , P (v)) ≡ P (e)

• The operation of going from P (v) to P (e) is called syntactic substitution.

• A common notation is p [e / v] . The advantage of this notation is that it's easier to do multiple
(“iterated”) substitutions. There are other notations people use, such as p [v := e], p [v ↦ e], and
p .

D. Substitution Into An Expression

• As part of substitution into a predicate, we need to be able to substitute into an expression;
the idea is to take an expression e and replace its occurrences of variable v with expression e′.

• Notation: We write e [e ′ / v] , pronounced “e with e′ (substituted) for v”. We'll treat the substitu-
tion brackets as having very high precedence, so we'll need parentheses around e for complex
expressions.

• Example 1: x + y [5 / x] ≡ x +(y [5 / x]) ≡ x + y but (x + y) [5 / x] ≡ 5 + y .

• For the language at hand, substitution into expressions is very simple because we don't have
anything that introduces a local variable (like let x = e₁ in e₂).

• To carry out e [e ′ / v] , we go through e. Everywhere we see an occurrence of v, we replace it
by (e′) . If the parentheses are redundant, we can omit them.

• If e has no occurrence of v (there's no v to replace), then e [e ′ / v] ≡ e . Another way to say
this is that if e only uses variables ≢ v, then e [e ′ ⧸ v] ≡ e .

• Note: Substitution is a textual operation. For example, (x + x) [2 / x] ≡ 2 + 2 , which equals 4 in
any state, but (x + x) [2 ⧸ x] ≢ 4.

• Example 2: (a – x) [2 ⧸ x] ≡ a – (2) ≡ a – 2 (the parentheses are redundant)

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20231

e
v

CS 536: Science of Programming Mon 2023-02-20, 13:50 Class 12

• Example 3: (x * (x + 1)) [b - c / x] ≡ (b – c) * (b – c + 1) (the parentheses are required).

• Example 4: (b [x * y]) [x + 3 / x] ≡ b [(x + 3) * y]

• Example 5: (y + b [x]) [x * 3 / x] ≡ y + b [x * 3]

• Example 6: (if x >0 then - x else 0 fi) [z + 2 / x] ≡ if z + 2 > 0 then – (z + 2) else 0 fi

• Example 7: (b [x * (x +1) / 2]) [y +4 / x] ≡ b [(y +4) * ((y +4) + 1) / 2] ≡ b [(y +4) * (y +4 + 1) / 2] .

• The technical definition of e [e ′ / v] is done by cases on the structure of e. Briefly, we have con-
stants and variables as base cases and expressions with subexpressions as recursive cases.

Definition of e [e ′ / v] by Structural Induction

• Case 1 (base cases)

• c [e ′ / v] ≡ c if c is a constant

• v [e ′ / v] ≡ (e ′)

• If v ≢ w , then w [e ′ / v] ≡ w.

• Case 2 (recursive cases): Consider the expressions that have subexpressions: function calls
f (e₁ , e₂ , …) , array indexing expressions b [e₁ , e₂ , …] , parenthesized expressions (e₁) , unary
operations ⊕ e₁ , binary operations e₁⊕ e₂ and ternary operations e₁ ? e₂ : e₃ (or if e₁ then e₂ else
e₃ fi), we recursively process each subexpression.

• Let e₁′ ≡ (e₁) [e ′ / v] , e₂′ ≡ (e₂) [e ′ / v] , etc.

• Then (f (e₁ , e₂ , …)) [e ′ / v] ≡ f (e₁′ , e₂′ , …)

• And (b [e₁ , e₂ , …]) [e ′ / v] ≡ b [e₁′ , e₂′ , …]

• And (e₁⊕ e₂) [e′ / v] ≡ e₁′⊕ e₂′

• And so on.

E. Substitution Into A Predicate

• Notation: p [e / v] is pronounced “p with e (substituted) for v” and stands for the result of sub-
stituting e for each (free) occurrence of v in p. (Don’t worry about free and bound occurrences
of a variable until we get to quantified predicates.)

• Substitution into expressions and predicates is a syntactic operation. For example, (x > 0) [1 / x]
≡ 1 > 0 , which ⇔ true, but (x > 0) [1 / x] ≢ T .

Substitution Case 1: Non-Quantified Predicate

• For a predicate that is not quantified, we substitute recursively in its sub-predicates or expres-
sions. (Note the predicate might contain a quantified subpredicate, but those predicates will
get covered in the other cases, where a predicate is a quantified predicate.)

• (¬ p) [e / v] ≡ ¬ (p [e ⧸ v])

• (p₁ ∧ p₂) [e / v] ≡ p₁ [e / v] ∧ p₂ [e / v] , and similarly for ∨, → , and ↔.

• (e₁ < e₂) [e / v] ≡ (e₁ [e / v]) < (e₂ [e / v]) , and similarly for the other relational operators.

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20232

CS 536: Science of Programming Mon 2023-02-20, 13:50 Class 12

• Example 8: (x > 0 → y ≥ x / 2) [z + 1 / x]
 ≡ (x > 0) [z + 1 / x] → (y ≥ x / 2) [z + 1 / x]
 ≡ (z + 1 > 0 → y ≥ (z + 1) / 2) . (The parentheses around z + 1 are necessary)

• Note: If p contains no occurrences at all of v, then p [e / v] ≡ p . E.g., (x < y) [e / z] ≡ x < y.

• This is especially true of predicates that only contain constants, such as 2 + 2 = 4 .

• This case of substitution continues recursively until we come across a quantified predicate.

• To cover the quantified predicate case, we need to know that only some occurrences of vari-
ables do get substituted for (the “free” occurrences). The others (the “bound” occurrences)
do not get substituted for.

• However, within a predicate, the same variable can be used in different ways. This compli-
cates things.

F. Free and Bound Variables and Occurrences of Variables

• Notation: Q stands for a quantifier (∀ or ∃).

• For the definition of (Q x . q) [e / v] , our natural instinct is to think that (Q x . q) [e / v] should ≡
(Q x . (q [e / v])) , but in fact this isn’t always true because of a distinction between “free” and
“bound” occurrences of variables.

• Definition: If an occurrence of a variable v in a predicate is within the scope of a quantifier
over v, then it is a bound occurrence, else it is a free occurrence. A variable v is free in (= oc-
curs free in) p iff it has a free occurrence in p. Similarly, v is bound in (= occurs bound in) p
iff it has a bound occurrence in p. (In computer science terms, local variables have bound oc-
currences, and non-local variables have free occurrences.)

• For any variable v and predicate p, there are four possibilities:

• v is neither free nor bound in p (this case applies when v doesn’t occur at all in p).

• v is free but not bound in p: v occurs at least once in p, and all the occurrences of v are free.

• v is not free but is bound in p: v occurs at least once in p, and all the occurrences of v are
bound.

• v is free and bound in p: v occurs at least twice in p with at least one occurrence being free
and at least one occurrence being bound.

• Example 9: If p ≡ x > z ∧ ∃ x . ∃ y. y ≤ f (x , y) , then

• x is free and bound in p. (Its first occurrence is free; its second is bound.)

• y is bound in p but not free in p.

• z is free in p but not bound in p.

• w is neither free nor bound in p.

• The reason we’re interested in occurrences of variables being free or bound in a predicate is
that we only substitute for free occurrences of a variable. In computer science terms, we’re
looking for non-local variables, not local variables.

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20233

CS 536: Science of Programming Mon 2023-02-20, 13:50 Class 12

• Taking polynomials as an example, p (x) = x² + a * x + y. If we want to substitute 17 for y, that's
fine: p (x) = x² + a * x + 17 ; substituting expressions with variables that aren't bound in the defin-
ition is okay too: substituting (z³ + 1) for y gives us p (x) = x² + a * x + (z³ + 1). But if we want to
substitute something like (x + 3) for y (note: x is the defined parameter variable), we don't want
p (x) = x² + a * x + (x + 3). But if we had defined p (w) = w² + a * w + y, then substituting (x + 3)
for y gives us p (w) = w² + a * w + (x + 3).

G. Substitution Into A Quantified Predicate

• In case 1 of the definition of substitution, the major operator of the predicate was not a quanti-
fier, it was a conjunction or disjunction, etc.

• In the remaining cases, we substitute into a quantified predicate: (Q x . q) [e / v].

Substitution Case 2: Quantified Variable ≡ Variable to Replace

• In the simplest quantifier case, the quantified variable matches the variable we’re substituting
for. I.e., we have (Q v . q) [e / v].

• Since all the occurrences in q of v are bound, there are no free occurrences of v in Q v . q , so
there's nothing to replace: (Q v . q) [e / v] ≡ Q v . q.

• Example 10: (x > 0 ∧ ∃ x . x ≤ f (y)) [17 / x] ≡ 17 > 0 ∧ ∃ x . x ≤ f (y) . Here, the first occurrence of x
(in x > 0) is free, so we replace it with 17 , but the second occurrence of x is bound, so we don’t
do any replacement.

Substitution Case 3: Quantified Variable Doesn't Occur in Replacement Expression

• If x ≢ v and x does not occur in e, then (Q x . q) [e / v] ≡ (Q x . (q [e / v])). Here, we go through
the text of q and replace its free occurrences of v with e.

• Example 11: (y ≥ 0 →∀ x . x > y → x ∗ x > y ∧ ∃ y. f (y) > x)) [17 / y]
 ≡ 17 ≥ 0 →∀ x . (x > y → x ∗ x > y ∧ ∃ y. f (y) > x) [17 / y]
 ≡ 17 ≥ 0 →∀ x . x > 17 → x ∗ x > 17 ∧ ∃ y. f (y) > x .
 Note the y in f (y) is bound, so there's no substituting for it.

• In case 3, the restriction that the quantified variable not appear in e keeps us from having a
“capture” problem, where occurrences of x in e are free, but when we we replace an occur-
rence of v by e in Q x . q [e / v] , the occurrences of x in e become bound, which changes their
meaning.

• Example 12: (∃ y. y = v²) [x + 1 / v] ≡ ∃ y. y = (x + 1) ². If we were to let (∃ x . x = v²) [x + 1 / v] be
∃ x . x = (x + 1) ², then the x in x + 1 would become bound to the ∃x (= the x would be “cap-
tured”).

• (Before the substitution, the x in … [x + 1 / v] was not quantified, so after the substitution,
we also want x to not be quantified.)

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20234

CS 536: Science of Programming Mon 2023-02-20, 13:50 Class 12

• The way out of this problem is to rename the quantified variable from x to something not
in e; that way the quantifier can’t capture occurrences of x.

Substitution Case 4: Quantified Variable Does Occur in Replacement Expression

• This case is the most complicated one. If x ≢ v and x occurs in e, then what we do is replace the
quantified variable with one that doesn't appear in the quantifier's body. Then we proceed as in
Case 3.

• So, (Q x . q) [e / v] ≡ (Q z . q [z / x]) [e / v] ≡ (Q z . (q [z / x] [e / v]))
 where z is a fresh variable (one not used in e or q).

• Example 13: Using z as a fresh variable, we have

(g (x , v) < 0 ∧ (∃ x . x = v²) ∧ h (y, v) > 0) [x + 1 / v]

 ≡ g (x , x + 1) < 0 ∧ (∃ z . ((x = v²) [z / x]) [x + 1 ⧸ v]) ∧ h (y, x + 1) > 0

 // Pick fresh variable, quantify over it and then substitute for it in the body

 ≡ g (x , x + 1) < 0 ∧ (∃ z . z = v²) [x + 1 ⧸ v] ∧ h (y, x + 1) > 0

 ≡ g (x , x + 1) < 0 ∧ (∃ z . z = (x + 1) ²) ∧ h (y, x + 1) > 0

• Note there’s some ambiguity in the definition: Which “fresh” variable should we choose?

• Substitution into a predicate is also how application of a predicate function works.

• Example 14: Define member (x , b) ≡ ∃ 0 ≤ k < size (b) . x = b [k]. Then member (12 , b1) is cal-
culated as (∃ 0 ≤ k < size (b) . x = b [k]) [12 ⧸ x] [b1 ⧸ b] ≡ ∃ 0 ≤ k < size (b1) . 12 = b [k] . Renam-
ing occurs when an argument uses a variable that's quantified in the body.

member (k * c , b2) ≡ (∃ 0 ≤ k < member (b) . x = b [k]) [k * c ⧸ x] [b2 ⧸ b]
 ≡ (∃ 0 ≤ k 1 < size (b) . x = b [k1]) [k * c ⧸ x] [b2 ⧸ b] -- Renaming k to k1
 ≡ (∃ 0 ≤ k 1 < size (b2) . k * c = b2 [k1])

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20235

