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  Syntactic Substitution 

  CS 536: Science of Programming, Spring 2023 

A. Why 

• Syntactic substitution is used in the assignment rules to calculate weakest preconditions (and 
later, strongest postcondition). 

B. Objectives 
At the end of today's class you should 

• Know what syntactic substitution is and how to do it. 

• Be able to carry out substitution on an expression or predicate. 

C. Syntactic Substitution 

• Recall that wp ( v := e , P ( v ) )  ≡  P ( e )  

• The operation of going from P ( v ) to P ( e ) is called syntactic substitution. 

• A common notation is p [ e / v ] . The advantage of this notation is that it's easier to do multiple 
(“iterated”) substitutions. There are other notations people use, such as p [ v := e ], p [ v ↦ e ], and  
p . 

D. Substitution Into An Expression 

• As part of substitution into a predicate, we need to be able to substitute into an expression; 
the idea is to take an expression e and replace its occurrences of variable v with expression e′. 

• Notation: We write e [ e ′ / v ] , pronounced “e with e′ (substituted) for v”.  We'll treat the substitu-
tion brackets as having very high precedence, so we'll need parentheses around e for complex 
expressions. 

• Example 1: x + y [ 5 / x ]  ≡ x +( y [ 5 / x ] ) ≡ x + y  but ( x + y ) [ 5 / x ] ≡ 5 + y . 

• For the language at hand, substitution into expressions is very simple because we don't have 
anything that introduces a local variable (like let x = e₁ in e₂ ). 

• To carry out e [ e ′ / v ] , we go through e.  Everywhere we see an occurrence of v, we replace it 
by ( e′) .  If the parentheses are redundant, we can omit them. 

• If e has no occurrence of v (there's no v to replace), then e [ e ′ / v ] ≡ e .  Another way to say 
this is that if e only uses variables ≢ v, then e [ e ′ ⧸ v ] ≡ e . 

• Note: Substitution is a textual operation. For example, ( x + x ) [ 2 / x ] ≡ 2 + 2 , which equals 4  in 
any state, but ( x +  x ) [ 2 ⧸ x ] ≢ 4. 

• Example 2: ( a – x ) [ 2 ⧸ x ] ≡ a – ( 2 ) ≡ a – 2  (the parentheses are redundant) 
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• Example 3: ( x * ( x + 1 ) ) [ b - c / x ] ≡ ( b – c ) * ( b – c + 1 ) (the parentheses are required). 

• Example 4: ( b [ x * y ] ) [ x + 3 / x ] ≡ b [ ( x + 3 ) * y ]  

• Example 5: ( y + b [ x ] )  [ x * 3 / x ] ≡ y + b [ x * 3 ]  

• Example 6: ( if x >0  then - x  else 0  fi) [ z + 2 / x ] ≡ if z + 2 > 0  then – ( z + 2 )  else 0  fi  

• Example 7: ( b [ x * ( x +1 ) / 2 ] ) [ y +4 / x ] ≡ b [ ( y +4 ) * ( ( y +4 ) + 1 ) / 2 ] ≡ b [ ( y +4 ) * ( y +4 + 1 ) / 2 ] . 

• The technical definition of e [ e ′ / v ]  is done by cases on the structure of e.  Briefly, we have con-
stants and variables as base cases and expressions with subexpressions as recursive cases. 

Definition of e [ e ′ / v ]  by Structural Induction 

• Case 1 (base cases) 

• c [ e ′ / v ] ≡ c  if c is a constant 

• v [ e ′ / v ] ≡ ( e ′ )  

• If v ≢ w , then w [ e ′ / v ] ≡ w.  

• Case 2 (recursive cases): Consider the expressions that have subexpressions: function calls 
f ( e₁ , e₂ , … ) ,  array indexing expressions b [ e₁ , e₂ , … ] , parenthesized expressions ( e₁ ) , unary 
operations ⊕ e₁ , binary operations e₁⊕ e₂  and ternary operations e₁ ? e₂ : e₃  (or if e₁ then e₂ else 
e₃ fi ), we recursively process each subexpression. 

• Let e₁′ ≡ ( e₁ ) [ e ′ / v ] , e₂′ ≡ ( e₂ ) [ e ′ / v ] , etc. 

• Then ( f ( e₁ , e₂ , … ) ) [ e ′ / v ] ≡ f ( e₁′ , e₂′ , … )  

• And ( b [ e₁ , e₂ , … ] ) [ e ′ / v ] ≡ b [ e₁′ , e₂′ , … ]  

• And ( e₁⊕ e₂ ) [ e′ / v ] ≡ e₁′⊕ e₂′  

• And so on. 

E. Substitution Into A Predicate 

• Notation: p [ e / v ]  is pronounced “p with e (substituted) for v” and stands for the result of sub-
stituting e for each (free) occurrence of v in p.  (Don’t worry about free and bound occurrences 
of a variable until we get to quantified predicates.) 

• Substitution into expressions and predicates is a syntactic operation. For example, ( x > 0 ) [ 1 / x ]  
≡  1 > 0 , which ⇔ true, but ( x > 0 ) [ 1 / x ] ≢ T . 

Substitution Case 1: Non-Quantified Predicate 

• For a predicate that is not quantified, we substitute recursively in its sub-predicates or expres-
sions.  (Note the predicate might contain a quantified subpredicate, but those predicates will 
get covered in the other cases, where a predicate is a quantified predicate.) 

• ( ¬ p ) [ e / v ] ≡ ¬ ( p [ e ⧸ v ] )  

• ( p₁ ∧ p₂ ) [ e / v ] ≡ p₁ [ e / v ] ∧ p₂ [ e / v ] ,  and similarly for ∨, → , and ↔. 

• ( e₁ < e₂ ) [ e / v ] ≡ ( e₁ [ e / v ] ) < ( e₂ [ e / v ] ) , and similarly for the other relational operators. 
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• Example 8: ( x > 0 → y ≥ x / 2 ) [ z + 1 / x ]  
 ≡  ( x > 0 ) [ z + 1 / x ] → ( y ≥ x / 2 ) [ z + 1 / x ]  
 ≡  ( z + 1 > 0 → y ≥ ( z + 1 ) / 2 ) .  (The parentheses around z + 1  are necessary) 

• Note: If p contains no occurrences at all of v, then p [ e / v ] ≡ p .  E.g., ( x < y ) [ e / z ] ≡ x < y.  

• This is especially true of predicates that only contain constants, such as 2 + 2 = 4 . 

• This case of substitution continues recursively until we come across a quantified predicate. 

• To cover the quantified predicate case, we need to know that only some occurrences of vari-
ables do get substituted for (the “free” occurrences).  The others (the “bound” occurrences) 
do not get substituted for. 

• However, within a predicate, the same variable can be used in different ways.  This compli-
cates things. 

F. Free and Bound Variables and Occurrences of Variables 

• Notation: Q stands for a quantifier (∀ or ∃ ). 

• For the definition of ( Q x . q ) [ e / v ] , our natural instinct is to think that ( Q x . q ) [ e / v ]  should ≡  
( Q x . ( q [ e / v ] ) ) , but in fact this isn’t always true because of a distinction between “free” and 
“bound” occurrences of variables. 

• Definition: If an occurrence of a variable v in a predicate is within the scope of a quantifier 
over v, then it is a bound occurrence, else it is a free occurrence.  A variable v is free in (= oc-
curs free in) p iff it has a free occurrence in p.  Similarly, v is bound in (= occurs bound in) p 
iff it has a bound occurrence in p.  (In computer science terms, local variables have bound oc-
currences, and non-local variables have free occurrences.) 

• For any variable v and predicate p, there are four possibilities: 

• v is neither free nor bound in p (this case applies when v doesn’t occur at all in p). 

• v is free but not bound in p: v occurs at least once in p, and all the occurrences of v are free. 

• v is not free but is bound in p: v occurs at least once in p, and all the occurrences of v are 
bound. 

• v is free and bound in p: v occurs at least twice in p with at least one occurrence being free 
and at least one occurrence being bound. 

• Example 9: If p ≡ x > z ∧ ∃ x . ∃ y. y ≤ f ( x , y ) , then 

• x  is free and bound in p.  (Its first occurrence is free; its second is bound.) 

• y  is bound in p but not free in p. 

• z  is free in p but not bound in p. 

• w  is neither free nor bound in p. 

• The reason we’re interested in occurrences of variables being free or bound in a predicate is 
that we only substitute for free occurrences of a variable.  In computer science terms, we’re 
looking for non-local variables, not local variables. 
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• Taking polynomials as an example, p ( x ) = x² + a * x + y.  If we want to substitute 17  for y, that's 
fine: p ( x ) = x² + a * x + 17 ; substituting expressions with variables that aren't bound in the defin-
ition is okay too: substituting ( z³ + 1 ) for y  gives us p ( x ) = x² + a * x + ( z³ + 1 ).  But if we want to 
substitute something like ( x + 3 ) for y (note: x is the defined parameter variable), we don't want 
p ( x ) = x² + a * x + ( x + 3 ).  But if we had defined p ( w ) = w² + a * w + y, then substituting ( x + 3 ) 
for y gives us p ( w ) = w² + a * w + ( x + 3 ). 

G. Substitution Into A Quantified Predicate 

• In case 1 of the definition of substitution, the major operator of the predicate was not a quanti-
fier, it was a conjunction or disjunction, etc. 

• In the remaining cases, we substitute into a quantified predicate: ( Q x . q ) [ e / v ]. 

Substitution Case 2: Quantified Variable ≡ Variable to Replace 

• In the simplest quantifier case, the quantified variable matches the variable we’re substituting 
for.  I.e., we have ( Q v . q ) [ e / v ].   

• Since all the occurrences in q of v are bound, there are no free occurrences of v in Q v . q , so 
there's nothing to replace: ( Q v . q ) [ e / v ] ≡ Q v . q. 

• Example 10: ( x > 0 ∧ ∃ x . x ≤ f ( y ) ) [ 17 / x ] ≡  17 > 0 ∧ ∃ x . x ≤ f ( y ) .  Here, the first occurrence of x  
(in x > 0 ) is free, so we replace it with 17 , but the second occurrence of x  is bound, so we don’t 
do any replacement. 

Substitution Case 3: Quantified Variable Doesn't Occur in Replacement Expression 

• If x ≢ v and x does not occur in e, then (Q x . q ) [ e / v ] ≡ ( Q x . ( q [ e / v ] ) ).  Here, we go through 
the text of q and replace its free occurrences of v with e. 

• Example 11: ( y ≥ 0 →∀ x . x > y → x ∗ x > y ∧ ∃ y. f ( y ) > x ) ) [ 17 / y ]  
  ≡  17 ≥ 0 →∀ x . ( x > y → x ∗ x > y ∧ ∃ y. f ( y ) > x ) [ 17 / y ]  
  ≡  17 ≥ 0 →∀ x . x > 17 → x ∗ x > 17 ∧ ∃ y. f ( y ) > x .  
 Note the y in f ( y ) is bound, so there's no substituting for it. 

• In case 3, the restriction that the quantified variable not appear in e keeps us from having a 
“capture” problem, where occurrences of x  in e are free, but when we we replace an occur-
rence of v by e in Q x . q [ e / v ] , the occurrences of x  in e become bound, which changes their 
meaning. 

• Example 12:  ( ∃ y. y = v² ) [ x + 1 / v ] ≡ ∃ y. y = ( x + 1 ) ².  If we were to let ( ∃ x . x = v² ) [ x + 1 / v ] be 
∃ x . x = ( x + 1 ) ², then the x  in x + 1  would become bound to the ∃x  (= the x  would be “cap-
tured”). 

• (Before the substitution, the x  in … [ x + 1 / v ] was not quantified, so after the substitution, 
we also want x to not be quantified.) 
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• The way out of this problem is to rename the quantified variable from x to something not 
in e; that way the quantifier can’t capture occurrences of x. 

Substitution Case 4: Quantified Variable Does Occur in Replacement Expression 

• This case is the most complicated one.  If x ≢ v and x occurs in e, then what we do is replace the 
quantified variable with one that doesn't appear in the quantifier's body.  Then we proceed as in 
Case 3. 

• So, ( Q x . q ) [ e / v ] ≡ ( Q z . q [ z / x ] ) [ e / v ] ≡ ( Q z . ( q [ z / x ] [ e / v ] ) )  
 where z is a fresh variable (one not used in e or q). 

• Example 13: Using z as a fresh variable, we have 

( g ( x , v ) < 0 ∧ ( ∃ x . x = v² ) ∧ h ( y, v ) > 0 ) [ x + 1 / v ]  

 ≡ g ( x , x + 1 ) < 0 ∧ ( ∃ z . ( ( x = v² ) [ z / x ] ) [ x + 1 ⧸ v ] ) ∧ h ( y, x + 1 ) > 0  

  // Pick fresh variable, quantify over it and then substitute for it in the body 

 ≡  g ( x , x + 1 ) < 0 ∧ ( ∃ z . z = v² ) [ x + 1 ⧸ v ] ∧ h ( y, x + 1 ) > 0  

 ≡  g ( x , x + 1 ) < 0 ∧ ( ∃ z . z = ( x + 1 ) ² ) ∧ h ( y, x + 1 ) > 0  

• Note there’s some ambiguity in the definition: Which “fresh” variable should we choose?   

• Substitution into a predicate is also how application of a predicate function works. 

• Example 14: Define member ( x , b ) ≡ ∃ 0 ≤ k < size ( b ) . x = b [ k ].  Then member ( 12 ,  b1 )  is cal-
culated as ( ∃ 0 ≤ k < size ( b ) . x = b [ k ] ) [ 12 ⧸ x ] [ b1 ⧸ b ] ≡  ∃ 0 ≤ k < size ( b1 ) . 12 = b [ k ] .   Renam-
ing occurs when an argument uses a variable that's quantified in the body. 

member ( k * c , b2 )  ≡  ( ∃ 0 ≤ k < member ( b ) . x = b [ k ] ) [ k * c ⧸ x ] [ b2 ⧸ b ]   
  ≡  ( ∃ 0 ≤ k 1 < size ( b ) . x = b [ k1 ] ) [ k * c ⧸ x ] [ b2 ⧸ b ]  -- Renaming k  to k1   
  ≡  ( ∃ 0 ≤ k 1 < size ( b2 ) . k * c = b2 [ k1 ] )  
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