Weakest Preconditions

Part 2: Calculating wp, wlp; Domain Predicates
 CS 536: Science of Programming, Spring 2023

2023-02-15: pp. 2-5

A. Why

- Weakest liberal preconditions ($w l p$) and weakest preconditions ($w p$) are the most general requirements that a program must meet to be correct under partial and total correctness.

B. Objectives

At the end of today you should understand

- How to calculate the $w l p$ of loop-free programs.
- How to add error domain predicates to the $w l p$ of a loop-free program to obtain its $w p$.

C. Calculating wlp for Loop-Free Programs

- Say a program is loop-free. If it is also error-free, then its $w p$ and $w l p$ are identical. Otherwise we will need to add error-avoiding information to the $w l p$ to calculate the $w p$. Either way, calculating the $w l p$ is the first step.
- The following algorithm takes S and q and calculates a predicate for $w l p(S, q)$.
- The calculation is syntactic, which is why it's described using $w l p(S, q) \equiv \ldots$ instead of $w p(S, q) \Leftrightarrow \ldots$.
- wlp (skip, q) $\equiv q$
- $w l p(v:=e, Q(v)) \equiv Q(e)$ where Q is a predicate function over one variable.
- The operation that takes us from $Q(v)$ to $Q(e)$ is called syntactic substitution; we'll look at it in more detail in the next class, but for the examples here and in earlier classes, we've been using the simplest case, where we inspect the definition of Q and replacing each occurrence of the variable v with the expression e.
- $w l p\left(S_{1} ; S_{2}, q\right) \equiv w l p\left(S_{1}, w l p\left(S_{2}, q\right)\right)$
- The $w l p\left(S_{2}, q\right)$ guarantees that we'll run S_{2} in a state that gets us to q. To guarantee that S_{1} gets us to one of those states, we use the outer $w l p\left(S_{1}, \ldots\right)$.
- wlp (if B then S_{1} else $\left.S_{2} f i, q\right) \equiv\left(B \rightarrow w_{1}\right) \wedge\left(\neg B \rightarrow w_{2}\right)$ where $w_{1} \equiv w l p\left(S_{1}, q\right)$ and $w_{2} \equiv w l p\left(S_{2}, q\right)$.
- This is $\Leftrightarrow\left(B \wedge w_{1}\right) \vee\left(\neg B \wedge w_{2}\right)$, so it's also acceptable as a result of this $w l p$ calculation.
- wlp (if $\left.B_{1} \rightarrow S_{1} \square B_{2} \rightarrow S_{2} f i, q\right) \equiv\left(B_{1} \rightarrow w_{1}\right) \wedge\left(B_{2} \rightarrow w_{2}\right)$ where $w_{1} \equiv w l p\left(S_{1}, q\right)$ and $w_{2} \equiv w l p\left(S_{2}, q\right)$.
- For the nondeterministic if, you must use $\left(B_{1} \rightarrow w_{1}\right) \wedge\left(B_{2} \rightarrow w_{2}\right)$, not $\left(B_{1} \wedge w_{1}\right) \vee\left(B_{2} \wedge w_{2}\right)$, because they're not equivalent (unlike the deterministic if statement).
- When B_{1} and B_{2} are both true, either S_{1} or S_{2} can run, so we need $B_{1} \wedge B_{2} \rightarrow w_{1} \wedge w_{2}$, and this is implied by $\left(B_{1} \rightarrow w_{1}\right) \wedge\left(B_{2} \rightarrow w_{2}\right)$.
- Using $\left(B_{1} \wedge w_{1}\right) \vee\left(B_{2} \wedge w_{2}\right)$ fails because it allows for the possibility that B_{1} and B_{2} are both true but only one of w_{1} and w_{2} is true. This isn't a problem when $B_{2} \Leftrightarrow \neg B_{1}$, which is why we can use $\left(B \wedge w_{1}\right) \vee\left(\neg B \wedge w_{2}\right)$ with deterministic if statements.

D. Some Examples of Calculating wp/wlp:

- The programs in these examples never end in "state" \perp, so the $w p$ and $w l p$ are equivalent.
- These two examples are connected. [2023-02-15]
- Example 2: $w l p(x:=x+1, x \geq 0) \equiv x+1 \geq 0$
- Example 3: $w l p(y:=y+x ; x:=x+1, x \geq 0)$

$$
\equiv w l p(y:=y+x, w l p(x:=x+1, x \geq 0))
$$

$\equiv w l p(y:=y+x, x+1 \geq 0) \equiv x+1 \geq 0 \quad$ (There's no y in the postcondition.)

- If we change the postcondition to include y, then it will be substituted for.) [2023-02-15]
- Example 4: $w l p(y:=y+x ; x:=x+1, x \geq y)$

$$
\begin{aligned}
& \equiv w l p(y:=y+x, w l p(x:=x+1, x \geq y)) \\
& \equiv w l p(y:=y+x, x+1 \geq y) \\
& \equiv x+1 \geq y+x
\end{aligned}
$$

(If we asked to calculate and logically simplify, not just calculate, the wlp, we'd continue) $\Leftrightarrow y \leq 1$.

- Changing the order of the assignments changes what gets substituted and when. [2023-02-15]
- Example 5: Swap the two assignments in Example 4:

$$
\begin{aligned}
& w l p(x:=x+1 ; y:=y+x, x \geq y) \\
& \quad \equiv w l p(x:=x+1, w l p(y:=y+x, x \geq y)) \\
& \quad \equiv w l p(x:=x+1, x \geq y+x)) \\
& \equiv x+1 \geq y+x+1[\Leftrightarrow y \leq 0 \text { if you want to logically simplify] }
\end{aligned}
$$

- The postcondition of an if-else statement and its two branches are the same. [2023-02-15]
- Example 6: wlp (if $y \geq 0$ then $x:=y$ fi, $x \geq 0$)

$$
\begin{aligned}
& \equiv w l p(\text { if } y \geq 0 \text { then } x:=y \text { else skip fi, } x \geq 0) \\
& \equiv(y \geq 0 \rightarrow w l p(x:=y, x \geq 0)) \wedge(y<0 \rightarrow w l p(\text { skip, } x \geq 0)) \\
& \equiv(y \geq 0 \rightarrow y \geq 0) \wedge(y<0 \rightarrow x \geq 0) \text { or }(y \geq 0 \wedge y \geq 0) \vee(y<0 \wedge x \geq 0)
\end{aligned}
$$

(If we were asked to calculate and logically simplify the $w l p$, we'd continue):

$$
\begin{aligned}
& \Leftrightarrow y \geq 0 \vee(y<0 \wedge x \geq 0) \\
& \Leftrightarrow(y \geq 0 \vee y<0) \wedge(y \geq 0 \vee x \geq 0) \\
& \Leftrightarrow(y \geq 0 \vee x \geq 0) \quad \text { (A correct answer) [2023-02-15] } \\
& \Leftrightarrow(y<0 \rightarrow x \geq 0) \quad \text { (Also correct, just differs in style) }
\end{aligned}
$$

E. Avoiding Runtime Errors in Expressions with Domain Predicates

- To avoid runtime failure of $\sigma(e)$, we'll take the context in which we're evaluating e and augment it with a predicate that guarantee non-failure of $\sigma(e)$. For example, for $\{P(e)\}$ $v:=e\{P(v)\}$, we'll augment the precondition to guarantee that evaluation of e won't fail.
- For each expression e, we will define a domain predicate $D(e)$ such that $\sigma \vDash D(e)$ implies $\sigma(e) \neq \perp_{e}$.
- This predicate has to be defined recursively, since we need to handle complex expressions like $b[b[k]]$. As we'll see, $D(b[b[k]]) \equiv 0 \leq k<\operatorname{size}(b) \wedge 0 \leq b[k]<\operatorname{size}(b)$.
- As with $w p$, the domain predicate for an expression is unique only up to logical equivalence. For example, $D(x / y+u / v) \equiv y \neq 0 \wedge v \neq 0 \Leftrightarrow v^{*} y \neq 0$. (Me personally, I prefer $y \neq 0 \wedge v \neq 0$, but it's a taste issue.)
- Definition: (Domain predicate D(e) for expression e): We must define D for each kind of expression that can cause a runtime error:
- First, a shortcut: if e contains no operations that can fail, then $D(e) \equiv T$.
- For example, for a constant c or variable v, we have $D(c) \equiv T$ and $D(v) \equiv T$ because evaluation of a variable or constant doesn't cause failure,
- The basic requirement is to define domain expressions for operations that can cause errors. For us, that's array lookup, division, modulus, and square root. Adding other operations or datatypes might introduce other cases.
- $D(b[e]) \equiv D(e) \wedge 0 \leq e<\operatorname{size}(b)$.
- $D\left(e_{1} / e_{2}\right) \equiv D\left(e_{1} \% e_{2}\right) \Leftrightarrow D\left(e_{1}\right) \wedge D\left(e_{2}\right) \wedge e_{2} \neq 0$.
- $D(\operatorname{sqrt}(e)) \equiv D(e) \wedge e \geq 0$.
- For operations that don't themselves cause errors, we simply check the subexpressions. This includes the arithmetic operators,+- , *, and the relational operators $\leq,<,=, \neq,>$, and \geq.
- $D\left(e_{1} o p e_{2}\right) \equiv D\left(e_{1}\right) \wedge D\left(e_{2}\right)$, except when $o p$ is / or $\%$.
- $D(o p e) \equiv D(e)$.
- $D\left(f\left(e_{1}, e_{2}, \ldots\right)\right) \equiv D\left(e_{1}\right) \wedge D\left(e_{2}\right) \wedge \ldots$, except for $f \equiv$ sqrt.
- For conditional expressions [2023-02-15], we need safety of the tests and safety of the arms / branches.
- D(if B then e_{1} else $\left.e_{2} f i\right) \equiv D(B) \wedge\left(B \rightarrow D\left(e_{1}\right)\right) \wedge\left(\neg B \rightarrow D\left(e_{2}\right)\right)$
[2023-02-15] (Removed a misplaced paragraph)
- Example 7: $D(b[b[k]]) \equiv D(b[k]) \wedge 0 \leq b[k]<\operatorname{size}(b)$
$\equiv D(k) \wedge 0 \leq k<\operatorname{size}(b) \wedge 0 \leq b[k]<\operatorname{size}(b)$
$\equiv T \wedge 0 \leq k<\operatorname{size}(b) \wedge 0 \leq b[k]<\operatorname{size}(b)$
$\equiv 0 \leq k<\operatorname{size}(b) \wedge 0 \leq b[k]<\operatorname{size}(b)$
- Example 8: $D\left(\left(-b+\operatorname{sqrt}\left(b^{*} b-4^{*} a^{*} c\right)\right) /\left(2^{*} a\right)\right)$

$$
\begin{array}{ll}
\equiv D(e) \wedge D\left(2^{*} a\right) \wedge 2^{*} a \neq 0 & \text { where } e \equiv-b+\operatorname{sqrt}\left(b^{*} b-4^{*} a^{*} c\right) \\
\equiv D(-b) \wedge D\left(\operatorname{sqrt}\left(b^{*} b-4^{*} a^{*} c\right)\right) \wedge D\left(2^{*} a\right) \wedge 2^{*} a \neq 0 & \\
\equiv D\left(\operatorname{sqrt}\left(b^{*} b-4^{*} a^{*} c\right)\right) \wedge 2^{*} a \neq 0 & \text { since } D(-b) \equiv D\left(2^{*} a\right) \equiv T \\
\equiv D\left(b^{*} b-4^{*} a^{*} c\right) \wedge\left(b^{*} b-4^{*} a^{*} c \geq 0\right) \wedge 2^{*} a \neq 0 & \\
\equiv b^{*} b-4^{*} a^{*} c \geq 0 \wedge 2^{*} a \neq 0 & \text { since } D\left(b^{*} b-4^{*} a a^{*} c \geq 0\right) \equiv T \\
\Leftrightarrow b^{*} b-4^{*} a^{*} c \geq 0 \wedge a \neq 0 & \text { if asked to simplify arithmetically }
\end{array}
$$

[2023-02-15 miscellaneous changes below]

- Example 9: D (if $0 \leq k<\operatorname{size}$ (b) then b [k] else 0 fi). Here, the test guarantees that the array lookup won't fail. (The expression if B_{1} then T else $B_{2} f i$ is equivalent to $B_{1} \& \& B_{2}$ in C , etc.)

$$
\begin{aligned}
& \equiv D(B) \wedge(B \rightarrow D(b[k]) \wedge(\neg B \rightarrow D(0)) \\
& \equiv(B \rightarrow D(b[k]) \wedge(\neg B \rightarrow T) \\
& \Leftrightarrow B \rightarrow D(b[k]) \\
& \equiv B \rightarrow D(k) \wedge 0 \leq k<\operatorname{size}(b) \\
& \equiv 0 \leq k<\operatorname{size}(b) \rightarrow T \wedge 0 \leq k<\operatorname{size}(b) \\
& \Leftrightarrow T
\end{aligned}
$$

where $B \equiv 0 \leq k<\operatorname{size}(b)$
since $D(B)$ and $D(0) \equiv T$
since $\neg B \rightarrow T \Leftrightarrow T$
expanding $D(b[k])$
definition of B
logical simplification

F. Avoiding Runtime Errors in Statements with Domain Predicates

- Recall that we extended our notion of operational semantics to include $\langle S, \sigma\rangle \rightarrow{ }^{*}\left\langle E, \perp_{e}\right\rangle$ to indicate that evaluation of S causes a runtime failure.
- We can avoid runtime failure of statements by adding domain predicates to the preconditions of statements. Though we can't in general calculate the $w l p / w p$ of a loop, we can calculate a domain predicate for it.
- Definition: For statement S, the [2023-02-15] domain predicate $D(S)$ gives a sufficient condition to avoid runtime errors. For loops, avoiding divergence is a separate problem we'll look at later.
- $D($ skip $) \equiv T$
- $D(v:=e) \equiv D(e)$
- $D\left(b\left[e_{1}\right]:=e_{2}\right) \equiv D\left(b\left[e_{1}\right]\right) \wedge D\left(e_{2}\right)$
- $D\left(S_{1} ; S_{2}\right) \equiv D\left(S_{1}\right) \wedge w p\left(S_{1}, D\left(S_{2}\right)\right)$
- [Wed 2023-02-15, 18:27] The $D\left(S_{1}\right)$ tells us S_{1} won't cause an error when run. The $w p\left(S_{1}, D\left(S_{2}\right)\right)$ tells us that S_{1} will establish $D\left(S_{2}\right)$, so running S_{2} won't cause an error. To see this,
- If $\sigma \models D\left(S_{1}\right)$ then $\perp_{e} \notin M\left(S_{1}, \sigma\right)$.
- If $\sigma \models w p\left(S_{1}, D\left(S_{2}\right)\right)$, then $M\left(S_{1}, \sigma\right) \vDash D\left(S_{2}\right)$, which implies $\perp_{e} \notin M\left(S_{2}, M\left(S_{1}, \sigma\right)\right)$.
- Combining $\perp_{e} \notin M\left(S_{1}, \sigma\right)$ and $\perp_{e} \notin M\left(S_{2}, M\left(S_{1}, \sigma\right)\right)$ tells us $\perp_{e} \notin M\left(S_{1} ; S_{2}, \sigma\right)$.
- D (if B then S_{1} else $S_{2} f i, q$)

$$
\equiv D(B) \wedge\left(B \rightarrow D\left(S_{1}\right)\right) \wedge\left(\neg B \rightarrow D\left(S_{2}\right)\right)
$$

- $D\left(\right.$ if $\left.B_{1} \rightarrow S_{1} \square B_{2} \rightarrow S_{2} f i, q\right)$

$$
\equiv D\left(B_{1} \vee B_{2}\right) \wedge\left(B_{1} \vee B_{2}\right) \wedge\left(B_{1} \rightarrow D\left(S_{1}\right)\right) \wedge\left(B_{2} \rightarrow D\left(S_{2}\right)\right)
$$

- We need ($B_{1} \vee B_{2}$) to avoid failure of the nondeterministic if-fi due to none of the guards holding.
- This definition extends easily to if-fi with one or more than two guarded commands.
- $D\left(\right.$ while B do S_{1} od $) \equiv D(B) \wedge\left(B \rightarrow D\left(S_{1}\right)\right)$
- $D\left(\right.$ do $B_{1} \rightarrow S_{1} \square B_{2} \rightarrow S_{2}$ od $)$

$$
\equiv D\left(B_{1} \vee B_{2}\right) \wedge\left(B_{1} \rightarrow D\left(S_{1}\right)\right) \wedge\left(B_{2} \rightarrow D\left(S_{2}\right)\right)
$$

- This definition extends easily to do-od with one or more than two guarded commands.
- The domain predicate for nondeterministic do-od is like that for if-fi except that having none of the guards hold does not cause an error.
- Note while B do S_{1} od is equivalent to do $B \rightarrow S$ od, and happily, their D results match.

Calculating wp for loop-free programs

- With the domain predicates, it's easy to extend wlp for wp for loop-free programs because we don't have to argue for termination of a loop.
- Definition: $w p(S, q) \equiv D(S) \wedge w \wedge D(w)$, where $w \equiv w l p(S, q)$.
- $D(S)$ tells us that running S won't cause an error
- w tells us that running S will establish q (if S terminates).
- $D(w)$ tells us that w makes sense.
- Example 10: If a program does a division, then the $w p$ and $w l p$ can differ.
- We'll calculate $w_{1} \equiv w p\left(S_{1} ; S_{2}, q\right)$ where

$$
S_{1} \equiv x:=y, S_{2} \equiv z:=v / x, \text { and } q \equiv z>x+2
$$

- Since $w_{1} \equiv w p\left(S_{1} ; S_{2}, q\right) \equiv w p\left(S_{1}, w p\left(S_{2}, q\right)\right)$, we should calculate $w_{2} \equiv w p\left(S_{2}, q\right)$ first.

$$
\begin{aligned}
w_{2} & \equiv w p\left(S_{2}, q\right) \\
& \equiv w p(z:=v / x, z>x+2)
\end{aligned}
$$

```
\(\equiv D(z:=v / x) \wedge w \wedge D(w) \quad\) where \(w \equiv w l p(z:=v / x, z>x+2) \equiv v / x>x+2\)
\(\equiv(x \neq 0) \wedge(v / x>x+2) \wedge D(v / x>x+2)\)
\(\equiv x \neq 0 \wedge \nu / x>x+2 \wedge x \neq 0\)
\(\equiv x \neq 0 \wedge v / x>x+2{ }^{1}\)
```

- So now we can calculate $w_{1} \equiv w p\left(S_{1}, w_{2}\right)$.

$$
\begin{aligned}
w_{1} & \equiv w p\left(S_{1}, w_{2}\right) \\
& \equiv w p(x:=y, x \neq 0 \wedge v / x>x+2) \\
& \equiv w l p(x:=y, x \neq 0 \wedge v / x>x+2) \\
& \equiv y \neq 0 \wedge v / y>y+2
\end{aligned}
$$

$$
\equiv w l p(x:=y, x \neq 0 \wedge v / x>x+2) \quad \text { since the assignment } x:=y \text { never fails }
$$

- Example 11: Let's calculate $w_{0} \equiv w p(x:=b[k], \operatorname{sqrt}(x) \geq 1)$.
- Let $S \equiv x:=b[k], q \equiv \operatorname{sqrt}(x) \geq 1$, and $w \equiv w l p(S, q)$.
- We can expand
- $w \equiv w \operatorname{lp}(S, q) \equiv w \operatorname{lp}(x:=b[k], \operatorname{sqrt}(x) \geq 1) \equiv \operatorname{sqrt}(b[k]) \geq 1$.
- It's also useful to calculate

$$
\begin{aligned}
& D(w) \\
& \quad \equiv D(\operatorname{sqrt}(b[k]) \geq 1) \\
& \quad \equiv D(b[k]) \wedge b[k] \geq 0 \\
& \quad \equiv 0 \leq k<\operatorname{size}(b) \wedge b[k] \geq 0
\end{aligned}
$$

- So then

```
\(w_{0} \equiv w p(S, q)\)
    \(\equiv D(S) \wedge w \wedge D(w)\)
    \(\equiv D(x:=b[k]) \wedge(\operatorname{sqrt}(b[k]) \geq 1) \wedge D(\operatorname{sqrt}(b[k]) \geq 1)\)
    \(\equiv(0 \leq k<\operatorname{size}(b)) \wedge(\operatorname{sqrt}(b[k]) \geq 1) \wedge(0 \leq k<\operatorname{size}(b) \wedge b[k] \geq 0)\)
    \(\equiv 0 \leq k<\operatorname{size}(b) \wedge \operatorname{sqrt}(b[k]) \geq 1 \wedge b[k] \geq 0\)
```

- If further simplification is requested, we get

$$
\Leftrightarrow 0 \leq k<\operatorname{size}(b) \wedge b[k] \geq 1
$$

[^0]
[^0]: ${ }^{1}$ To simplify syntactic/semantic calculations, let's again extend our notion of \equiv so that $p \wedge p \equiv p \vee p \equiv p$.

