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A. Why 

• Weakest liberal preconditions ( wlp ) and weakest preconditions ( wp ) are the most general 
requirements that a program must meet to be correct under partial and total correctness. 

B. Objectives 
At the end of today you should understand 

• How to calculate the wlp of loop-free programs. 

• How to add error domain predicates to the wlp of a loop-free program to obtain its wp. 

C. Calculating wlp for Loop-Free Programs 

• Say a program is loop-free.  If it is also error-free, then its wp and wlp are identical.  Otherwise 
we will need to add error-avoiding information to the wlp to calculate the wp.  Either way, 
calculating the wlp is the first step. 

• The following algorithm takes S and q and calculates a predicate for wlp ( S , q ). 

• The calculation is syntactic, which is why it’s described using wlp ( S , q ) ≡ … instead of 
wp ( S , q ) ⇔  …. 

• wlp ( skip, q ) ≡ q  

• wlp ( v := e , Q ( v ) ) ≡ Q ( e ) where Q  is a predicate function over one variable . 

• The operation that takes us from Q ( v ) to Q ( e ) is called syntactic substitution; we’ll 
look at it in more detail in the next class, but for the examples here and in earlier 
classes, we've been using the simplest case, where we inspect the definition of Q and 
replacing each occurrence of the variable v with the expression e. 

• wlp ( S₁ ; S₂ , q ) ≡ wlp ( S₁ , wlp ( S₂ , q ) )  

• The wlp ( S₂ , q ) guarantees that we'll run S₂ in a state that gets us to q .  To guarantee 
that S₁ gets us to one of those states, we use the outer wlp ( S₁ , ...). 

• wlp ( if B  then S₁ else S₂ fi, q ) ≡ ( B→w₁ ) ∧ ( ¬ B→w₂ ) where w₁ ≡ wlp ( S₁ , q ) and 
w₂ ≡ wlp ( S₂ , q ). 

• This is ⇔ ( B ∧w₁ ) ∨ ( ¬ B ∧w₂ ), so it's also acceptable as a result of this wlp calculation. 

• wlp ( if B₁➞  S₁ ☐  B₂➞ S₂ fi, q ) ≡ ( B₁→w₁ ) ∧ ( B₂→w₂ ) where w₁ ≡ wlp ( S₁ , q ) and 
w₂ ≡ wlp ( S₂ , q ). 
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• For the nondeterministic if, you must use ( B₁→w₁ ) ∧ ( B₂→w₂ ), not 
( B₁ ∧w₁ ) ∨ ( B₂ ∧w₂ ), because they're not equivalent (unlike the deterministic if 
statement). 

• When B₁ and B₂ are both true, either S₁ or S₂ can run, so we need B₁ ∧ B₂→w₁ ∧w₂ , 
and this is implied by ( B₁→w₁ ) ∧ ( B₂→w₂ ). 

• Using ( B₁ ∧w₁ ) ∨ ( B₂ ∧w₂ ) fails because it allows for the possibility that B₁ and B₂ are 
both true but only one of w₁ and w₂ is true.  This isn’t a problem when B₂⇔ ¬ B₁ , which 
is why we can use ( B ∧w₁ ) ∨ ( ¬ B ∧w₂ ) with deterministic if statements. 

D. Some Examples of Calculating wp/wlp: 

• The programs in these examples never end in “state” ⊥, so the wp and wlp are equivalent. 

• These two examples are connected. [2023-02-15] 

• Example 2: wlp ( x := x + 1 , x ≥ 0) ≡ x + 1 ≥ 0 

• Example 3: wlp ( y := y + x ; x := x + 1 , x ≥ 0)  
 ≡ wlp ( y := y + x , wlp ( x := x + 1 , x ≥ 0) )  
 ≡ wlp ( y := y + x , x + 1 ≥ 0) ≡ x + 1 ≥ 0   (There's no y in the postcondition.) 

• If we change the postcondition to include y, then it will be substituted for.)  [2023-02-15] 

• Example 4: wlp ( y := y + x ; x := x + 1 , x ≥ y )  
 ≡ wlp ( y := y + x , wlp ( x := x + 1 , x ≥ y ) )  
 ≡ wlp ( y := y + x , x + 1 ≥ y )  
 ≡ x + 1 ≥ y + x  

(If we asked to calculate and logically simplify, not just calculate, the wlp, we'd continue) 
⇔ y ≤ 1 . 

• Changing the order of the assignments changes what gets substituted and when. [2023-02-15] 

• Example 5: Swap the two assignments in Example 4: 
wlp ( x := x + 1 ; y := y + x , x ≥ y )  
 ≡ wlp ( x := x + 1 , wlp ( y := y + x , x ≥ y ) )  
 ≡ wlp ( x := x + 1 , x ≥ y + x ) )  
 ≡ x + 1 ≥ y + x + 1  [⇔ y ≤ 0  if you want to logically simplify] 

• The postcondition of an if-else statement and its two branches are the same. [2023-02-15] 

• Example 6:  wlp ( if y ≥ 0  then x := y  fi, x ≥ 0 )  
 ≡ wlp ( if y ≥ 0  then x := y  else skip fi, x ≥ 0 )  
 ≡ ( y ≥ 0→wlp ( x := y, x ≥ 0 ) ) ∧ ( y < 0→wlp ( skip, x ≥ 0 ) )  
 ≡ ( y ≥ 0→ y ≥ 0 ) ∧ ( y < 0→ x ≥ 0 ) or ( y ≥ 0 ∧ y ≥ 0 ) ∨ ( y < 0 ∧ x ≥ 0 )  
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(If we were asked to calculate and logically simplify the wlp, we'd continue): 

 ⇔ y ≥ 0 ∨ ( y < 0 ∧ x ≥ 0 )  
 ⇔ ( y ≥ 0 ∨ y < 0 ) ∧ ( y ≥ 0 ∨ x ≥ 0 )  
 ⇔ ( y ≥ 0 ∨ x ≥ 0 )   (A correct answer) [2023-02-15] 
 ⇔  ( y < 0→ x ≥ 0 )   (Also correct, just differs in style) 

E. Avoiding Runtime Errors in Expressions with Domain Predicates 

• To avoid runtime failure of σ ( e ), we'll take the context in which we're evaluating e and 
augment it with a predicate that guarantee non-failure of σ ( e ).  For example, for { P ( e ) }
v := e { P ( v ) }, we'll augment the precondition to guarantee that evaluation of e won't fail. 

• For each expression e, we will define a domain predicate D ( e ) such that σ ⊨ D ( e ) implies 
σ ( e ) ≠ ⊥e . 

• This predicate has to be defined recursively, since we need to handle complex expressions 
like b [ b [ k ] ] .   As we'll see, D ( b [ b [ k ] ] ) ≡ 0 ≤ k < size ( b ) ∧ 0 ≤ b [ k ] < size ( b ). 

• As with wp, the domain predicate for an expression is unique only up to logical equivalence.  
For example, D ( x / y + u / v ) ≡ y ≠ 0 ∧ v ≠ 0⇔ v * y ≠ 0. (Me personally, I prefer y ≠ 0 ∧ v ≠ 0 , but 
it's a taste issue.) 

• Definition: (Domain predicate D(e) for expression e):  We must define D for each kind of 
expression that can cause a runtime error: 

• First, a shortcut: if e contains no operations that can fail, then D ( e ) ≡ T. 

• For example, for a constant c or variable v, we have D ( c ) ≡ T and D ( v ) ≡ T because 
evaluation of a variable or constant doesn't cause failure, 

• The basic requirement is to define domain expressions for operations that can cause errors.  
For us, that's array lookup, division, modulus, and square root.  Adding other operations or 
datatypes might introduce other cases. 

• D ( b [ e ] ) ≡ D ( e ) ∧ 0 ≤ e < size ( b ). 

• D ( e₁ / e₂ ) ≡ D ( e₁% e₂ )⇔D ( e₁ ) ∧D ( e₂ ) ∧ e₂ ≠ 0 . 

• D ( sqrt ( e ) ) ≡ D ( e ) ∧ e ≥ 0 . 

• For operations that don't themselves cause errors, we simply check the subexpressions.  This 
includes the arithmetic operators + , – , * , and the relational operators ≤ , < , = , ≠ , > , and ≥. 

• D ( e₁ op e₂ ) ≡ D ( e₁ ) ∧D ( e₂ ), except when op  is / or %. 

• D ( op e ) ≡ D ( e ). 

• D ( f ( e₁ , e₂ , … ) ) ≡ D ( e₁ ) ∧D ( e₂ ) ∧… ,  except for f ≡ sqrt. 

• For conditional expressions [2023-02-15], we need safety of the tests and safety of the arms / 
branches. 

• D ( if B  then e₁ else e₂ fi) ≡ D ( B ) ∧ ( B→D ( e₁ ) ) ∧ ( ¬ B→D ( e₂ ) )  
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[2023-02-15] (Removed a misplaced paragraph) 

• Example 7: D ( b [ b [ k ] ] ) ≡ D ( b [ k ] ) ∧ 0 ≤ b [ k ] < size ( b )  
≡ D ( k ) ∧ 0 ≤ k < size ( b ) ∧ 0 ≤ b [ k ] < size ( b )  
≡ T ∧ 0 ≤ k < size ( b ) ∧ 0 ≤ b [ k ] < size ( b )  
≡ 0 ≤ k < size ( b ) ∧ 0 ≤ b [ k ] < size ( b )  

• Example 8: D ( ( – b + sqrt ( b*b – 4*a*c ) ) / ( 2*a ) )  
 ≡ D ( e ) ∧D ( 2*a ) ∧ 2*a ≠ 0          where e ≡ – b + sqrt ( b*b – 4*a*c ) 
 ≡ D ( – b ) ∧D ( sqrt ( b*b – 4*a*c ) ) ∧D ( 2*a ) ∧ 2*a ≠ 0  
 ≡ D ( sqrt ( b*b – 4*a*c ) ) ∧ 2*a ≠ 0        since D ( – b ) ≡ D ( 2*a ) ≡ T  
 ≡ D ( b*b – 4*a*c ) ∧ ( b*b – 4*a*c ≥ 0 ) ∧ 2*a ≠ 0  
 ≡ b*b – 4*a*c ≥ 0 ∧ 2*a ≠ 0          since D ( b*b – 4*a*c ≥ 0 ) ≡ T  
 ⇔ b*b – 4*a*c ≥ 0 ∧ a ≠ 0           if asked to simplify arithmetically 

[2023-02-15 miscellaneous changes below] 

• Example 9: D ( if 0 ≤ k < size ( b ) then b [ k ]  else 0  fi).  Here, the test guarantees that the array 
lookup won't fail.  (The expression if B₁ then T else B₂  fi is equivalent to B₁  &&  B₂  in C, etc.) 
 ≡ D ( B ) ∧ ( B→D ( b [ k ] ) ∧ ( ¬ B→D ( 0 ) )      where B ≡ 0 ≤ k < size ( b )  
 ≡ ( B→D ( b [ k ] ) ∧ ( ¬ B→ T )         since D ( B ) and D ( 0 ) ≡ T  
 ⇔ B→D ( b [ k ] )            since ¬ B→ T⇔ T  
 ≡ B→D ( k ) ∧ 0 ≤ k < size ( b )         expanding D ( b [ k ] )  
 ≡  0 ≤ k < size ( b )→ T ∧ 0 ≤ k < size ( b )      definition of B 
 ⇔ T               logical simplification 

F. Avoiding Runtime Errors in Statements with Domain Predicates  

• Recall that we extended our notion of operational semantics to include 〈 S , σ 〉→ *〈 E , ⊥e〉  to 
indicate that evaluation of S causes a runtime failure. 

• We can avoid runtime failure of statements by adding domain predicates to the preconditions of 
statements.  Though we can't in general calculate the wlp/ wp of a loop, we can calculate a 
domain predicate for it. 

• Definition: For statement S, the [2023-02-15] domain predicate D ( S ) gives a sufficient 
condition to avoid runtime errors.  For loops, avoiding divergence is a separate problem we'll 
look at later. 

• D (skip) ≡ T  

• D ( v := e ) ≡ D ( e ) 

• D ( b [ e₁ ] := e₂ ) ≡ D ( b [ e₁ ] ) ∧D ( e₂ ) 
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• D ( S₁ ; S₂ ) ≡ D ( S₁ ) ∧wp ( S₁ , D ( S₂ ) )  

• [Wed 2023-02-15, 18:27] The D ( S₁ ) tells us S₁ won't cause an error when run.  The 
wp ( S₁ , D ( S₂ ) ) tells us that S₁ will establish D ( S₂ ), so running S₂ won't cause an error.  
To see this, 

• If σ ⊨ D ( S₁ ) then ⊥e∉M ( S₁ , σ ). 

• If σ ⊨ wp ( S₁ , D ( S₂ ) ), then M ( S₁ , σ ) ⊨ D ( S₂ ), which implies ⊥e∉M ( S₂ , M ( S₁ , σ ) ). 

• Combining ⊥e∉M ( S₁ , σ ) and ⊥e∉M ( S₂ , M ( S₁ , σ ) ) tells us ⊥e∉M ( S₁ ; S₂ , σ ). 

• D ( if B  then S₁ else S₂ fi, q )  
   ≡ D ( B ) ∧ ( B→D ( S₁ ) ) ∧ ( ¬ B→D ( S₂ ) )  

• D ( if B₁➞  S₁ ☐  B₂➞ S₂ fi, q )  
   ≡ D ( B₁ ∨ B₂ ) ∧ ( B₁ ∨ B₂ ) ∧ ( B₁→D ( S₁ ) ) ∧ ( B₂→D ( S₂ ) )  

• We need ( B₁ ∨ B₂ ) to avoid failure of the  nondeterministic if-fi due to none of the 
guards holding. 

• This definition extends easily to if-fi with one or more than two guarded commands. 

• D (while B  do S₁ od) ≡ D ( B ) ∧ ( B→D ( S₁ ) )  

• D ( do B₁➞  S₁ ☐ B₂➞ S₂ od)  
   ≡ D ( B₁ ∨ B₂ ) ∧ ( B₁→D ( S₁ ) ) ∧ ( B₂→D ( S₂ ) )  

• This definition extends easily to do-od with one or more than two guarded commands. 

• The domain predicate for nondeterministic do-od is like that for if-fi except that having 
none of the guards hold does not cause an error. 

• Note while B  do S₁ od is equivalent to do B ➞ S od, and happily, their D results match. 

Calculating wp for loop-free programs 

• With the domain predicates, it's easy to extend wlp for wp for loop-free programs because we 
don't have to argue for termination of a loop. 

• Definition: wp ( S , q ) ≡ D ( S ) ∧w ∧D ( w ), where w ≡ wlp ( S , q ). 

• D ( S ) tells us that running S won't cause an error 

• w  tells us that running S will establish q (if S terminates). 

• D ( w ) tells us that w makes sense. 

• Example 10: If a program does a division, then the wp and wlp can differ.   

• We'll calculate w₁ ≡ wp ( S₁ ; S₂ , q ) where 
 S₁ ≡ x := y , S₂ ≡ z := v / x, and q ≡ z > x + 2 . 

• Since w₁ ≡ wp ( S₁ ; S₂ , q ) ≡ wp ( S₁ , wp ( S₂ , q ) ), we should calculate w₂ ≡ wp ( S₂ , q ) first. 

w₂ ≡ wp ( S₂ , q )  
 ≡ wp ( z := v / x , z > x + 2 )  
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 ≡ D ( z := v / x ) ∧w ∧D ( w )     where w ≡ wlp ( z := v / x , z > x + 2 ) ≡ v / x > x + 2  
 ≡ ( x ≠ 0 ) ∧ ( v / x > x + 2 ) ∧D ( v / x > x + 2 )  
 ≡ x ≠ 0 ∧ v / x > x + 2 ∧ x ≠ 0  
 ≡ x ≠ 0 ∧ v / x > x + 2  1

• So now we can calculate w₁ ≡ wp ( S₁ , w₂ ). 

w₁ ≡ wp ( S₁ , w₂ )  
 ≡ wp ( x := y, x ≠ 0 ∧ v / x > x + 2 )  
 ≡ wlp ( x := y, x ≠ 0 ∧ v / x > x + 2 )   since the assignment x := y never fails 
 ≡ y ≠ 0 ∧ v / y > y + 2  

• Example 11: Let's calculate w₀ ≡ wp ( x := b [ k ] , sqrt ( x ) ≥ 1 ). 

• Let S ≡ x := b [ k ] , q ≡ sqrt ( x ) ≥ 1, and w ≡ wlp ( S , q ). 

• We can expand 

• w ≡ wlp ( S , q ) ≡ wlp ( x := b [ k ] , sqrt ( x ) ≥ 1 ) ≡ sqrt ( b [ k ] ) ≥ 1 . 

• It's also useful to calculate 
 D ( w )  
  ≡ D ( sqrt ( b [ k ] ) ≥ 1 )  
  ≡ D ( b [ k ] ) ∧ b [ k ] ≥ 0  
  ≡ 0 ≤ k < size ( b ) ∧ b [ k ] ≥ 0  

• So then 
 w₀ ≡ wp ( S , q )  
  ≡ D ( S ) ∧w ∧D ( w )  
  ≡ D ( x := b [ k ] ) ∧ ( sqrt ( b [ k ] ) ≥ 1 ) ∧D ( sqrt ( b [ k ] ) ≥ 1 )  
  ≡ ( 0 ≤ k < size ( b ) ) ∧ ( sqrt ( b [ k ] ) ≥ 1 ) ∧ ( 0 ≤ k < size ( b ) ∧ b [ k ] ≥ 0 )  
  ≡ 0 ≤ k < size ( b ) ∧ sqrt ( b [ k ] ) ≥ 1 ∧ b [ k ] ≥ 0  

• If further simplification is requested, we get 
  ⇔ 0 ≤ k < size ( b ) ∧ b [ k ] ≥ 1  

 To simplify syntactic/semantic calculations, let's again extend our notion of ≡ so that p ∧ p ≡ p ∨ p ≡ p .1
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