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  Weakest Preconditions 
Part 1: Definitions and Basic Properties 

CS 536: Science of Programming, Spring 2023 

A. Why 

• Weakest liberal preconditions (wlp ) and weakest preconditions (wp) are the most general re-
quirements that a program must meet to be correct. 

B. Objectives 
At the end of today you should understand 

• What wlp  and wp are and how they are related to preconditions in general. 

Part 1: The Deterministic Case 

C. Weakening the Precondition of ⊨tot {p}S{q} 

• Let's assume that S  is deterministic.  Figure 1 illustrates how ⊨tot { p } S { q }   works: If you take 
any state in p  and follow the arrow by applying S , you end in a state that satisfies q . 

• (To illustrate partial correctness, we would add arrows from p  to ¬ q  or to ⊥.) 

• The predicate r intersects p , so states within p ∧ r  are guaranteed to lead (via S ) to states in q . 

• States in ¬ p ∧ r  might lead via S  to p  or ¬ p  or to ⊥, but if all of them lead to p , then we could 
extend our precondition p  and we'd have { p ∨ ¬ p ∧ r } S { q } , which simplifies to { p ∨ r } S { q } . 

• A shorter way to say this is if ⊨tot { p } S { q }  and ⊨tot { ¬ p ∧ r } S { q } , then ⊨tot { p ∨ r } S { q } . 

• Of course, in general, we don't know ⊨tot { ¬ p ∧ r } S { q } , but if we can prove it, we can 
weaken the precondition p  to r , which provides the user with more flexibility for 
running S .  But sometimes, we can't weaken the precondition any more than it is already. 

• Definition: w is the weakest precondition of S and q (we write w = wp ( S , q ) ) if w is a pre-
condition that can't be weakened.   I.e., ⊨tot { w } S { q } and there is no r strictly stronger than w 
such that ⊨tot { r } S { q }. 

• The converse holds, since it's just precondition strengthening: If ⊨tot { w } S { q }, then know-
ing r→w lets us conclude (is sufficient for) ⊨ tot { r } S { q }. 

• Being the weakest precondition makes r→w  a necessary condition for ⊨tot { r } S { q }. 

• So if w is the weakest precondition, then { r } S { q } iff w→ r. 

• In terms of states, wp ( S , q ) = { σ∈ Σ | M ( S , σ ) ⊨ q } 
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• Recall that in general, ⊨tot { p } S { q } doesn't tell us anything about M ( S , σ ) if σ ⊭ p.  But if p is 
weakest, we know M ( S , σ ) ⊭ q. 

• For deterministic programs, we can state this using partial correctness: If w = wp ( S , q ) and 
S is deterministic then ⊨ { ¬w } S { ¬q }.  If σ ⊨ ¬ w then M ( S , σ ) = { τ } where τ =⊥ or τ ⊨ ¬q. 

• Writing wp ( S , q ) as a predicate is convenient, but technically the weakest precondition of S 
under q is a set of states (the set of all states that are preconditions of S and q under total cor-
rectness).  As sets, there are wp ( S , q ) that don't correspond well to writable predicates, and in 
those cases we'll have to write predicates that approximate wp ( S , q ). 

• Usually, we talk about “the” wp ( S , q ), but as a predicate, a wp is unique only "up to logical 
equivalence": If u⇔w, then u  is also a wp.  For example, if the wp ( S , q ) is x > 0, then x ≥ 1 and 
0 < x and so on are also wp's. 

• Later we'll see a syntactic algorithm that helps us calculate some wp's; in those cases, we'll write 
wp ( S , q ) ≡ w where w is the syntactic representation produced by the algorithm. 

D. The Weakest Liberal Precondition, wlp 

• The weakest liberal precondition is analogous to the wp but for partial correctness instead of 
total correctness. 

• Definition: The weakest liberal precondition for S and q, written wlp ( S , q ), is a valid pre-
condition for q  under partial correctness where no strictly weaker valid precondition exists. 

• In symbols, w = wlp ( S , q ) iff ⊨ { w } S { q } and for all u , ⊨ { u } S { q } if and only if ⊨  u→w.  

• In terms of states, wlp ( S , q ) = { σ∈ Σ | M ( S , σ ) – ⊥ ⊨ q }.  
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Figure 1: Extending Precondition of {p}S{q}
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Relationships Between wp and wlp 

• Figure 2 illustrates the relationships between wp and wlp  for deterministic programs. 

• The top third shows the states in wp ( S , q ):  Those states in M ( S , σ ) satisfy q.  

• The bottom third shows the states in wp ( S , ¬ q ):  Those states in M ( S , σ ) satisfy ¬ q . 

• The middle third shows that states that cause nontermination. 

• Adding the nonterminating states to wp ( S , q ) gives wlp ( S , q ). 

• Adding the nonterminating states to wp ( S , ¬ q ) gives wlp ( S , ¬ q ). 

• Subsequently, ¬ wp ( S , ¬ q )⇔wlp ( S , q ) and ¬ wp ( S , q )⇔wlp ( S , ¬ q ). 

• The relationship: wlp ( S , q ) ∧wlp ( S , ¬ q ) describes the states that cause nontermination. 

Why Are wp and wlp Important? 

• The reason wp and wlp  are important is that if you have a precondition and can show that it's 
the weakest precondition, you have the most general solution to “What states can I start in and 
successfully end in q? 

• With wp, ”successfully end” means “terminates satisfying q”.  With wlp, it means ”if we ter-
minate, we terminate satisfying q”. 

• The solution is most general in the sense that any state not satisfying the wp or wlp is guaran-
teed to not successfully end in q. 

• Compare with non-weakest preconditions, where starting in a state not satisfying the precondi-
tion might end successfully or end not successfully (satisfying ¬ q) or not terminate. 

E. Examples of wp and wlp 

• Example 1:  The assignment y := x * x always terminates, so wp and wlp behave identically on it. 
wp ( y := x * x , x ≥ 0 ∧ y ≥ 4 )⇔wlp ( y := x * x , x ≥ 0 ∧ y ≥ 4 )⇔x ≥ 2. 

• Example 2: The wp and wlp  of if y ≤ x  then m := x  else skip fi and m = max ( x , y ) are 
( y > x→m = y ). 

• Later, we'll see how to calculate the wp in this instance, but for now, let's look at it intuitive-
ly.  The true branch sets up the postcondition when y ≤ x.  The false branch (the implicit else 
skip) runs when y > x and doesn't change the state, so we need the postcondition m = y to al-
ready be satisfied. 
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Figure 2: The Weakest Liberal Precondition for Deterministic S
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• Example 3: The weakest precondition of while x ≠ 0  do x := x - 1 od and x = 0 is x ≥ 0.  Starting with 
x ≥ 0 terminates with x = 0.  Starting with x < 0 doesn't terminate. 

• The wlp of the loop and postcondition is simply T.  Since we're ignoring termination, the 
body of the loop doesn't affect the fact that for while x ≠ 0  … to exit, x must be zero. 

• Our loop terminates iff run with x ≥ 0, so if W is our loop, then wp ( W, T )⇔ x ≥ 0. 

• We can verify x ≥ 0⇔wp ( W, x = 0 )⇔wlp ( W, x = 0 ) ∧wp ( W, T )⇔ T ∧ x ≥ 0⇔ x ≥ 0. 

• Example 4: The weakest precondition of W ≡ while x > 0  do x := x - 1 od and x ≤ 0 is T (true).  
Again, starting with x ≥ 0 terminates with x = 0.  We can terminate with any negative value for x 
simply by running the loop with that value; the loop terminates immediately without 
changing x. 

• Since T⇔wp ( W, x ≤ 0 )⇔wlp ( W, x ≤ 0 ) ∧wp ( W, T ) , both wlp ( W, x ≤ 0 )  and 
wp ( W, T )⇔T . Semantically, we can also justify this by arguing that while x > 0  … terminates 
immediately iff x ≤ 0. 

• Example 5: For any S and σ, either we terminate (in a state satisfying true) or we don't termi-
nate.  Therefore wlp ( S , T )⇔ T.  Also, since wlp ( S , T )⇔ ¬ wp ( S , ¬ T )⇔ T, we have that 
wp ( S , F )⇔ F.  (In Figure 2 terms, the bottom third of the diagram is empty because running 
S in σ never terminates in a state satisfying false.) 

Part 2: The Nondeterministic Case 

• With nondeterministic programs, wp and wlp are more complicated (of course).  The basic defi-
nitions are the same: 

• σ∈wp ( S , q ) iff M ( S , σ ) ⊨ q or equivalently ⊨tot { p } S { q } iff ⊨ wp ( S , q )→ p. 

• σ∈wlp ( S , q ) iff M ( S , σ ) – ⊥ ⊨ q or equivalently ⊨{ p } S { q } iff ⊨ wlp ( S , q )→ p. 

• Let Σ₀ = M ( S , σ ) or M ( S , σ ) – ⊥ depending on whether we're discussing wp or wlp . 

• Since Σ₀ satisfies q iff every individual state in Σ₀ satisfies q, nonsatisfaction only requires one 
counterexample state: 

• σ∉wp ( S , q ) iff for some τ∈M ( S , σ ), we have τ =⊥ or τ ⊭ q (and since τ is a state, τ ⊨ ¬ q ). 

• σ∉wlp ( S , q ) iff for some τ∈M ( S , σ ), we have τ ⊭ q  (and since τ  is a state, τ ⊨ ¬ q ). 

• But there are no constraints on other members of Σ₀, so σ∉wp ( S , q ) and σ∉wlp ( S , q ) are 
both compatible with having τ∈M ( S , σ ) with τ  ⊨ q. 

F. Properties of wp and wlp for Deterministic and Nondeterministic 

Programs 

• There are a number of properties connecting the wp, wlp ,¬ wp, and ¬ wlp of q and ¬ q. 

• Some properties are common to both deterministic and nondeterministic programs: 

1. M ( S , σ ) = { ⊥ }⇒wlp ( S , q ) ∧wlp ( S , ¬ q )  
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• M ( S , σ ) –⊥=∅, so it ⊨ q and ⊨ ¬ q, so σ ⊨ wlp ( S , q ) ∧wlp ( S , ¬ q ). 

2. M ( S , σ ) = { ⊥ }⇒ ¬ wp ( S , q ) ∧ ¬ wp ( S , ¬ q ) 

• M ( S , σ ) = { ⊥ } ⊭ q and ⊭ ¬ q, so σ ⊨ ¬ wp ( S , q ) ∧ ¬ wp ( S , ¬ q ). 

3. wlp ( S , q ) ∧wlp ( S , ¬ q )⇒M ( S , σ ) = { ⊥ } 

• For σ  ⊨ wlp ( S , q ) ∧wlp ( S , ¬ q ), we must have M ( S , σ ) – ⊥ ⊨ q ∧ ¬ q.  Since no actual 
state satisfies ⊨ q ∧ ¬ q, that implies that M ( S , σ ) – ⊥ =∅ , so M ( S , σ ) = { ⊥ }. 

4. wp ( S , q )⇒wlp ( S , q ) 

• If σ ⊨ wp ( S , q ), then M ( S , σ ) ⊨ q, so M ( S , σ ) – ⊥ ⊨ q, and so σ  ⊨ wlp ( S , q ). 

5. wlp ( S , q )⇒ ¬ wp ( S , ¬ q ) 

• If σ ⊨ wlp ( S , q ), then M ( S , σ ) – ⊥ ⊨ q , so for all τ∈M ( S , σ ) – ⊥, we have τ ⊭ ¬ q.  If 
⊥∈M ( S , σ ) then M ( S , σ ) ⊭ ¬ q, so τ ⊭ ¬ q.  

6. wp ( S , q )⇒ ¬ wlp ( S , ¬ q ) 

• If σ  is in wp ( S , q ) then M ( S , σ ) ⊨ q.  For σ to be in wlp ( S , ¬ q ), we need every 
τ∈M ( S , σ ) to be either ⊥ or to satisfy ¬ q.  But every τ∈M ( S , σ ) satisfies q , so τ ≠ ⊥ and 
τ doesn't satisfy ¬ q .  So if σ is in wp ( S , q ), it's not in wlp ( S , ¬ q ), it's in ¬ wlp ( S , ¬ q ). 

• There are also properties that hold for deterministic programs but not nondeterministic pro-
grams. 

7a. If S  is deterministic, then ¬ wp ( S , q ) ∧ ¬ wp ( S , ¬ q )⇒M ( S , σ ) = { ⊥ }.  

• For deterministic S, we know M ( S , σ ) = some { τ }, where τ =⊥, τ  ⊨ q , or τ  ⊨ ¬ q .  But 
σ ⊨ ¬ wp ( S , q ) ∧ ¬ wp ( S , ¬ q ) implies that M ( S , σ ) ⊭ q and M ( S , σ ) ⊭ ¬ q, which leaves 
M ( S , σ ) = { ⊥ } as the only possibility. 

7b. If S is nondeterministic, then ¬ wp ( S , q ) ∧ ¬ wp ( S , ¬ q ) doesn't imply M ( S , σ ) = { ⊥ }. 

• For a nondeterministic program, if M ( S , σ ) ⊭ q and M ( S , σ ) ⊭¬ q, it's still possible for 
M ( S , σ ) to contain non-⊥ states.  A simple counterexample is M ( S , σ ) = { τ₁ , τ₂ } where 
τ₁ ⊨ q and τ₂ ⊨ ¬ q. Note it's possible that ⊥∉M ( S , σ ) , which definitely makes M ( S , σ )  
unequal to { ⊥ }. 

8a. If S is deterministic, then ¬ wp ( S , q )⇒wlp ( S , ¬ q ). 

• M ( S , σ ) = { τ } where τ =⊥,  τ ⊨ q, or τ ⊨ ¬ q.  If σ  ⊨ ¬ wp ( S , q ), then τ ⊨ q fails, which 
leaves τ =⊥ or τ  ⊨ ¬ q, in which case M ( S , σ ) – ⊥ ⊨ ¬ q, so σ  ⊨ wlp ( S , ¬ q ). 

8b. If S is nondeterministic, then ¬ wp ( S , q )  doesn't imply wlp ( S , ¬ q ). 

• Since M ( S , σ ) ⊭ q says only that not every value in M ( S , σ ) satisfies q, so there can still 
be a τ₁∈M ( S , σ ) with τ₁ ⊨ q, in which case σ ⊭ wlp ( S , ¬ q ). 

G. Disjunctive Postconditions Under Nondeterminism are Different 

• For deterministic and nondeterministic both, the wp/ wlp of a conjunction is the same as the 
conjunction of the wp/ wlp 's. 

• wp ( S , q₁ ) ∧wp ( S , q₂ )⇔wp ( S , q₁ ∧ q₂ ). 
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• wlp ( S , q₁ ) ∧wlp ( S , q₂ )⇔wlp ( S , q₁ ∧ q₂ ). 

• Also, the disjunction of the wp/ wlp 's is sufficient to imply the wp/ wlp of the disjunction: 

• wp ( S , q₁ ) ∨wp ( S , q₂ )⇒wp ( S , q₁ ∨ q₂ ). 

• wlp ( S , q₁ ) ∨wlp ( S , q₂ )⇒wlp ( S , q₁ ∨ q₂ ). 

• Necessity of the wp/wlp of the disjunction holds for deterministic programs: 

• wp ( S , q₁ ∨ q₂ )⇒wp ( S , q₁ ) ∨wp ( S , q₂ ). 

• wlp ( S , q₁ ∨ q₂ )⇒wlp ( S , q₁ ) ∨wlp ( S , q₂ ). 

• But for nondeterministic programs, wp ( S , q₁ ∨ q₂ )⇒wp ( S , q₁ ) ∨wp ( S , q₂ ) can be invalid. The 
standard example for this property is the coin-flip program we've seen before. 

• Example 11: Let flip  ≡ if T ➞ x := 0 ☐ T ➞ x := 1  fi. 

• Let heads ≡ x = 0  as and tails ≡ x = 1 , then M ( flip ,∅ ) = { { x = 0 } , { x = 1 } }.  Though { x = 0 } 
and { x = 1 } both satisfy heads ∨ tails, neither of them satisfies heads or tails.  So wp ( flip , 
heads ∨ tails ) = T  but wp ( flip , heads ) = wp ( flip , tails ) = F. 

• Let's look at the situation in terms of sets of states.  Assume ⊥∉M ( S , σ ) and let 
M ( S , σ ) = Σ₁∪ Σ₂ where Σ₁ ⊨ q₁  and Σ₂ ⊨ q₂.  We have that Σ₁∪ Σ₂ ⊨ q₁ ∨ q₂ , but if neither Σ₁ 
nor Σ₂ are ∅ , then Σ₁∪ Σ₂  includes at least one element satisfies q₁ and one that satisfies q₂, so 
Σ₁∪ Σ₂ satisfies neither q₁ nor  q₂. 
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