
CS 536: Science of Programming	 Thu 2023-02-09, 13:00	 Class 9

  Correctness (“Hoare”) Triples

  Part 2: Sequencing, Assignment, Strengthening, and Weakening

  CS 536: Science of Programming, Spring 2023

2023-02-09 p.3

A. Why

• To specify a program’s correctness, we need to know its precondition and postcondition (what
should be true before and after executing it).

• The semantics of a verified program combines its program semantics rule with the state-orient-
ed semantics of its specification predicates.

• To connect correctness triples in sequence, we need to weaken and strengthen conditions.

B. Objectives

At the end of today you should know

• Programs may have many different annotations, and we might prefer one annotation over an-
other (or not), depending on the context.

• Under the right conditions, correctness triples can be joined together.

• One general rule for reasoning about assignments goes "backwards" from the postcondition to
the precondition.

• What strength is and what weakening and strengthening are.

C. Examples of Partial and Total Correctness With Loops

• For the following examples, let W ≡while k ≠ 0 do k := k – 1 od.

• Example 1: ⊨tot { k ≥ 0 } W { k = 0 }. If we start in a state with k ≥ 0 , the loop is guaranteed to
terminate in a state satisfying k = 0 .

• Example 2: ⊨ { k = – 1 } W { k = 0 } but ⊭tot { k = – 1 } W { k = 0 }. The triple is partially correct
but not totally correct because it diverges if k = – 1. I.e., we have ⊭tot { k = – 1 } W { T }. Also
note that partial correctness would hold if we substitute any predicate for k = 0 .

• Example 3: ⊨ { T } W { k = 0 } but ⊭tot { T } W { k = 0 }. The triple is partially correct but not to-
tally correct because it diverges for at least one value of k .

• For the following examples, let W′ ≡while k > 0 do k := k – 1 od. (We’re changing the loop test
of W so that it terminates immediately when k is negative.)

• Example 4: ⊨tot { T } W′ { k ≤ 0 }.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20231

CS 536: Science of Programming	 Thu 2023-02-09, 13:00	 Class 9

• Example 5: ⊨tot { k = c₀ } W′ { (c₀ ≤ 0→ k = c₀) ∧ (c₀ ≥ 0→ k = 0) }. This is Example 4 with the
“strongest” (most precise) postcondition possible. (In general, it's not always possible to find
such a postcondition for loop, but it is here.)

D. More Correctness Triple Examples

Same Code, Different Conditions

• The same piece of code can be annotated with conditions in different ways, and there's not al-
ways a "best" annotation. An annotation might be the most general one possible (we'll discuss
this concept soon), but depending on the context, we might prefer a different annotation.

• As before, let sum (x , y) = the sum of x , x + 1 , x + 2 < … y. (If x > y , let sum (x , y) = 0 .) In Ex-
amples 9 – 12, we have the same program annotated (with preconditions and postconditions) of
various strengths (strength = generality).

• Example 9: { T } i := 0 ; s := 0 { i = 0 ∧ s = 0 }.

• This is the strongest (most precise) annotation for this program.

• Example 10: { T } i := 0 ; s := 0 { i = 0 ∧ s = 0 = sum (0 , i) }.

• This adds a summation relationship to i and s when they’re both zero.

• Example 11: { n ≥ 0 } i := 0 ; s := 0 { 0 = i ≤ n ∧ s = 0 = sum (0 , i) }

• This limits i to a range of values 0 , …, n . We have to include n ≥ 0 in the precondition if we
want to claim n ≥ 0 in the postcondition.

• Example 12: { n ≥ 0 } i := 0 ; s := 0 { 0 ≤ i ≤ n ∧ s = sum (0 , i) }

• The postcondition no longer includes i and s being zero, so this postcondition is weaker (less
precise) than the postcondition for Example 11. This might seem like a disadvantage but
will turn out to be an advantage later.

• The next two examples relate to calculating the midpoint in binary search. Though the code is
the same, whether the midpoint is strictly between the left and right endpoints depends on
whether or not the endpoints are nonadjacent.

• Example 13: { lt < rt ∧ lt ≠ rt – 1 }mid := (lt + rt) / 2 { lt <mid < rt }

• Example 14: { lt < rt } mid := (lt + rt) / 2 { lt ≤ mid < rt }

• In Examples 13 and 14, the differences in the postcondition have an effect on how to detect that
the value being searched for doesn't exist. In Example 13, it's lt = rt – 1; in Example 14, it's lt > rt .

Use of DeMorgan's Laws

• When a loop terminates, we know that the negation of the loop test holds, so DeMorgan's laws
can be useful. Similarly, for a condition, we know that the negation of the test holds just before
we execute the false branch.

• Example 15: Here we search downward for x ≥ 0 such that f (x) is ≤ y ; we stop if we find such
an x or if we run out of values to test.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20232

CS 536: Science of Programming	 Thu 2023-02-09, 13:00	 Class 9

{ x ≥ 0 }  
while x ≥ 0 ∧ f (x) > y do x := x – 1 od 
{ x < 0 ∨ f (x) ≤ y } [2023-02-08 typo]	 	 	 	 	 	 	 / / Negation of loop test

• Example 16: This is Example 15 rephrased as an array search; we search to the left for an index
k such that b [k] ≤ y ; we stop if we find one or run out of indexes to test .
1

{ k ≥ 0 }  
while k ≥ 0 ∧ b [k] > y do k := k – 1 od 
{ k < 0 ∨ b [k] ≤ y } 	 	 	 	 	 	 	 / / Negation of loop test

Joining Two Triples

• To make two statements a sequence, we have to compare the postcondition of the first state-
ment and the precondition of the second. If they're the same, we can make the join.

• I.e., if we have { p } S₁ { q }and { q } S₂ { r }, then we can form { p } S₁ ; S₂ { r } because when S ₁
finishes executing, it will satisfy the precondition of S₂.

• Example 17: We can join these two statements because the postcondition of the first statement
matches the precondition of the second. (Note though s =sum (0 , k) holds before and after the
two assignments, it doesn't hold between.)

Combining		 { s = sum (0 , k) } s := s + k + 1 { s = sum (0 , k + 1) }  
and	 	 	 { s = sum (0 , k + 1) } k := k + 1 { s = sum (0 , k) }  
yields	 	 	 { s = sum (0 , k) } s := s + k + 1 ; k := k + 1 { s = sum (0 , k) }

• Example 18: Alternatively, we can increment k first and then update s .

Combining		 { s = sum (0 , k) } k := k + 1{ s = sum (0 , k – 1) }  
and	 	 	 { s = sum (0 , k – 1) } s := s + k{ s = sum (0 , k) }  
yields	 	 	 { s = sum (0 , k) } k := k + 1 ; s := s + k { s = sum (0 , k) }

Reasoning About Assignments (Technique 1: “Backward”)

• There are two general rules for reasoning about assignments.

• The first rule is a goal-directed one that works “backwards”, from the postcondition to the pre-
condition.

• Assignment Rule 1 ("Backward" assignment: If P (x) is a predicate function, then
{ P (e) } v := e { P (v) }. It turns out that P (e) is the most general (the so-called “weakest”) pre-
condition that works with the assignment v := e and postcondition P (v). We'll study this in the
next lecture.

• Example 19: { P (m / 2) } m := m / 2 { P (m) }

• If P (x) ≡ x > 0, then this triple expands to { m / 2 > 0 } m := m / 2 { m > 0 }.

• If P (x) ≡ x ² > x³, then this triple expands to { (m / 2) ² > (m / 2) ³ } m := m / 2 { m ² > m ³ } .

• Example 20: { Q (k + 1) } k := k + 1 { Q (k) }

 Don't think I've said before that we can make p ∧ q short-circuiting by using if p then T else q f.1

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20233

CS 536: Science of Programming	 Thu 2023-02-09, 13:00	 Class 9

• If Q (x) ≡ s = sum (0 , x) then this triple expands to 
	 	 	 { s = sum (0 , k + 1) } k := k + 1 { s = sum (0 , k) }.

• Example 21: { R (s + k + 1) } s := s + k + 1 { R (s) }

• If R (x) ≡ x = sum (0 , k + 1) , then this triple expands to 
	 	 	 { s + k + 1 = sum (0 , k + 1) } s := s + k + 1 { s = sum (0 , k + 1) }

• In general, for { P (e) } v := e { P (v) } to be valid, we need the following lemma:

• Assignment Lemma: For all σ, if σ ⊨ P (e) then M (v := e , σ) = σ [v ↦ σ (e)] ⊨ P (v).

• Intuitively, what this says is that if we want to know that v has property P after binding v to
the value of e, we need to know that e has property P beforehand.

• We won't go into the detailed proof of this lemma, but basically, you work recursively on the
structures of P (v) and P (e) simultaneously. The important case is when we encounter an
occurrence of v in P (v) and the corresponding occurrence of e in P (e). In σ ⊨ P (e), the
value of e is σ (e). In σ [v ↦ σ (e)] ⊨ P (v), the value of v is also σ (e).

E. Stronger and Weaker Predicates

• Generalizing the Sequence Rule: We’ve already seen that two triples { p } S₁ { q }and { q } S₂ { r }
can be combined to form the sequence { p } S₁ ; S₂ { r }.

• Say we want to combine two triples that don’t have a common middle condition, { p } S₁ { q } and
{ q′ } S₂ { r }.

• We can do this iff q→ q′. If S₁ terminates in state τ and { p } S₁ { q } is valid, then τ ⊨ q. If
⊨ q→ q′, then τ ⊨ q′, so if { q′ } S₂ { r }, then if running S₂ in τ terminates, it terminates in a
state satisfying r.

• This reasoning works both for partial and total correctness.

• Our earlier discussion used a special case of the above. When q ≡ q′, we get that { p } S₁ { q } and
{ q } S₂ { r } can be joined.

• Definition: If p→ q then p is stronger than q and q is weaker than p. I.e., the states that satisfy
p also satisfy q.

• (Technically, we should say “stronger than or equal to” and “weaker than or equal to,” be-
cause if p ↔ q, then p is stronger and weaker than q and vice versa. But it’s too much of a
mouthful.

• Definition: p is strictly stronger than q and q is strictly weaker than p if (p→ q) ∧ ¬ (q→ p).

• Example 22: x = 0 is (strictly) stronger than x = 0 ∨ x = 1, which is (strictly) stronger than x ≥ 0.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20234

CS 536: Science of Programming	 Thu 2023-02-09, 13:00	 Class 9

Predicates and Venn Diagrams

• You can view a predicate as standing for the set of states that satisfy it. In that case, p→ q means
that the set of states for p is ⊆ the set of states for q .
2

• Notation: Sometimes we'll abbreviate “the set of states satisfying p” to just “p”.

• Venn diagrams with sets of states can help illustrate comparisons of predicate strength.

• In Figure 1, p→ q because the set of states for p is ⊆ the set of states for q. It's less obvious, but
the contrapositive ¬ q→ ¬ p also holds.

• r has an intersection with q ; the part inside q is q ∧ r ; the part outside q is ¬ q ∧ r.

• p has no intersection with r, so neither p→ r nor r→ p hold, but all of p is outside r, so
p→ ¬ r (and r→ ¬ p).

F. Strengthening and Weakening Conditions

• The relationship between stronger and weaker predicates allows us to make certain changes to
the conditions of triples “for free” (i.e, we just have to know one implies the other) Both of the
following properties are valid for both partial and total correctness of triples (i.e., for ⊨ and
⊨tot).

• The “always” below means that given an appropriate correctness triple it's sufficient to know
s→ b, (so that s and b have smaller and bigger sets of satisfying states).

• Preconditions can always be strengthened: If s→ b and { b } S { q }, then { s } S { q }.

• Postconditions can always be weakened: If s→ b and { p } S { s }, then { p } S { b }.

• With p and q in Figure 1, p→ q, so p is stronger than q.

• So if q were the precondition of a triple, it could be strengthened to p. We can't strengthen q
to r, but we can strengthen it to q ∧ r.

• In the other direction, a postcondition of p or q ∧ r can be weakened to q.

 One very old notation for implication is p⊃ q ; it's important not to read that ⊃ as a superset symbol, since 2

p→ q means that the set of states for p is ⊆ the set of states for q.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20235

Figure 1: Predicates As Standing for Sets of States

q

r

q ∧ r

q ∧ ¬ p ∧ ¬ r

¬ q ∧ rp

CS 536: Science of Programming	 Thu 2023-02-09, 13:00	 Class 9

• Example 23: If { x ≥ 0 } S { y = 0 } is valid, then so are

• { x ≥ 0 } S { y = 0 ∨ y = 1 } 	 	 	 Weakened postcondition

• { x = 0 } S { y = 0 } 		 	 	 	 Strengthened precondition

• { x = 0 } S { y = 0 ∨ y = 1 } 	 	 	 Strengthened precondition and weakened postcondition

• Example 24: Since s = sum (0 , k)⇔ s + k + 1 = sum (0 , k + 1), we can “strengthen” the precondi-
tion of { s + k + 1 = sum (0 , k + 1) } k := k + 1 { q } and get { s = sum (0 , k) } k := k + 1 { q }. (I put the
"strengthen" in quotes here to point out that since the two conditions are ⇔, we can also do
"strengthening" in the other direction, going from s = sum (0 , k) } to s + k + 1 = sum (0 , k + 1).)

Limitations of Strengthening and Weakening

• If p→ q says that the sets of states satisfying p and q respectively are ⊆, then the implications
q→ q₁, q₁→ q₂, q₂→ q₃ , etc. form a sequence of weaker and weaker predicates because the
sets of states get larger and larger. There is a limit, namely, Σ, the set of all states. As a set of
states, Σ corresponds to T (true) and is the weakest possible state.

• Similarly, going right to left, the implications .…, p₃→ p₂ , p₂→ p₁ , p₁→ p form a sequence of
stronger and stronger predicates because their sets of states get smaller and smaller. Here, the
limit is the empty set ∅ , the set of states that correspond to F (false), making it the strongest
possible state.

• Having F be strongest and T be weakest may be counterintuitive. It may help if you think of the
strength of a predicate being the amount of constraints it puts on the set of the states that satisfy
it. The strongest predicate, F has contradictory constraints on it, hence is satisfied by no state.
The weakest predicate, T, has no constraints on it, hence it is satisfied by every state. In sets of
states notation, { } ⊨ F and { Σ } ⊨ T.

Can vs Should

• Just because we can strengthen preconditions and weaken postconditions doesn’t mean we
should. Recall our edge cases for satisfying correctness triples:

• σ ⊨ { F } S { q } and σ ⊨tot { F } S { q } have the strongest possible preconditions.

• σ ⊨ { p } S { T } has the weakest possible postcondition.

• σ ⊨tot { p } S { T } says that S terminates when you start it in p but it says nothing about what
the state looks like when it terminates.

• From the programmer’s point of view, if { p } S { q } has a bug, then strengthening p or weaken-
ing q can get rid of the bug without changing S.

• Example 25 (Strengthening the precondition)

• If { p } S { q } causes an error if x = 0, we can tell the user to use { p ∧ x ≠ 0 } S { q }.

• Example 26 (Weakening the postcondition)

• If { p } S { q } causes an error because S terminates satisfying predicate r (where r doesn't
imply q) then we can tell the user to use { p } S { q ∨ r }.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20236

CS 536: Science of Programming	 Thu 2023-02-09, 13:00	 Class 9

Weaker Preconditions and Stronger Postconditions

• From the user's point of view, weaker preconditions and stronger postconditions make triples
more useful.

Weaker Preconditions

• Weaker preconditions make code more applicable by increasing the set of starting states.

• Say { p } S { r } is valid. If q→ p, then weakening the precondition to get { q } S { r } gives the pro-
grammer more flexibility in what states to start.

• Unlike strengthening a precondition, however, weakening a precondition requires work be-
cause we need to show that the states in q that are not in p also work as precondition states.

• In symbols, if we show { q ∧ ¬ p } S { r }, then since we already know { p } S { r }, we can ∨ the
preconditions. We get p ∨ (q ∧ ¬ p)⇔ (p ∨ q) ∧ (p ∨ ¬ p)⇔ (p ∨ q) ∧ T⇔ p ∨ q.

• Then we can take precondition p ∨ q and strengthen it to just q, so { q } S { r }.

Stronger Postconditions

• Stronger postconditions make code more specific by decreasing the set of ending states.

• Say { r } S { q } is valid. if q→ p, then we could strengthen postcondition q to get { r } S { p }.

• But we can't do this unless we know that running S gets us to the part of q that is inside p, (and
never to the part of q outside p).

• If we show { r } S { ¬ (q ∧ ¬ p) }, then we can ∧ that with postcondition p and get
q ∧ ¬ (q ∧ ¬ p)⇔ q ∧ (¬ q ∨ p)⇔ (q ∧ ¬ q) ∨ (q ∧ p)⇔ q ∧ p.

• Then we can weaken postcondition p ∧ q to just p.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20237

