Correctness ("Hoare") Triples

Part 1: Definitions and Basic Properties

CS 536: Science of Programming, Spring 2023
2023-02-07 pp. 3, 4, 8

A. Why

- To specify a program's correctness, we need to know its precondition and postcondition (what should be true before and after executing it).
- The semantics of a verified program joins a program's state-transformation semantics with the state-oriented semantics of the specification predicates.

B. Objectives

At the end of today you should know

- The syntax of correctness triples (a.k.a. Hoare triples).
- What it means for a correctness triples to be satisfied or to be valid.
- That a state in which a correctness triple is not satisfied is a state where the program has a bug.

C. Correctness Triples ("Hoare Triples")

- A correctness triple (a.k.a. "Hoare triple," after C.A.R. Hoare) is a program S plus its specification predicates p and q.
- The precondition p describes what we're assuming is true about the state before the program begins.
- The postcondition q describes what should be true about the state after the program terminates.
- Syntax of correctness triples: $\{p\} S\{q\}$ (Think of it as /* p */ S /* q */)
\Rightarrow Note: The braces are not part of the precondition or postcondition \Leftarrow
- The precondition of $\{p\} S\{q\}$ is p, not $\{p\}$. Similarly the postcondition is q, not $\{q\}$.
- Saying " $\{p\}$ " is like saying "In C, the test in 'if (B) x++;' is 'if (B)'" instead of just B.

D. Satisfaction and Validity of a Correctness Triple

- Informally, for a state to satisfy $\{p\} S\{q\}$, it must be that if we run S in a state that satisfies p, then after running S, we should be in a state that satisfies q.
- There's more than one way to understand "after running S ", and this will give us two notions of satisfaction.
- Important: If we start in a state that doesn't satisfy p, we claim nothing about what happens when you run S.
- In some sense, "the triple is satisfied in σ " means "the triple is not buggy in σ ", which seems like a rather weak claim.
- However, "the triple is not satisfied in σ " means "the triple has a bug in σ ", which is a pretty strong statement.
- For example, say you're given the triple $\{x \geq 0\} S\left\{y^{2} \leq x<(y+1)^{2}\right\}$.
- The triple claims that running the program when x is nonnegative sets y to the integer square root of x.
- If you run it when x is negative, all bets are off: S could run and terminate with $y=$ some value, it could diverge, it could produce a runtime error. None of these behaviors are bugs because you ran S on a bad input.
- Validity for correctness triples is analogous to validity of a predicate: The triple must be satisfied in every (well-formed, proper) state.
- Say you (as the user) have been told not to run S when $x<0$ because S calculates $\operatorname{sqrt}(x)$.
- And say the triple is $\{x \geq 0\} y:=\operatorname{sqrt}(x)\left\{y^{2} \leq x<(y+1)^{2}\right\}$.
- You can't say this program has a bug when you start in a state with $x<0$, even though the program fails, because you ran the program on bad input.
- Notation: Analogous to our notation for predicates, for triples
- $\sigma \vDash\{p\} S\{q\}$ means σ satisfies the triple.
- $\sigma \nLeftarrow\{p\} S\{q\}$ means σ does not satisfy the triple.
- $\vDash\{p\} S\{q\}$ means the triple is valid.
- $\neq\{p\} S\{q\}$ means the triple is invalid: $\sigma \nLeftarrow\{p\} S\{q\}$ for some σ.

E. Simple Informal Examples of Correctness

- Before going to the formal definitions of partial and total correctness, let's look at some simple examples, informally. (As usual, we'll assume the variables range over \mathbb{Z}.)
- Example 1: $\vDash\{x>0\} x:=x+1\{x>0\}$. The triple is valid: It's satisfied for all states where $x>0$.
- Example 2:
- $\{x=1\} \nLeftarrow\{x>0\} x:=x-1\{x>0\}$: The triple is not satisfied (has a bug) when run with $x=1$ because it terminates with $x=0$, not >0. Thus the triple is not valid: $\neq\{x>0\} x:=x-1$ $\{x>0\}$.
- There are a number of ways to fix the buggy program in Example 2:
- Example 3: Make the precondition "stronger' = "more restrictive". For example, we could use $\vDash\{x>1\} x:=x-1\{x>0\}$.
- Example 4: Make the postcondition "weaker" = "less restrictive". For example, we could use $\vDash\{x>0\} x$: $=x-1\{x>-1\}$.
- Example 5: Change the program. One way is $\{x>0\}$ if $x>1$ then $x:=x-1$ fi $\{x>0\}$.
- Let's have some more complicated examples.
- Example 6: $\vDash\left\{x \geq 0 \wedge\left(x=2^{*} k \vee x=2^{*} k+1\right)\right\} x:=x / 2\{x=k \geq 0\}$.
- If x is nonnegative, then the program halves it with truncation.
- Example 7: Assume $\operatorname{sum}(0, k)$ yields the sum of the integers 0 through k, then
$\vDash\{s=\operatorname{sum}(0, k)\} s:=s+k+1 ; k:=k+1\{s=\operatorname{sum}(0, k)\}$.
- The triple says if $s=\operatorname{sum}(0, k)$ when we start, then $s=\operatorname{sum}(0, k)$ when we finish.
- It's ok that s and k are changed by the program because $s=\operatorname{sum}(0, k)$ is true in both places relative to the state at that point in time.
- (Later, we'll use this program as part of a larger program, and we'll augment the conditions with information about how the ending values of k and s are larger than the starting values.)
- Note we can write $s=0+1+2+\ldots+k$ as an informal equivalent of $s=\operatorname{sum}(0, k)$, but it doesn't strictly have the form of a predicate as $s=\operatorname{sum}(0, k)$ does.
- Example 8: $\vDash\{s=\operatorname{sum}(0, k)\} k:=k+1 ; s:=s+k\{s=\operatorname{sum}(0, k)\}$
- This has the same specification as Example 7 but the code is different: It increments k first and then update s by adding k (not $k+1$) to it.)
- Example 9: [Note the invalidity] $\neq\{s=\operatorname{sum}(0, k)\} k:=k+1 ; s:=s+k+1\{s=\operatorname{sum}(0, k)\}$
- This is like Example 8 but the program doesn't meet its specification. To get validity, the postcondition should be $s=\operatorname{sum}(0, k)+1$. (Or more likely, the code needs to be fixed.)

F. Connecting Starting and Ending Values of Variables

- There are times when we want the postcondition to be able to refer to values that the variables started with.
- Recall Examples 7 and $8: \vDash\{s=\operatorname{sum}(0, k)\} S\{s=\operatorname{sum}(0, k)\}$ (where S is different in the two examples). Say we want the postcondition to include " k gets larger by 1 " somehow. What we can do is create a new variable (call it k_{0}) whose job it is to refer to the starting value of k, before we run S.
- We'll make the precondition $k=k_{0} \wedge s=\operatorname{sum}(0, k)$ (" k has some starting value and s is the sum of 0 through k "). We'll make the postcondition $k=k_{0}+1 \wedge s=\operatorname{sum}(0, k)$ (" k is one larger than its starting value and s is the sum of 0 through k (for this new value of k)".
- [2023-02-07] We actually did the same thing in Example 6: $\vDash\{x \geq 0 \wedge(x=2 * k \vee x=2 * k+1)\}$ $x:=x / 2 \quad\{x=k \geq 0\}$. The variable k helps describe the value of x before and after execution. One interesting feature of k and k_{0} is that they don't appear in the program, only the specifications. So where do variables appear in correctness triples?
- Definition: For a triple $\{p\} S\{q\}$,
- A variable that appears in S is a program variable. E.g., x is a program variable in $x:=1$. We manipulate them to get work done.
- A variable that appears in p or q is a condition variable. E.g., y in $\{y>0\}$... \{....\}. We use condition variables to reason about our program. They may or may not also be program variables. (These are not the same kind of condition variables used in distributed programming.)
- E.g., in $\{y>0\} y:=y+1\{y>1\}, y$ is a program and a condition variable.
- A logical variable is a condition variable that is not also a program variable. E.g., c in $\{z \geq c\} z:=z+1\{z>c\}$. We use them to reason about our program but they don't appear in the program itself. (Note that here, "logical" doesn't mean "Boolean".)
- A logical constant is a named constant logical variable. E.g., c in the previous example. Logical constants are great for keeping track of an old value of a variable.
- Example 10: $\vDash\left\{x=x_{0} \geq 0\right\} \quad x:=x / 2\left\{x_{0} \geq 0 \wedge x=x_{0} / 2\right\}$. If x is ≥ 0, then after the assignment $x:=x / 2$, the old value of x (which we're calling x_{0}) was ≥ 0 and x is its old value divided by 2 . Here, x is a program and condition variable and x_{0} is a logical constant.

G. Having a Set of States that Satisfy a Predicate

- Before looking at the definitions of program correctness, it will help if we extend the notion of a single state satisfying a predicate to having a set of states satisfying a predicate.
- Notation: Recall that $\Sigma_{\perp}=\Sigma \cup\{\perp\}$, where Σ is the set of all (well-formed, proper) states.
- Then, $\sigma \in \Sigma_{\perp}$ allows $\sigma=\perp$, but $\sigma \in \Sigma$ implies $\sigma \neq \perp$.
- Similarly for a set of states Σ_{0}, if $\Sigma_{0} \subseteq \Sigma_{\perp}$, then we may have $\perp \in \Sigma_{0}$.
- On the other hand, if $\Sigma_{0} \subseteq \Sigma$, then $\perp \notin \Sigma_{0}$.
- Notation: $\Sigma_{0}-\perp$ means $\Sigma_{0} \cap \Sigma$, the subset of Σ_{0} containing its non- \perp members.
- Definition: Let $\Sigma_{0} \subseteq \Sigma_{\perp}$. We say Σ_{0} satisfies p if every element of Σ_{0} satisfies p.
- In symbols, $\Sigma_{0} \vDash p$ iff for all $\tau \in \Sigma_{0}, \tau \vDash p$. It follows that $\Sigma_{0} \not \vDash p$ iff $\tau \nRightarrow p$ for some $\tau \in \Sigma_{0}$.
- (Note $\varnothing \not \vDash p$ is clearly false, which means $\varnothing \vDash p$ is true.)
- Some consequences of the definition:
- If $\perp \in \Sigma_{0}$, then $\Sigma_{0} \not \vDash p$ and $\Sigma_{0} \not \vDash \neg p$.
- $\left(\Sigma_{0} \vDash p\right.$ and $\left.\Sigma_{0} \vDash \neg p\right)$ iff $\Sigma_{0}=\varnothing$.
- Since $\perp \nRightarrow p$ (and $\nLeftarrow \neg p$), we have $\perp \notin \Sigma_{0}$. If $\tau \neq \perp$ and $\tau \vDash p$ then $\tau \nRightarrow \neg p$, so $\tau \notin \Sigma_{0}$. So $\Sigma_{0}=\varnothing$.
- If $\perp \notin \Sigma_{0}$ and Σ_{0} is a singleton set (it has size $=1$), then $\Sigma_{0} \vDash p$ iff $\Sigma_{0} \nLeftarrow \neg p$ (and $\Sigma_{0} \vDash \neg p$ iff $\Sigma_{0} \neq p$). [2023-02-07]
- Either $\tau \vDash p$ or $\tau \vDash \neg p$ but not both, so ($\tau \vDash p$ and $\tau \not \vDash \neg p$) or ($\tau \nLeftarrow p$ and $\tau \vDash \neg p$).
- If $\Sigma_{0}-\perp$ is not a singleton set then it is possible that $\Sigma_{0}-\perp \nRightarrow$ both p and $\neg p$.
- Say we have $\sigma_{1}, \sigma_{2} \in \Sigma_{0}-\perp$ where $\sigma_{1} \vDash p$ and $\sigma_{2} \vDash \neg p$. For $\Sigma_{0}-\perp \vDash p$, we need all its members to satisfy p, but that's false, so $\Sigma_{0}-\perp \nLeftarrow p$. Similarly, $\Sigma_{0}-\perp \nRightarrow \neg p$ because not all members of $\Sigma_{0}-\perp$ satisfy $\neg p$.

H. Total Correctness

- Normally, we want our programs to always terminate ${ }^{1}$ in states satisfying their postcondition (assuming we start in a state satisfying the precondition). This property is called total correctness.
- Definition: The triple $\{p\} S\{q\}$ is totally correct in σ or σ satisfies the triple under total correctness iff it's the case that if σ satisfies p, then running S in σ always terminates in a state satisfying q. ${ }^{2}$
- In symbols, $\sigma \vDash_{\text {tot }}\{p\} S\{q\}$ iff $\sigma \neq \perp$ and (if $\sigma \vDash p$ then $\perp \notin M(S, \sigma)$ and $M(S, \sigma) \vDash q$).
- Note $M(S, \sigma) \vDash q$ implies $\perp \notin M(S, \sigma)$, so it's redundant to say $\perp \notin M(S, \sigma)$ explicitly, but it's not a bad idea to emphasize it for a while.
- We require $\sigma \neq \perp$ because we want the implication ($\sigma \vDash p$ implies $M(S, \sigma) \vDash q$) to be false when $\sigma=\perp$. Since $M(S, \perp)=\{\perp\} \not \vDash q$, if we allowed $\perp \vDash p$ then the implication would become true (since false implies false).
- Definition: The triple $\{p\} S\{q\}$ is totally correct (is valid under total correctness) iff $\sigma \models_{\text {tot }}\{p\} S\{q\}$ for all $\sigma \in \Sigma$ (Recall Σ is the set of well-formed proper states.) Usually, we'll write $\vDash_{\text {tot }}\{p\} S\{q\}$.

I. Partial vs Total Correctness

- It turns out that reasoning about total correctness can be broken up into two steps: Determine "partial" correctness, where we ignore the possibility of divergence or runtime errors, and then show termination -- i.e., that those errors won't occur.
- Definition: The triple $\{p\} S\{q\}$ is partially correct in σ or σ satisfies the triple under partial correctness iff
- $\sigma \neq \perp$ and
- If σ satisfies p, then whenever running S in σ terminates (without error), the final state satisfies q.
- In symbols, $\sigma \vDash\{p\} S\{q\}$ iff $\sigma \neq \perp$ and ($\sigma \vDash p$ implies (for every $\tau \in M(S, \sigma$), if $\tau \in \Sigma$, then $\tau \vDash q$).).
- Equivalently, $\sigma \vDash\{p\} S\{q\}$ iff $\sigma \neq \perp$ and ($\sigma \vDash p$ implies $M(S, \sigma)-\perp \vDash q$).
- It might help to point out that S not terminating under σ doesn't make partial correctness false.

[^0]- Note we must say explicitly that $\perp \not \models\{p\} S\{q\}$ because otherwise the general case would hold: $\perp \nLeftarrow p$ and $M(S, \sigma)-\perp=\{\perp\}-\perp=\varnothing \vDash q$, so the general case ($\sigma \vDash p$ implies $M(S, \sigma)-\perp \vDash q$) would be true (i.e., false implies false).
- Definition: The triple $\{p\} S\{q\}$ is partially correct (i.e., is valid under/for partial correctness) iff $\sigma \vDash\{p\} S\{q\}$ for all states σ. Notation: We usually write $\vDash\{p\} S\{q\}$ but $\Sigma \vDash\{p\} S\{q\}$ is also ok.

J. More Phrasings of Total and Partial Correctness

- An equivalent way to understand partial and total correctness uses the property that if $\sigma \neq \perp$, then ($\sigma \vDash \neg p$ iff $\sigma \nLeftarrow p$) and ($\sigma \vDash p$ iff $\sigma \nLeftarrow \neg p$).
- For total correctness, just generally, if $\sigma \neq \perp$, then

$$
\begin{aligned}
& \sigma \vDash_{\text {tot }}\{p\} S\{q\} \\
& \text { iff } \sigma \models p \text { implies } M(S, \sigma) \vDash q \\
& \text { iff } \sigma \models \neg p \text { or } M(S, \sigma) \vDash q \\
& \text { iff } \sigma \models \neg p \text { or } \tau \vDash q \text { for every member } \tau \in M(S, \sigma)
\end{aligned}
$$

- Under total correctness, if S is deterministic, then $M(S, \sigma)=\{\tau\}$ for some τ, with $\tau \neq \perp$ and $\tau \vDash q$. If S is nondeterministic, we can have multiple $\tau \in M(S, \sigma)$ and none of them can be \perp [Mon 2023-02-06, 14:52] and all of them satisfy q.
- For partial correctness, if $\sigma \neq \perp$, then

$$
\begin{aligned}
& \sigma \models\{p\} S\{q\} \\
& \text { iff } \sigma \models p \text { implies } M(S, \sigma)-\perp \vDash q \\
& \text { iff } \sigma \models \neg p \text { or } M(S, \sigma)-\perp \vDash q \\
& \text { iff } \sigma \models \neg p \text { or for every } \tau \in M(S, \sigma) \text {, either } \tau=\perp \text { or } \tau \vDash q .
\end{aligned}
$$

- Under partial correctness, if S is deterministic, then $M(S, \sigma)=\{\tau\}$ for some τ, and either $\tau=\perp$ or $\tau \vDash q$. If S is nondeterministic, we can have multiple $\tau \in M(S, \sigma)$ and all of them either are some version of \perp or satisfy q.

K. Unsatisfied Correctness Triples

- It's useful to figure out when a state doesn't satisfy a triple because not satisfying a triple tells you that there's some sort of bug in the program.

Unsatisfied Total Correctness

- For a state $\sigma \neq \perp$ to not satisfy $\{p\} S\{q\}$ under total correctness, it must satisfy p and running S in it can cause an error or one of its final states does not satisfy q.
- We have $\sigma \vDash_{\text {tot }}\{p\} S\{q\}$ iff $\sigma \vDash \neg p$ or $M(S, \sigma) \vDash q$
- So $\sigma \not \vDash_{\text {tot }}\{p\} S\{q\}$ iff $\sigma \vDash p$ and $M(S, \sigma) \neq q$
iff $\sigma \vDash p$ and $(\perp \in M(S, \sigma)$ or $\tau \nRightarrow q$ for some $\tau \in M(S, \sigma))$.
- (Recall if $\tau \neq \perp$ then $\tau \nRightarrow q$ iff $\tau \vDash \neg q$.)
- So breaking down the cases, $\sigma \vDash_{\text {tot }}\{p\} S\{q\}$ means
- If S is deterministic, then $\sigma \vDash p$ and $M(S, \sigma)=\{\tau\}$ where $\tau=\perp$ or $\tau \vDash \neg q$.
- If S is nondeterministic, then $\sigma \vDash p$ and $(\perp \in M(S, \sigma)$ or $\tau \vDash \neg q$ for some $\tau \in M(S, \sigma))$.
- Note for nondeterministic S, having $\sigma \vDash_{\text {tot }}\{p\} S\{q\}$ only says that one $\tau \in M(S, \sigma)$ is \perp or satisfies $\neg q$. This doesn't preclude $M(S, \sigma)$ from having states that satisfy q.

Unsatisfied Partial Correctness

- For a state to not satisfy $\{p\} S\{q\}$ under partial correctness, either the state is \perp or, it satisfies p and running S in it always terminates in a state satisfying $\neg q$.
- We have $\sigma \vDash\{p\} S\{q\}$ iff $\sigma \vDash \neg p$ or $M(S, \sigma)-\perp \vDash q$
- So $\sigma \neq\{p\} S\{q\}$ iff $\sigma \vDash p$ and $M(S, \sigma)-\perp \neq q$
iff $\sigma \vDash p$ and $\tau \vDash \neg q$ for some $\tau \neq \perp$ in $M(S, \sigma)$.
- For deterministic S, there's only one τ in $M(S, \sigma)$ and (it must be $\neq \perp$ and) satisfy $\neg q$.
- For nondeterministic S, we need one $\tau \in M(S, \sigma)$, $(\tau \neq \perp$ and) $\tau \vDash \neg q$.
- The other $\tau \in M(S, \sigma)$ can be \perp or satisfy q.
- I.e., at least one path $\langle S, \sigma\rangle \rightarrow{ }^{*}\langle E, \tau\rangle$ with $\tau \vDash \neg q$, but there can be paths $\langle S, \sigma\rangle \rightarrow{ }^{*}$ $\langle E, \perp\rangle$ or $\langle S, \sigma\rangle \rightarrow{ }^{*}\langle E, \tau\rangle$ with $\tau \vDash q$.

L. Three Extreme (Mostly Trivial) Cases

- There are three edge cases where partial correctness occurs for uninformative reasons.. First recall the definition of partial correctness: $\sigma \vDash\{p\} S\{q\}$ means (if $\sigma \vDash p$, then $M(S, \sigma)-\perp \vDash q$).
- \boldsymbol{p} is a contradiction (i.e., $\vDash \neg p$). Since $\sigma \vDash p$ never holds, $M(S, \sigma)-\perp \vDash q$ is irrelevant and partial correctness of $\{p\} S\{q\}$ always holds. So for example, $\{F\} S\{q\}$ is valid under partial correctness, for all S and q. (Even $\{F\} S\{F\}$ and $\{F\} S\{T\}$.)
- S always fails to terminate ${ }^{3}$. If $M(S, \sigma)=\{\perp\}$ then $M(S, \sigma)-\perp=\varnothing$, which satisfies q, so we get partial correctness of $\{p\} S\{q\}$.
- q is a tautology (i.e., $\vDash q$). Then for any $\sigma, M(S, \sigma)-\perp \vDash q$, so ($\sigma \vDash p$ implies $M(S, \sigma)-\perp \vDash q$) is true (so p is irrelevant) and we get partial correctness of $\{p\} S\{q\}$. So for example, $\{p\} S\{T\}$ is valid under partial correctness for all p and S. (Even $\{F\} S\{T\}$.)
- For total correctness, recall $\sigma \vDash_{\text {tot }}\{p\} S\{q\}$ means (if $\sigma \vDash p$, then $M(S, \sigma) \vDash q$). Note $\perp \notin M(S, \sigma)$ because $\perp \notin M(S, \sigma)$ implies $M(S, \sigma) \neq q)$
- \boldsymbol{p} is a contradiction. The argument here is the same as for partial correctness, so for all S and q, we have $\vDash_{\text {tot }}\{F\} S\{q\}$.
- S always fails to terminate. Since $M(S, \sigma)=\{\perp\}$, we know $M(S, \sigma) \nLeftarrow q$. So total correctness of $\{p\} S\{q\}$ always fails. I.e., $\sigma \not{ }_{\text {tot }}\{T\} S\{q\}$ for all σ. [2023-02-07]

[^1]- \boldsymbol{q} is a tautology. This case is actually useful. Since $M(S, \sigma) \vDash T$ implies $\perp \notin M(S, \sigma)$, satisfaction of $\sigma \vDash_{\text {tot }}\{p\} S\{T\}$ requires S to always terminate under σ. So validity of $\vDash_{\text {tot }}\{p\} S\{T\}$ happens exactly when S always terminates when started in a state satisfying p.
- Lemma: $\sigma \vDash_{\text {tot }}\{p\} S\{q\}$ iff $\sigma \vDash\{p\} S\{q\}$ and $\sigma \vDash_{\text {tot }}\{p\} S\{T\}$.
- This just says that total correctness is partial correctness plus termination.
- Partial correctness says that $\langle S, \sigma\rangle \rightarrow$ * to a final state that $\vDash q$ or is \perp). Termination says every $\langle S, \sigma\rangle \rightarrow^{*}$ to a final state that satisfies true (and thus $\neq \perp$)). So we have total correctness: Every $\langle S, \sigma\rangle \rightarrow^{*}$ to a final state that $\vDash q$.

[^0]: 1 "Terminate" will mean "terminate without error" (Final state $\in \Sigma-\perp$). "Terminate possibly with an error" means we end in Σ_{\perp}.
 ${ }^{2}$ The sense of "implies" or "if... then..." used here is not like \rightarrow (which appears in predicates) or \Rightarrow (which is a relationship between predicates). It's "if...then" at a semantic level: If this triple is satisfied or if this set is nonempty, then ... holds.

[^1]: ${ }^{3}$ Remember, just "terminate" implicitly includes "without error". "Not terminate" means "Diverges or gets a runtime error".

