CS 536: Science of Programming Class 8

Correctness (“Hoare”) Triples

Part 1: Definitions and Basic Properties

CS 536: Science of Programming, Spring 2023
2023-02-07 pp. 3, 4, 8

A. Why
« To specify a program’s correctness, we need to know its precondition and postcondition (what
should be true before and after executing it).

« The semantics of a verified program joins a program's state-transformation semantics with the
state-oriented semantics of the specification predicates.

B. Objectives

At the end of today you should know
« The syntax of correctness triples (a.k.a. Hoare triples).
« What it means for a correctness triples to be satisfied or to be valid.

« That a state in which a correctness triple is not satisfied is a state where the program has a bug.

C. Correctness Triples (“Hoare Triples”)
» A correctness triple (a.k.a. “Hoare triple,” after C.A.R. Hoare) is a program S plus its specifica-
tion predicates p and q .

« The precondition p describes what we’re assuming is true about the state before the pro-
gram begins.

+ The postcondition q describes what should be true about the state after the program ter-
minates.

« Syntax of correctness triples: {p}S{q} (Thinkofitas/*p */S/* q */)
= Note: The braces are not part of the precondition or postcondition <
» The precondition of { p} S{q} is p, not {p}. Similarly the postcondition is g, not {q}.
« Saying “{ p }” is like saying “In C, the testin ‘if (B) x++;” is ‘if (B)’” instead of just B.

D. Satisfaction and Validity of a Correctness Triple

« Informally, for a state to satisfy { p } S{ q}, it must be that if we run S in a state that satisfies p,
then after running S, we should be in a state that satisfies q.

» There's more than one way to understand “after running S", and this will give us two no-
tions of satisfaction.

CS Dept, Illinois Institute of Technology -1- © James Sasaki, 2023

CS 536: Science of Programming Class 8

« Important: If we start in a state that doesn’t satisfy p, we claim nothing about what happens
when you run S.
« In some sense, “the triple is satisfied in ¢” means “the triple is not buggy in ¢”, which seems
like a rather weak claim.
« However, “the triple is not satisfied in 6” means “the triple has a bug in ¢”, which is a pretty
strong statement.
« For example, say you're given the triple { x>0} S{y?<x<(y+1)2}.
« The triple claims that running the program when x is nonnegative sets y to the integer
square root of x.
« If you run it when x is negative, all bets are off: S could run and terminate with y = some
value, it could diverge, it could produce a runtime error. None of these behaviors are bugs
because you ran S on a bad input.

Validity for correctness triples is analogous to validity of a predicate: The triple must be satis-
fied in every (well-formed, proper) state.

« Say you (as the user) have been told not to run S when x <0 because S calculates sqrt (x).
« And say thetripleis {x20}y:=sqrt(x){y?<x<(y+1)2}.
« You can’t say this program has a bug when you start in a state with x <0, even though the
program fails, because you ran the program on bad input.
« Notation: Analogous to our notation for predicates, for triples
« 0={p}S{q} means o satisfies the triple.
« o {p}S{q} means o does not satisfy the triple.
o ={p}S{q} means the triple is valid.
o # {p}S{q} means the triple is invalid: o {p } S{ q } for some o.

E. Simple Informal Examples of Correctness

« Before going to the formal definitions of partial and total correctness, let’s look at some simple
examples, informally. (As usual, we'll assume the variables range over 7.)

o« Example1: = {x>0}x:=x+1{x>0}. The triple is valid: It's satisfied for all states where x > 0.

« Example 2:

o {x=1}¥{x>0}x:=x-1{x>0}: The triple is not satisfied (has a bug) when run with x=1
because it terminates with x =0, not > 0. Thus the triple is not valid: ¥ { x>0} x:=x-1
{x>0}.

+ There are a number of ways to fix the buggy program in Example 2:

« Example 3: Make the precondition “stronger’ = “more restrictive”. For example, we could
use={x>1}x:=x-1{x>0}.

« Example 4: Make the postcondition “weaker” = “less restrictive”. For example, we could
use={x>0}x:=x-1{x>-1}.

CS Dept, Illinois Institute of Technology -2- © James Sasaki, 2023

CS 536: Science of Programming Class 8

o Example 5: Change the program. One wayis{x>0}if x>1 then x:=x-1 fi{x>0}.
« Let's have some more complicated examples.
o« Example 6: ={x>0a(x=2%*kvx=2*k+1)} x:=x/2 {x=k=>0}.

« If x is nonnegative, then the program halves it with truncation.

o Example 7: Assume sum (0, k) yields the sum of the integers 0 through k, then
E{s=sum(0,k)} s:=s+k+1; k:=k+1 {s=sum(0,k)}.

» The triple says if s =sum (0, k) when we start, then s =sum (0, k) when we finish.

« It's ok that s and k are changed by the program because s =sum (0, k) is true in both places
relative to the state at that point in time.

+ (Later, we'll use this program as part of a larger program, and we'll augment the conditions
with information about how the ending values of k and s are larger than the starting val-
ues.)

« Note we can write s=0+1 +2 +... + k as an informal equivalent of s =sum (0, k), but it
doesn't strictly have the form of a predicate as s =sum (0, k) does.

o Example 8: ={s=sum(0,k)} k:=k+1; s:=s+k {s=sum(0,k)}

« This has the same specification as Example 7 but the code is different: It increments k first
and then update s by adding k (not k+ 1) to it.)

« Example 9: [Note the invalidity] ¥ {s=sum (0,k)} k:=k+1; s:=s+k+1 {s=sum(0,k)}

« This is like Example 8 but the program doesn't meet its specification. To get validity, the
postcondition should be s=sum (0, k) +1. (Or more likely, the code needs to be fixed.)

F. Connecting Starting and Ending Values of Variables

» There are times when we want the postcondition to be able to refer to values that the variables
started with.

» Recall Examples 7 and 8: ={s=sum(0,k)}S{s=sum(0, k) } (where S is different in the two
examples). Say we want the postcondition to include “k gets larger by 1” somehow. What we
can do is create a new variable (call it k,) whose job it is to refer to the starting value of k, be-
fore werunS.

« We'll make the precondition k=ko A s=sum (0, k) (“k has some starting value and s is the sum
of 0 through k”). We'll make the postcondition k=ko+1 As=sum (0, k) (“k is one larger than
its starting value and s is the sum of 0 through k (for this new value of k)”.

« [2023-02-07] We actually did the same thing in Example 6: ={x>0A (x=2*kvx=2*k+1)}
x:=x/2 {x=k=0}. The variable k helps describe the value of x before and after execution.
One interesting feature of k and k, is that they don't appear in the program, only the specifica-
tions. So where do variables appear in correctness triples?

o Definition: For atriple {p}S{q},

« Avariable that appears in S is a program variable. E.g., x is a program variable in x: =1.
We manipulate them to get work done.

CS Dept, Illinois Institute of Technology -3- © James Sasaki, 2023

CS 536: Science of Programming Class 8

« A variable that appears in p or q is a condition variable. E.g.,yin{y>0} ... {....}. We use
condition variables to reason about our program. They may or may not also be program
variables. (These are not the same kind of condition variables used in distributed pro-
gramming.)

« Eg,in{y>0}y:=y+1 {y>1},yisaprogram and a condition variable.

» Alogical variable is a condition variable that is not also a program variable. E.g., c in
{z>c} z:=z+1 {z>c}. We use them to reason about our program but they don't ap-
pear in the program itself. (Note that here, "logical" doesn't mean "Boolean".)

+ Alogical constant is a named constant logical variable. E.g., ¢ in the previous example.
Logical constants are great for keeping track of an old value of a variable.
o Example 10: ={x=x020} x:=x/2 {x020ArXx=X,/2}. If xis >0, then after the assignment
x:=x/2, the old value of x (Which we're calling x,) was > 0 and x is its old value divided by 2.
Here, x is a program and condition variable and x,is a logical constant.

G. Having a Set of States that Satisfy a Predicate

» Before looking at the definitions of program correctness, it will help if we extend the notion of a
single state satisfying a predicate to having a set of states satisfying a predicate.

« Notation: Recall that X, =X U { L }, where Z is the set of all (well-formed, proper) states.

o Then,oc€X, allowso=.1, butoceX implieso* L.

« Similarly for a set of states X,, if X, C X, then we may have L€ X,.

e On the other hand, if X, CX, then L & X,.
« Notation: X, -1 means X, n Z, the subset of X, containing its non-L members.
 Definition: Let £, C X, . We say X, satisfies p if every element of X, satisfies p.

o Insymbols, X, = p iff for all € X, 7=p. It follows that X, & p iff 7 # p for some 7€ X,.

» (Note @ # p is clearly false, which means J=p is true.)

Some consequences of the definition:
o If 1 €X,, thenZo# p and Xy ¥ - p.
o Zorpand Zo=-p)iff 2y = .
o Since Lk p (and & - p), we have L& X,. If t# Land t=p then 7k - p,s0 T&Zy. S0Zo=0.
o If 1€ X, and X, is a singleton set (it has size = 1), then Zo = p iff Xy # - p (and Zo = - p iff
Zo ¥ p). [2023-02-07]
« Either 7=p or 7=-p but not both, so (r=p and & - p) or (t# p and 7= - p).
« If Xy— L is not a singleton set then it is possible that Z,— L & both p and -p.

« Say we have g,,0,€X,- L where g,=p and g,=-p. For Zo— L=p, we need all its
members to satisfy p, but that's false, so Zo— L# p. Similarly, X, - L - p because not all
members of X, - 1 satisfy -p.

CS Dept, Illinois Institute of Technology -4- © James Sasaki, 2023

CS 536: Science of Programming Class 8

H. Total Correctness

« Normally, we want our programs to always terminate! in states satisfying their postcondition
(assuming we start in a state satisfying the precondition). This property is called total cor-
rectness.

« Definition: The triple {p } S{ q} is totally correct in ¢ or o satisfies the triple under total cor-
rectness iff it's the case that if o satisfies p, then running S in ¢ always terminates in a state sat-
isfying q.2

« In symbols, o= {p}S{q}iff o+ L and (ifo=p then LEM(S,0) and M(S,0)=q).

« Note M(S,0)=qimplies LEM (S, g), so it's redundant to say L& M (S, g) explicitly, but it's
not a bad idea to emphasize it for a while.

« We require o # L because we want the implication (o p implies M (S, o) q) to be false
wheno=1. Since M (S, L)={L1}q,if we allowed L = p then the implication would become
true (since false implies false).

» Definition: The triple {p } S{ q} is totally correct (is valid under total correctness) iff
Ok {p}S{q} forall o €X (Recall Z is the set of well-formed proper states.) Usually, we'll
write = {p}S{q}.

I. Partial vs Total Correctness

« It turns out that reasoning about total correctness can be broken up into two steps: Determine
“partial” correctness, where we ignore the possibility of divergence or runtime errors, and then
show termination -- i.e., that those errors won’t occur.

 Definition: The triple {p } S{ q} is partially correct in o or o satisfies the triple under par-
tial correctness iff

« o+l and
« If o satisfies p, then whenever running S in ¢ terminates (without error), the final state satis-
fies q.
o Insymbols,c={p}S{q}iff o+ 1 and (o p implies (for every te M (S, 0),if t€ X, then 7=q)).
o Equivalently,o={p}S{q}iff o+ L and (o=p impliesM(S,0)-LE=q).
« It might help to point out that S not terminating under o doesn't make partial correctness
false.

1 “Terminate” will mean “terminate without error” (Final state €X - 1). “Terminate possibly with an error”
meansweendinZx,.

2 The sense of “implies” or "if... then..." used here is not like - (which appears in predicates) or = (which is a
relationship between predicates). It's “if...then” at a semantic level: If this triple is satisfied or if this set is
nonempty, then ... holds.

CS Dept, Illinois Institute of Technology -5- © James Sasaki, 2023

CS 536: Science of Programming Class 8

« Note we must say explicitly that L& {p } S { q} because otherwise the general case would hold:
Ll¥pand M(S,0)-L={1L}-1=Tkq,sothe general case (o=p implies M (S, 0)- L= q) would
be true (i.e., false implies false).

» Definition: The triple {p } S{ q } is partially correct (i.e., is valid under/for partial correct-
ness) iff c={p } S{q} for all states o. Notation: We usually write={p}S{q}butZ={p}S{q}
is also ok.

J. More Phrasings of Total and Partial Correctness
« An equivalent way to understand partial and total correctness uses the property thatif o+ 1,
then (c=-p iff o p) and (o=p iff o & - p).
« For total correctness, just generally, if g # L, then
OFwi {p}S{q}
iff o=p implies M (S, 0)=q
iffo=-porM(S,o)=q
iff o=-p or t=q for every member te M (S, g)

« Under total correctness, if S is deterministic, then M (S, g)={ 7} for some 7, with 7# L and 7=q.
If S is nondeterministic, we can have multiple t€ M (S, o) and none of them can be L [Mon
2023-02-06, 14:52] and all of them satisfy q.

« For partial correctness, if 0 # L, then

o={p}tSiq}

iff o=p implies M (S,0)-L1L=q
iffo=-porM(S,0)-L=q

iff =-p or for every t€M (S, g), either =1 or t=q.

« Under partial correctness, if S is deterministic, then M (S, o) ={ t} for some 7, and either 7= L
or T=q. If S is nondeterministic, we can have multiple € M (S, o) and all of them either are
some version of L or satisfy q.

K. Unsatisfied Correctness Triples

« It’s useful to figure out when a state doesn’t satisfy a triple because not satisfying a triple tells
you that there’s some sort of bug in the program.

Unsatisfied Total Correctness
» For a state o L to not satisfy { p } S{ q } under total correctness, it must satisfy p and running S
in it can cause an error or one of its final states does not satisfy g.
« Wehaveok, {p}S{qtiffo=-porM(S,c)=q
e SO0 {p}S{qliffo=pand M(S,0) ¥ q
iffoepand (L e M(S,0)or 7 q forsometE M(S,a)).
o (Recallifr+# L thentw qiff t=-q.)

CS Dept, Illinois Institute of Technology -6- © James Sasaki, 2023

CS 536: Science of Programming Class 8

« So breaking down the cases, o=, { p}S{q} means
o If S is deterministic, then c=p and M(S,g)={7} wheret=1or t=-q.
« If S is nondeterministic, then o=p and (LEM (S, g) or t=-q for some TEM (S, a)).

« Note for nondeterministic S, having o #.,; {p}S{q} only says that one te M (S, o) is L or satis-
fies -~ q. This doesn't preclude M (S, o) from having states that satisfy q.

Unsatisfied Partial Correctness
« For a state to not satisfy { p } S{ q} under partial correctness, either the state is L or, it satisfies p
and running S in it always terminates in a state satisfying - q.
« Wehaveok{p}S{q}iffce-porM(S,0)-LE=q
e Soo¥{p}S{q}iffocepand M(S,0)-L¥q
iffoepand r=-qforsome 7+ 1Lin M (S, o).
» For deterministic S, there's only one 7in M (S, g) and (it must be # L and) satisfy —q.
« For nondeterministic S, we need one teM (S, g), (t* L and) 7= q.
o The other te M (S, o) can be L or satisfy q.

 Le., atleast one path<S, o> - *<{E, > with 7= -¢q, but there can be paths {S,a)> - *
{E,L1> or<S,o)> - *<E,7) withtEq.

L. Three Extreme (Mostly Trivial) Cases

» There are three edge cases where partial correctness occurs for uninformative reasons.. First
recall the definition of partial correctness: o= {p}S{q} means (if o=p, then M(S,0)-LE=q).
 p is a contradiction (i.e., = - p). Since o= p never holds, M (S, c) — L E q is irrelevant and
partial correctness of { p } S { q } always holds. So for example, { F} S{q} is valid under par-
tial correctness, forallSand q. (Even{F}S{F}and{F}S{T})
» S always fails to terminate®. If M(S,0)={L1}then M(S, 0)- 1= &, which satisfies q, SO
we get partial correctness of {p}S{q}.
o qis atautology (i.e.,= q). Then for any o, M(S,0)-LE=q,so (c=p implies M (S,0)-LEq)
is true (so p is irrelevant) and we get partial correctness of { p} S{q}. So for example,
{p} S{T}isvalid under partial correctness for all p and S. (Even{F}S{T}.)
« For total correctness, recall o=, { p} S{ q} means (if a=p, then M(S,0)=¢q). Note L €M (S, o)
because LM (S, o) implies M (S, o) ¥ q)
 pis a contradiction. The argument here is the same as for partial correctness, so for all
and q,we have=, { F}S{q}.
« S always fails to terminate. Since M(S,0)={ 1}, we know M (S, g) ¥ q. So total correct-
ness of {p}S{q} always fails. Le., 0w { T} S{q} forall 0.[2023-02-07]

3 Remember, just "terminate” implicitly includes "without error". "Not terminate" means "Diverges or gets a
runtime error”.

CS Dept, Illinois Institute of Technology -7- © James Sasaki, 2023

CS 536: Science of Programming Class 8

« qis a tautology. This case is actually useful. Since M (S, c)=T implies L&M (S, o), satis-
faction of o= { p} S{ T} requires S to always terminate under c. So validity of
Fwot T P} S{T} happens exactly when S always terminates when started in a state
satisfying p.

o« Lemma: o, {p}S{q}iffo={p}S{q}tand o= {p}S{T}

« This just says that total correctness is partial correctness plus termination.

« Partial correctness says that {S, 0> - *to a final state that =q or is 1). Termination says
every S, o) - *to a final state that satisfies true (and thus # 1)). So we have total correct-
ness: Every <S, 0> - *to a final state that=q.

CS Dept, Illinois Institute of Technology -8- © James Sasaki, 2023

