
CS 536: Science of Programming	 Tue 2023-02-07, 19:00	 Class 8

Correctness (“Hoare”) Triples

Part 1: Definitions and Basic Properties

CS 536: Science of Programming, Spring 2023

 2023-02-07 pp. 3, 4, 8

A. Why

• To specify a program’s correctness, we need to know its precondition and postcondition (what
should be true before and after executing it).

• The semantics of a verified program joins a program's state-transformation semantics with the
state-oriented semantics of the specification predicates.

B. Objectives

At the end of today you should know

• The syntax of correctness triples (a.k.a. Hoare triples).

• What it means for a correctness triples to be satisfied or to be valid.

• That a state in which a correctness triple is not satisfied is a state where the program has a bug.

C. Correctness Triples (“Hoare Triples”)

• A correctness triple (a.k.a. “Hoare triple,” after C.A.R. Hoare) is a program S plus its specifica-
tion predicates p and q .

• The precondition p describes what we’re assuming is true about the state before the pro-
gram begins.

• The postcondition q describes what should be true about the state after the program ter-
minates.

• Syntax of correctness triples: { p } S { q } (Think of it as /* p */ S /* q */)

 ⇒ Note: The braces are not part of the precondition or postcondition ⇐

• The precondition of { p } S { q } is p, not {p}. Similarly the postcondition is q, not {q}.

• Saying “{ p }” is like saying “In C, the test in ‘if (B) x++;’ is ‘if (B)’ ” instead of just B.

D. Satisfaction and Validity of a Correctness Triple

• Informally, for a state to satisfy { p } S { q }, it must be that if we run S in a state that satisfies p,
then after running S, we should be in a state that satisfies q.

• There's more than one way to understand “after running S", and this will give us two no-
tions of satisfaction.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20231

CS 536: Science of Programming	 Tue 2023-02-07, 19:00	 Class 8

• Important: If we start in a state that doesn’t satisfy p, we claim nothing about what happens
when you run S.

• In some sense, “the triple is satisfied in σ” means “the triple is not buggy in σ”, which seems
like a rather weak claim.

• However, “the triple is not satisfied in σ” means “the triple has a bug in σ”, which is a pretty
strong statement.

• For example, say you're given the triple { x ≥ 0 } S { y ² ≤ x < (y + 1) ² }.

• The triple claims that running the program when x is nonnegative sets y to the integer
square root of x.

• If you run it when x is negative, all bets are off: S could run and terminate with y = some
value, it could diverge, it could produce a runtime error. None of these behaviors are bugs
because you ran S on a bad input.

• Validity for correctness triples is analogous to validity of a predicate: The triple must be satis-
fied in every (well-formed, proper) state.

• Say you (as the user) have been told not to run S when x < 0 because S calculates sqrt (x).

• And say the triple is { x ≥ 0 } y := sqrt (x) { y ² ≤ x < (y + 1) ² }.

• You can’t say this program has a bug when you start in a state with x < 0, even though the
program fails, because you ran the program on bad input.

• Notation: Analogous to our notation for predicates, for triples

• σ ⊨ { p } S { q } means σ satisfies the triple.

• σ ⊭ { p } S { q } means σ does not satisfy the triple.

• ⊨ { p } S { q } means the triple is valid.

• ⊭ { p } S { q } means the triple is invalid: σ ⊭ { p } S { q } for some σ .

E. Simple Informal Examples of Correctness

• Before going to the formal definitions of partial and total correctness, let’s look at some simple
examples, informally. (As usual, we'll assume the variables range over ℤ.)

• Example 1: ⊨ {x > 0 } x := x + 1 { x > 0 }. The triple is valid: It's satisfied for all states where x > 0.

• Example 2:

• { x = 1 } ⊭ { x > 0 } x := x - 1 { x > 0 }: The triple is not satisfied (has a bug) when run with x = 1
because it terminates with x = 0, not > 0. Thus the triple is not valid: ⊭ { x > 0 } x := x - 1
{ x > 0 }.

• There are a number of ways to fix the buggy program in Example 2:

• Example 3: Make the precondition “stronger’ = “more restrictive”. For example, we could
use ⊨ { x > 1 } x : = x - 1 { x > 0 }.

• Example 4: Make the postcondition “weaker” = “less restrictive”. For example, we could
use ⊨ { x > 0 } x : = x - 1 { x > – 1 }.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20232

CS 536: Science of Programming	 Tue 2023-02-07, 19:00	 Class 8

• Example 5: Change the program. One way is { x > 0 } if x > 1 then x : = x - 1 f { x > 0 }.

• Let's have some more complicated examples.

• Example 6: ⊨ { x ≥ 0 ∧ (x = 2 * k ∨ x = 2 * k + 1) } x : = x / 2 { x = k ≥ 0 } .

• If x is nonnegative, then the program halves it with truncation.

• Example 7: Assume sum (0 , k) yields the sum of the integers 0 through k, then 
	 	 ⊨ { s = sum (0 , k) } s : = s + k + 1 ; k : = k + 1 { s = sum (0 , k) }.

• The triple says if s = sum (0 , k) when we start, then s = sum (0 , k) when we finish.

• It's ok that s and k are changed by the program because s = sum (0 , k) is true in both places
relative to the state at that point in time.

• (Later, we'll use this program as part of a larger program, and we'll augment the conditions
with information about how the ending values of k and s are larger than the starting val-
ues.)

• Note we can write s = 0 + 1 + 2 + … + k as an informal equivalent of s = sum (0 , k), but it
doesn't strictly have the form of a predicate as s = sum (0 , k) does.

• Example 8: ⊨ { s = sum (0 , k) } k : = k + 1 ; s : = s + k { s = sum (0 , k) }

• This has the same specification as Example 7 but the code is different: It increments k first
and then update s by adding k (not k + 1) to it.)

• Example 9: [Note the invalidity] ⊭ { s = sum (0 , k) } k : = k + 1 ; s : = s + k + 1 { s = sum (0 , k) }

• This is like Example 8 but the program doesn't meet its specification. To get validity, the
postcondition should be s = sum (0 , k) + 1 . (Or more likely, the code needs to be fixed.)

F. Connecting Starting and Ending Values of Variables

• There are times when we want the postcondition to be able to refer to values that the variables
started with.

• Recall Examples 7 and 8: ⊨ { s = sum (0 , k) } S { s = sum (0 , k) } (where S is different in the two
examples). Say we want the postcondition to include “k gets larger by 1” somehow. What we
can do is create a new variable (call it k₀) whose job it is to refer to the starting value of k, be-
fore we run S .

• We'll make the precondition k = k₀ ∧ s = sum (0 , k) (“k has some starting value and s is the sum
of 0 through k ”). We'll make the postcondition k = k₀ + 1 ∧ s = sum (0 , k) (“k is one larger than
its starting value and s is the sum of 0 through k (for this new value of k)”.

• [2023-02-07] We actually did the same thing in Example 6: ⊨ { x ≥ 0 ∧ (x = 2 * k ∨ x = 2 * k + 1) }
x := x / 2 { x = k ≥ 0 }. The variable k helps describe the value of x before and after execution.
One interesting feature of k and k₀ is that they don't appear in the program, only the specifica-
tions. So where do variables appear in correctness triples?

• Definition: For a triple { p } S { q },

• A variable that appears in S is a program variable. E.g., x is a program variable in x : = 1.
We manipulate them to get work done.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20233

CS 536: Science of Programming	 Tue 2023-02-07, 19:00	 Class 8

• A variable that appears in p or q is a condition variable. E.g., y in { y > 0 } … { }. We use
condition variables to reason about our program. They may or may not also be program
variables. (These are not the same kind of condition variables used in distributed pro-
gramming.)

• E.g., in { y > 0 } y : = y + 1 { y > 1} , y is a program and a condition variable.

• A logical variable is a condition variable that is not also a program variable. E.g., c in
{ z ≥ c } z : = z + 1 { z > c }. We use them to reason about our program but they don't ap-
pear in the program itself. (Note that here, "logical" doesn't mean "Boolean".)

• A logical constant is a named constant logical variable. E.g., c in the previous example.
Logical constants are great for keeping track of an old value of a variable.

• Example 10: ⊨ { x = x₀ ≥ 0 } x : = x / 2 { x₀ ≥ 0 ∧ x = x₀ / 2 }. If x is ≥ 0, then after the assignment
x := x / 2, the old value of x (which we're calling x₀) was ≥ 0 and x is its old value divided by 2.
Here, x is a program and condition variable and x₀is a logical constant.

G. Having a Set of States that Satisfy a Predicate

• Before looking at the definitions of program correctness, it will help if we extend the notion of a
single state satisfying a predicate to having a set of states satisfying a predicate.

• Notation: Recall that Σ⊥= Σ∪ { ⊥ }, where Σ is the set of all (well-formed, proper) states.

• Then, σ∈ Σ⊥ allows σ =⊥, but σ∈ Σ implies σ ≠⊥.

• Similarly for a set of states Σ₀, if Σ₀⊆ Σ⊥ , then we may have ⊥∈ Σ₀.

• On the other hand, if Σ₀⊆ Σ , then ⊥∉ Σ₀.

• Notation: Σ₀ –⊥ means Σ₀∩ Σ, the subset of Σ₀ containing its non-⊥ members.

• Definition: Let Σ₀⊆ Σ⊥ . We say Σ₀ satisfies p if every element of Σ₀ satisfies p.

• In symbols, Σ₀ ⊨ p iff for all τ∈ Σ₀, τ ⊨ p. It follows that Σ₀⊭ p iff τ ⊭ p for some τ∈ Σ₀.

• (Note ∅⊭ p is clearly false, which means ∅ ⊨ p is true.)

• Some consequences of the definition:

• If ⊥∈ Σ₀, then Σ₀⊭ p and Σ₀⊭ ¬ p.

• (Σ₀ ⊨ p and Σ₀ ⊨ ¬ p) iff Σ₀ =∅ .

• Since ⊥⊭ p (and ⊭ ¬ p), we have ⊥∉ Σ₀. If τ ≠⊥ and τ ⊨ p then τ ⊭ ¬ p, so τ∉ Σ₀. So Σ₀ =∅ .

• If ⊥∉ Σ₀ and Σ₀ is a singleton set (it has size = 1), then Σ₀ ⊨ p iff Σ₀⊭ ¬ p (and Σ₀ ⊨ ¬ p iff
Σ₀⊭ p). [2023-02-07]

• Either τ ⊨ p or τ ⊨ ¬ p but not both, so (τ ⊨ p and τ ⊭ ¬ p) or (τ ⊭ p and τ ⊨ ¬ p).

• If Σ₀ – ⊥ is not a singleton set then it is possible that Σ₀ – ⊥⊭ both p and ¬ p .

• Say we have σ₁ , σ₂∈ Σ₀ – ⊥ where σ₁ ⊨ p and σ₂ ⊨ ¬p . For Σ₀ – ⊥⊨ p , we need all its
members to satisfy p , but that's false, so Σ₀ – ⊥⊭ p . Similarly, Σ₀ – ⊥⊭ ¬ p because not all
members of Σ₀ – ⊥ satisfy ¬ p .

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20234

CS 536: Science of Programming	 Tue 2023-02-07, 19:00	 Class 8

H. Total Correctness

• Normally, we want our programs to always terminate in states satisfying their postcondition 1

(assuming we start in a state satisfying the precondition). This property is called total cor-
rectness.

• Definition: The triple { p } S { q } is totally correct in σ or σ satisfies the triple under total cor-
rectness iff it's the case that if σ satisfies p, then running S in σ always terminates in a state sat-
isfying q.
2

• In symbols, σ ⊨tot { p } S { q } iff σ ≠⊥ and (if σ ⊨ p then ⊥∉M (S , σ) and M (S , σ) ⊨ q).

• Note M (S , σ) ⊨ q implies ⊥∉M (S , σ), so it's redundant to say ⊥∉M (S , σ) explicitly, but it's
not a bad idea to emphasize it for a while.

• We require σ ≠⊥ because we want the implication (σ ⊨ p implies M (S , σ) ⊨ q) to be false
when σ =⊥. Since M (S ,⊥) = { ⊥ } ⊭ q, if we allowed ⊥ ⊨ p then the implication would become
true (since false implies false).

• Definition: The triple { p } S { q } is totally correct (is valid under total correctness) iff
σ ⊨tot { p } S { q } for all σ ∈ Σ (Recall Σ is the set of well-formed proper states.) Usually, we'll
write ⊨tot { p } S { q }.

I. Partial vs Total Correctness

• It turns out that reasoning about total correctness can be broken up into two steps: Determine
“partial” correctness, where we ignore the possibility of divergence or runtime errors, and then
show termination -- i.e., that those errors won’t occur.

• Definition: The triple { p } S { q } is partially correct in σ or σ satisfies the triple under par-
tial correctness iff

• σ ≠⊥ and

• If σ satisfies p, then whenever running S in σ terminates (without error), the final state satis-
fies q.

• In symbols, σ ⊨ { p } S { q } iff σ ≠⊥ and (σ ⊨ p implies (for every τ∈M (S , σ), if τ∈ Σ, then τ ⊨ q)).

• Equivalently, σ ⊨ { p } S { q } iff σ ≠⊥ and (σ ⊨ p implies M (S , σ) – ⊥ ⊨ q).

• It might help to point out that S not terminating under σ doesn't make partial correctness
false.

 “Terminate” will mean “terminate without error” (Final state ∈ Σ –⊥). “Terminate possibly with an error” 1

means we end in Σ⊥ .

 The sense of “implies” or "if… then…" used here is not like → (which appears in predicates) or ⇒ (which is a 2

relationship between predicates). It's “if…then” at a semantic level: If this triple is satisfied or if this set is
nonempty, then … holds.

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20235

CS 536: Science of Programming	 Tue 2023-02-07, 19:00	 Class 8

• Note we must say explicitly that ⊥⊭ { p } S { q } because otherwise the general case would hold:  
 ⊥⊭ p and M (S , σ) –⊥= { ⊥ } – ⊥ =∅ ⊨ q, so the general case (σ ⊨ p implies M (S , σ) –⊥⊨ q) would
be true (i.e., false implies false).

• Definition: The triple { p } S { q } is partially correct (i.e., is valid under/for partial correct-
ness) iff σ ⊨ { p } S { q } for all states σ. Notation: We usually write ⊨ { p } S { q } but Σ ⊨ { p } S { q }
is also ok.

J. More Phrasings of Total and Partial Correctness

• An equivalent way to understand partial and total correctness uses the property that if σ ≠⊥,
then (σ ⊨ ¬ p iff σ ⊭ p) and (σ ⊨ p iff σ ⊭ ¬ p).

• For total correctness, just generally, if σ ≠⊥, then

σ ⊨tot { p } S { q }  
iff σ ⊨ p implies M (S , σ) ⊨ q 
iff σ ⊨ ¬ p or M (S , σ) ⊨ q 
iff σ ⊨ ¬ p or τ ⊨ q for every member τ∈M (S , σ)

• Under total correctness, if S is deterministic, then M (S , σ) = { τ } for some τ, with τ ≠⊥ and τ ⊨ q.
If S is nondeterministic, we can have multiple τ∈M (S , σ) and none of them can be ⊥ [Mon
2023-02-06, 14:52] and all of them satisfy q.

• For partial correctness, if σ ≠⊥, then

σ ⊨ { p } S { q } 
iff σ ⊨ p implies M (S , σ) – ⊥ ⊨ q 
iff σ ⊨ ¬ p or M (S , σ) – ⊥ ⊨ q  
iff σ ⊨ ¬ p or for every τ∈M (S , σ), either τ =⊥ or τ ⊨ q.

• Under partial correctness, if S is deterministic, then M (S , σ) = { τ } for some τ, and either τ =⊥
or τ ⊨ q. If S is nondeterministic, we can have multiple τ∈M (S , σ) and all of them either are
some version of ⊥ or satisfy q .

K. Unsatisfied Correctness Triples

• It’s useful to figure out when a state doesn’t satisfy a triple because not satisfying a triple tells
you that there’s some sort of bug in the program.

Unsatisfied Total Correctness

• For a state σ ≠⊥ to not satisfy { p } S { q } under total correctness, it must satisfy p and running S
in it can cause an error or one of its final states does not satisfy q.

• We have σ ⊨tot { p } S { q } iff σ ⊨ ¬ p or M (S , σ) ⊨ q

• So σ ⊭tot { p } S { q } iff σ ⊨ p and M (S , σ) ⊭ q

iff σ ⊨ p and (⊥ ∈ M (S , σ) or τ ⊭ q for some τ ∈ M (S , σ)).

• (Recall if τ ≠⊥ then τ ⊭ q iff τ ⊨ ¬ q.)

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20236

CS 536: Science of Programming	 Tue 2023-02-07, 19:00	 Class 8

• So breaking down the cases, σ ⊨tot { p } S { q } means

• If S is deterministic, then σ ⊨ p and M (S , σ) = { τ } where τ =⊥ or τ ⊨ ¬ q.

• If S is nondeterministic, then σ ⊨ p and (⊥∈M (S , σ) or τ ⊨ ¬ q for some τ∈M (S , σ)).

• Note for nondeterministic S, having σ ⊭tot { p } S { q } only says that one τ∈M (S , σ) is ⊥ or satis-
fies ¬ q. This doesn't preclude M (S , σ) from having states that satisfy q.

Unsatisfied Partial Correctness

• For a state to not satisfy { p } S { q } under partial correctness, either the state is ⊥ or, it satisfies p
and running S in it always terminates in a state satisfying ¬ q.

• We have σ ⊨ { p } S { q } iff σ ⊨ ¬ p or M (S , σ)– ⊥ ⊨ q

• So σ ⊭ { p } S { q } iff σ ⊨ p and M (S , σ) – ⊥⊭ q 
iff σ ⊨ p and τ ⊨ ¬ q for some τ ≠⊥ in M (S , σ).

• For deterministic S , there's only one τ in M (S , σ) and (it must be ≠⊥ and) satisfy ¬q.

• For nondeterministic S , we need one τ∈M (S , σ), (τ ≠⊥ and) τ ⊨ ¬q.

• The other τ∈M (S , σ) can be ⊥ or satisfy q.

• I.e., at least one path 〈 S , σ 〉→* 〈 E , τ 〉 with τ ⊨ ¬ q , but there can be paths 〈 S , σ 〉→*
〈 E ,⊥〉 or 〈 S , σ 〉→* 〈 E , τ 〉 with τ ⊨ q .

L. Three Extreme (Mostly Trivial) Cases

• There are three edge cases where partial correctness occurs for uninformative reasons.. First
recall the definition of partial correctness: σ ⊨ { p } S { q } means (if σ ⊨ p, then M (S , σ) – ⊥ ⊨ q).

• p is a contradiction (i.e., ⊨ ¬ p). Since σ ⊨ p never holds, M (S , σ) – ⊥ ⊨ q is irrelevant and
partial correctness of { p } S { q } always holds. So for example, { F } S { q } is valid under par-
tial correctness, for all S and q. (Even { F } S { F } and { F } S { T }.)

• S always fails to terminate . If M (S , σ) = { ⊥ } then M (S , σ) – ⊥ = ∅ , which satisfies q, so 3

we get partial correctness of { p } S { q }.

• q is a tautology (i.e., ⊨ q). Then for any σ, M (S , σ) – ⊥ ⊨ q, so (σ ⊨ p implies M (S , σ) – ⊥ ⊨ q)
is true (so p is irrelevant) and we get partial correctness of { p } S { q }. So for example,
{ p } S { T } is valid under partial correctness for all p and S. (Even { F } S { T }.)

• For total correctness, recall σ ⊨tot { p } S { q } means (if σ ⊨ p, then M (S , σ) ⊨ q). Note ⊥ ∉M (S , σ)
because ⊥∉M (S , σ) implies M (S , σ) ⊭ q)

• p is a contradiction. The argument here is the same as for partial correctness, so for all S
and q, we have ⊨tot { F } S { q }.

• S always fails to terminate. Since M (S , σ) = { ⊥ }, we know M (S , σ) ⊭ q. So total correct-
ness of { p } S { q } always fails. I.e., σ ⊭tot { T } S { q } for all σ. [2023-02-07]

 Remember, just "terminate" implicitly includes "without error". "Not terminate" means "Diverges or gets a 3

runtime error".

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20237

CS 536: Science of Programming	 Tue 2023-02-07, 19:00	 Class 8

• q is a tautology. This case is actually useful. Since M (S , σ) ⊨ T implies ⊥∉M (S , σ), satis-
faction of σ ⊨tot { p } S { T } requires S to always terminate under σ. So validity of
⊨tot { p } S { T } happens exactly when S always terminates when started in a state
satisfying p.

• Lemma: σ ⊨tot { p } S { q } iff σ ⊨ { p } S { q } and σ ⊨tot { p } S { T }.

• This just says that total correctness is partial correctness plus termination.

• Partial correctness says that 〈 S , σ 〉→* to a final state that ⊨ q or is ⊥). Termination says
every 〈 S , σ 〉→* to a final state that satisfies true (and thus ≠ ⊥)). So we have total correct-
ness: Every 〈 S , σ 〉 →* to a final state that ⊨ q .

CS Dept, Illinois Institute of Technology	 – –	 © James Sasaki, 20238

