
CS 536: Science of Programming Tue 2023-02-07, 19:00 Class 8

Correctness (“Hoare”) Triples 
Part 1: Definitions and Basic Properties 

CS 536: Science of Programming, Spring 2023 
 2023-02-07 pp. 3, 4, 8 

A. Why 

• To specify a program’s correctness, we need to know its precondition and postcondition (what 
should be true before and after executing it). 

• The semantics of a verified program joins a program's state-transformation semantics with the 
state-oriented semantics of the specification predicates. 

B. Objectives 
At the end of today you should know 

• The syntax of correctness triples (a.k.a. Hoare triples). 

• What it means for a correctness triples to be satisfied or to be valid. 

• That a state in which a correctness triple is not satisfied is a state where the program has a bug. 

C. Correctness Triples (“Hoare Triples”) 

• A correctness triple (a.k.a. “Hoare triple,” after C.A.R. Hoare) is a program S  plus its specifica-
tion predicates p and q . 

• The precondition p describes what we’re assuming is true about the state before the pro-
gram begins. 

• The postcondition q  describes what should be true about the state after the program ter-
minates. 

• Syntax of correctness triples: { p } S { q }  (Think of it as /* p */ S /* q */ ) 

 ⇒ Note: The braces are not part of the precondition or postcondition ⇐  

• The precondition of { p } S { q } is p, not {p}.  Similarly the postcondition is q, not {q}. 

• Saying “{ p }” is like saying “In C, the test in ‘if (B) x++;’  is ‘if (B)’ ” instead of just B.  

D. Satisfaction and Validity of a Correctness Triple 

• Informally, for a state to satisfy { p } S { q }, it must be that if we run S in a state that satisfies p, 
then after running S, we should be in a state that satisfies q. 

• There's more than one way to understand “after running S", and this will give us two no-
tions of satisfaction. 
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• Important: If we start in a state that doesn’t satisfy p, we claim nothing about what happens 
when you run S.   

• In some sense, “the triple is satisfied in σ” means “the triple is not buggy in σ”, which seems 
like a rather weak claim.   

• However, “the triple is not satisfied in σ” means “the triple has a bug in σ”, which is a pretty 
strong statement.  

• For example, say you're given the triple { x ≥ 0 } S { y ² ≤ x < ( y + 1 ) ² }. 

• The triple claims that running the program when x is nonnegative sets y to the integer 
square root of x. 

• If you run it when x is negative, all bets are off: S could run and terminate with y = some 
value, it could diverge, it could produce a runtime error.  None of these behaviors are bugs 
because you ran S on a bad input. 

• Validity for correctness triples is analogous to validity of a predicate: The triple must be satis-
fied in every (well-formed, proper) state.  

• Say you (as the user) have been told not to run S when x < 0 because S calculates sqrt ( x ). 

• And say the triple is { x ≥ 0 } y := sqrt ( x ) { y ² ≤ x < ( y + 1 ) ² }. 

• You can’t say this program has a bug when you start in a state with x < 0, even though the 
program fails, because you ran the program on bad input. 

• Notation: Analogous to our notation for predicates, for triples 

• σ ⊨ { p } S { q } means σ satisfies the triple. 

• σ ⊭ { p } S { q } means σ does not satisfy the triple. 

• ⊨ { p } S { q } means the triple is valid. 

• ⊭ { p } S { q } means the triple is invalid: σ ⊭ { p } S { q } for some σ . 

E. Simple Informal Examples of Correctness 

• Before going to the formal definitions of partial and total correctness, let’s look at some simple 
examples, informally.  (As usual, we'll assume the variables range over ℤ.) 

• Example 1:  ⊨ {x > 0 } x := x + 1 { x > 0 }. The triple is valid: It's satisfied for all states where x > 0. 

• Example 2: 

• { x = 1 } ⊭ { x > 0 } x := x - 1 { x > 0 }: The triple is not satisfied (has a bug) when run with x = 1 
because it terminates with x = 0, not > 0.  Thus the triple is not valid: ⊭ { x > 0 } x := x - 1  
{ x > 0 }. 

• There are a number of ways to fix the buggy program in Example 2: 

• Example 3:  Make the precondition “stronger’ = “more restrictive”.  For example, we could 
use ⊨ { x > 1 } x : = x - 1 { x > 0 }. 

• Example 4:  Make the postcondition “weaker” = “less restrictive”.  For example, we could 
use ⊨ { x > 0 } x : = x - 1 { x > – 1 }. 
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• Example 5:  Change the program.  One way is { x > 0 } if x > 1  then x : = x - 1  fi { x > 0 }. 

• Let's have some more complicated examples. 

• Example 6: ⊨ { x ≥ 0 ∧ ( x = 2 * k ∨ x = 2 * k + 1 ) }  x : = x / 2  { x = k ≥ 0 } . 

• If x  is nonnegative, then the program halves it with truncation. 

• Example 7:  Assume sum ( 0 , k )  yields the sum of the integers 0 through k, then 
  ⊨ { s = sum ( 0 , k ) }  s : = s + k + 1 ;  k : = k + 1  { s = sum ( 0 , k ) }. 

• The triple says if s = sum ( 0 , k )  when we start, then s = sum ( 0 , k )  when we finish. 

• It's ok that s  and k  are changed by the program because s = sum ( 0 , k )  is true in both places 
relative to the state at that point in time. 

• (Later, we'll use this program as part of a larger program, and we'll augment the conditions 
with information about how the ending values of  k  and s  are larger than the starting val-
ues.) 

• Note we can write s = 0 + 1 + 2 + … + k  as an informal equivalent of s = sum ( 0 , k ), but it 
doesn't strictly have the form of a predicate as s = sum ( 0 , k ) does. 

• Example 8:  ⊨ { s = sum ( 0 , k ) }  k : = k + 1 ;  s : = s + k  { s = sum ( 0 , k ) } 

• This has the same specification as Example 7 but the code is different: It increments k first 
and then update s by adding k (not k + 1 ) to it.) 

• Example 9: [Note the invalidity] ⊭ { s = sum ( 0 , k ) }  k : = k + 1 ;  s : = s + k + 1  { s = sum ( 0 , k ) }  

• This is like Example 8 but the program doesn't meet its specification.  To get validity, the 
postcondition should be s = sum ( 0 , k ) + 1 .  (Or more likely, the code needs to be fixed.) 

F. Connecting Starting and Ending Values of Variables 

• There are times when we want the postcondition to be able to refer to values that the variables 
started with.  

• Recall Examples 7 and 8: ⊨ { s = sum ( 0 , k ) } S { s = sum ( 0 , k ) } (where S  is different in the two 
examples).  Say we want the postcondition to include “k  gets larger by 1” somehow.  What we 
can do is create a new variable (call it k₀ ) whose job it is to refer to the starting value of k, be-
fore we run S . 

• We'll make the precondition k = k₀ ∧ s = sum ( 0 , k ) (“k  has some starting value and s is the sum 
of 0  through k ”).  We'll make the postcondition k = k₀ + 1 ∧ s = sum ( 0 , k )  (“k  is one larger than 
its starting value and s  is the sum of 0  through k  (for this new value of k )”. 

• [2023-02-07] We actually did the same thing in Example 6: ⊨ { x ≥ 0 ∧ ( x = 2 * k ∨ x = 2 * k + 1 ) }  
x := x / 2  { x = k ≥ 0 }.  The variable k  helps describe the value of x  before and after execution.  
One interesting feature of k and k₀ is that they don't appear in the program, only the specifica-
tions.  So where do variables appear in correctness triples? 

• Definition: For a triple { p } S { q },  

• A variable that appears in S is a program variable.  E.g., x is a program variable in x : = 1.  
We manipulate them to get work done. 
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• A variable that appears in p or q is a condition variable.  E.g., y in { y > 0 }  …  { .... }.  We use 
condition variables to reason about our program.  They may or may not also be program 
variables.  (These are not the same kind of condition variables used in distributed pro-
gramming.) 

• E.g., in { y > 0 }  y : = y + 1  { y > 1} , y is a program and a condition variable. 

• A logical variable is a condition variable that is not also a program variable.  E.g., c in 
{ z ≥ c }  z : = z + 1  { z > c }.  We use them to reason about our program but they don't ap-
pear in the program itself.  (Note that here, "logical" doesn't mean "Boolean".) 

• A logical constant is a named constant logical variable.  E.g., c in the previous example. 
Logical constants are great for keeping track of an old value of a variable. 

• Example 10:  ⊨ { x = x₀ ≥ 0 }  x : = x / 2  { x₀ ≥ 0 ∧ x = x₀ / 2 }.  If x is ≥ 0, then after the assignment 
x := x / 2, the old value of x (which we're calling x₀) was ≥ 0 and x is its old value divided by 2.  
Here, x is a program and condition variable and x₀is a logical constant. 

G. Having a Set of States that Satisfy a Predicate 

• Before looking at the definitions of program correctness, it will help if we extend the notion of a 
single state satisfying a predicate to having a set of states satisfying a predicate. 

• Notation: Recall that Σ⊥= Σ∪ { ⊥ }, where Σ is the set of all (well-formed, proper) states. 

• Then, σ∈ Σ⊥  allows σ =⊥, but σ∈ Σ implies σ ≠⊥. 

• Similarly for a set of states Σ₀, if Σ₀⊆ Σ⊥ , then we may have ⊥∈ Σ₀. 

• On the other hand, if Σ₀⊆ Σ , then ⊥∉ Σ₀. 

• Notation: Σ₀ –⊥ means Σ₀∩ Σ, the subset of Σ₀ containing its non-⊥ members. 

• Definition: Let Σ₀⊆ Σ⊥ .  We say Σ₀ satisfies p if every element of Σ₀ satisfies p. 

•  In symbols, Σ₀ ⊨ p iff for all τ∈ Σ₀, τ ⊨ p.  It follows that Σ₀⊭ p iff τ ⊭ p for some τ∈ Σ₀. 

• (Note ∅⊭ p is clearly false, which means ∅ ⊨ p is true.) 

• Some consequences of the definition: 

• If ⊥∈ Σ₀, then Σ₀⊭ p and Σ₀⊭ ¬ p. 

• (Σ₀ ⊨ p and Σ₀ ⊨ ¬ p) iff Σ₀ =∅ .   

• Since ⊥⊭ p (and ⊭ ¬ p), we have ⊥∉ Σ₀.  If τ ≠⊥ and τ ⊨ p then τ ⊭ ¬ p, so τ∉ Σ₀.  So Σ₀ =∅ . 

• If ⊥∉ Σ₀ and Σ₀ is a singleton set (it has size = 1), then Σ₀ ⊨ p iff Σ₀⊭ ¬ p (and Σ₀ ⊨ ¬ p iff 
Σ₀⊭ p).  [2023-02-07] 

• Either τ ⊨ p or τ ⊨ ¬ p but not both, so (τ ⊨ p and τ ⊭ ¬ p) or (τ ⊭ p and τ ⊨ ¬ p). 

• If Σ₀ – ⊥ is not a singleton set then it is possible that Σ₀ – ⊥⊭ both p  and ¬ p . 

• Say we have σ₁ , σ₂∈ Σ₀ – ⊥ where σ₁ ⊨ p  and σ₂ ⊨ ¬p .  For Σ₀ – ⊥⊨ p , we need all its 
members to satisfy p , but that's false, so Σ₀ – ⊥⊭ p .  Similarly, Σ₀ – ⊥⊭ ¬ p  because not all 
members of Σ₀ – ⊥ satisfy ¬ p . 
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H. Total Correctness 

• Normally, we want our programs to always terminate  in states satisfying their postcondition 1

(assuming we start in a state satisfying the precondition).   This property is called total cor-
rectness. 

• Definition: The triple { p } S { q } is totally correct in σ or σ satisfies the triple under total cor-
rectness iff it's the case that if σ satisfies p, then running S in σ always terminates in a state sat-
isfying q.  2

• In symbols, σ ⊨tot { p } S { q } iff σ ≠⊥ and ( if σ ⊨ p then ⊥∉M ( S , σ ) and M ( S , σ ) ⊨ q ). 

• Note M ( S , σ ) ⊨ q implies ⊥∉M ( S , σ ), so it's redundant to say ⊥∉M ( S , σ ) explicitly, but it's 
not a bad idea to emphasize it for a while. 

• We require σ ≠⊥ because we want the implication (σ ⊨ p implies M ( S , σ ) ⊨ q ) to be false 
when σ =⊥.  Since M ( S ,⊥) = { ⊥ } ⊭ q, if we allowed ⊥ ⊨ p then the implication would become 
true (since false implies false). 

• Definition: The triple { p } S { q } is totally correct (is valid under total correctness) iff 
σ ⊨tot { p } S { q } for all σ ∈ Σ  (Recall Σ is the set of well-formed proper states.)   Usually, we'll 
write ⊨tot { p } S { q }.  

I. Partial vs Total Correctness 

• It turns out that reasoning about total correctness can be broken up into two steps: Determine 
“partial” correctness, where we ignore the possibility of divergence or runtime errors, and then 
show termination -- i.e., that those errors won’t occur. 

• Definition: The triple { p } S { q } is partially correct in σ or σ satisfies the triple under par-
tial correctness iff 

• σ ≠⊥ and 

• If σ satisfies p, then whenever running S in σ terminates (without error), the final state satis-
fies q. 

• In symbols, σ ⊨ { p } S { q } iff σ ≠⊥ and ( σ ⊨ p implies (for every τ∈M ( S , σ ), if τ∈ Σ, then τ ⊨ q ) ). 

• Equivalently, σ ⊨ { p } S { q } iff σ ≠⊥ and ( σ ⊨ p implies M ( S , σ ) – ⊥ ⊨ q ). 

• It might help to point out that S not terminating under σ doesn't make partial correctness 
false. 

 “Terminate” will mean “terminate without error” (Final state ∈ Σ –⊥).  “Terminate possibly with an error”  1

means we end in Σ⊥ .

 The sense of “implies” or "if… then…" used here is not like → (which appears in predicates) or ⇒ (which is a 2

relationship between predicates).  It's “if…then” at a semantic level: If this triple is satisfied or if this set is 
nonempty, then … holds.
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• Note we must say explicitly that ⊥⊭ { p } S { q } because otherwise the general case would hold:  
 ⊥⊭ p and M ( S , σ ) –⊥= { ⊥ } – ⊥ =∅ ⊨ q, so the general case ( σ ⊨ p  implies M ( S , σ ) –⊥⊨ q) would 
be true (i.e., false implies false). 

• Definition: The triple { p } S { q } is partially correct (i.e., is valid under/for partial correct-
ness) iff σ ⊨ { p } S { q } for all states σ.  Notation: We usually write ⊨ { p } S { q } but Σ ⊨ { p } S { q } 
is also ok. 

J. More Phrasings of Total and Partial Correctness 

• An equivalent way to understand partial and total correctness uses the property that if σ ≠⊥, 
then (σ ⊨ ¬ p iff σ ⊭ p) and (σ ⊨ p iff σ ⊭ ¬ p). 

• For total correctness, just generally, if σ ≠⊥, then  

σ ⊨tot { p } S { q }  
iff σ ⊨ p implies M ( S , σ ) ⊨ q 
iff σ ⊨ ¬ p or M ( S , σ ) ⊨ q 
iff σ ⊨ ¬ p or τ ⊨ q for every member τ∈M ( S , σ ) 

• Under total correctness, if S is deterministic, then M ( S , σ ) = { τ } for some τ, with τ ≠⊥ and τ ⊨ q.  
If S is nondeterministic, we can have multiple τ∈M ( S , σ ) and none of them can be ⊥ [Mon 
2023-02-06, 14:52] and all of them satisfy q. 

• For partial correctness, if σ ≠⊥, then 

σ ⊨ { p } S { q } 
iff σ ⊨ p implies M ( S , σ ) – ⊥ ⊨ q 
iff σ ⊨ ¬ p or M ( S , σ ) – ⊥ ⊨ q  
iff σ ⊨ ¬ p or for every τ∈M ( S , σ ), either τ =⊥ or τ ⊨ q. 

• Under partial correctness, if S is deterministic, then M ( S , σ ) = { τ } for some τ, and either τ =⊥ 
or τ ⊨ q.  If S  is nondeterministic, we can have multiple τ∈M ( S , σ ) and all of them either are 
some version of ⊥ or satisfy q . 

K. Unsatisfied Correctness Triples 

• It’s useful to figure out when a state doesn’t satisfy a triple because not satisfying a triple tells 
you that there’s some sort of bug in the program. 

Unsatisfied Total Correctness 

• For a state σ ≠⊥ to not satisfy { p } S { q } under total correctness, it must satisfy p and running S 
in it can cause an error or one of its final states does not satisfy q. 

• We have σ ⊨tot { p } S { q } iff σ ⊨ ¬ p or M ( S , σ ) ⊨ q 

• So σ ⊭tot { p } S { q } iff σ ⊨ p and M ( S , σ ) ⊭ q 

iff σ ⊨ p and (⊥ ∈ M ( S , σ ) or τ ⊭ q for some τ ∈ M ( S , σ ) ). 

• (Recall if τ ≠⊥ then τ ⊭ q iff τ ⊨ ¬ q.) 
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• So breaking down the cases, σ ⊨tot { p } S { q } means 

• If S is deterministic, then σ ⊨ p and M ( S , σ ) = { τ }  where τ =⊥ or τ ⊨ ¬ q. 

• If S is nondeterministic, then σ ⊨ p and ( ⊥∈M ( S , σ ) or τ ⊨ ¬ q for some τ∈M ( S , σ ) ). 

• Note for nondeterministic S, having σ ⊭tot { p } S { q } only says that one τ∈M ( S , σ ) is ⊥ or satis-
fies ¬ q.  This doesn't preclude M ( S , σ ) from having states that satisfy q. 

Unsatisfied Partial Correctness 

• For a state to not satisfy { p } S { q } under partial correctness, either the state is ⊥ or, it satisfies p 
and running S in it always terminates in a state satisfying ¬ q. 

• We have σ ⊨ { p } S { q } iff σ ⊨ ¬ p or M ( S , σ )– ⊥ ⊨ q 

• So σ ⊭ { p } S { q } iff σ ⊨ p and M ( S , σ ) – ⊥⊭ q 
iff σ ⊨ p and τ ⊨ ¬ q for some τ ≠⊥ in M ( S , σ ).  

• For deterministic S , there's only one τ in M ( S , σ ) and (it must be ≠⊥ and) satisfy ¬q. 

• For nondeterministic S , we need one τ∈M ( S , σ ), (τ ≠⊥ and) τ ⊨ ¬q. 

• The other τ∈M ( S , σ ) can be ⊥ or satisfy q. 

• I.e., at least one path 〈 S , σ 〉→* 〈 E , τ 〉  with τ ⊨ ¬ q , but there can be paths 〈 S , σ 〉→*  
〈 E ,⊥〉  or 〈 S , σ 〉→* 〈 E , τ 〉  with τ ⊨ q . 

L. Three Extreme (Mostly Trivial) Cases 

• There are three edge cases where partial correctness occurs for uninformative reasons..  First 
recall the definition of partial correctness: σ ⊨ { p } S { q } means (if σ ⊨ p, then M ( S , σ ) – ⊥ ⊨ q).   

• p is a contradiction (i.e., ⊨ ¬ p). Since σ ⊨ p never holds, M ( S , σ ) – ⊥ ⊨ q is irrelevant and 
partial correctness of { p } S { q } always holds.   So for example, { F } S { q } is valid under par-
tial correctness, for all S and q.  (Even { F } S { F } and { F } S { T }.) 

• S always fails to terminate .  If M ( S , σ ) = { ⊥ } then M ( S , σ ) – ⊥ = ∅ , which satisfies q, so 3

we get partial correctness of { p } S { q }. 

• q is a tautology (i.e., ⊨ q). Then for any σ, M ( S , σ ) – ⊥ ⊨ q, so (σ ⊨ p implies M ( S , σ ) – ⊥ ⊨ q) 
is true (so p is irrelevant) and we get partial correctness of { p } S { q }.  So for example, 
{ p }  S { T } is valid under partial correctness for all p and S.  (Even { F } S { T }.) 

• For total correctness, recall σ ⊨tot { p } S { q } means (if σ ⊨ p, then M ( S , σ ) ⊨ q).  Note ⊥ ∉M ( S , σ ) 
because ⊥∉M ( S , σ ) implies M ( S , σ ) ⊭ q) 

• p is a contradiction.  The argument here is the same as for partial correctness, so for all S 
and q, we have ⊨tot { F } S { q }. 

• S always fails to terminate. Since M ( S , σ ) = { ⊥ }, we know M ( S , σ ) ⊭ q.  So total correct-
ness of { p } S { q } always fails.  I.e., σ ⊭tot { T }  S { q } for all σ. [2023-02-07] 

 Remember, just "terminate" implicitly includes "without error".  "Not terminate" means "Diverges or gets a 3

runtime error".
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• q is a tautology.  This case is actually useful.  Since M ( S , σ ) ⊨ T implies ⊥∉M ( S , σ ), satis-
faction of σ ⊨tot { p } S { T } requires S to always terminate under σ.  So validity of 
⊨tot { p }  S { T } happens exactly when S always terminates when started in a state 
satisfying p. 

• Lemma: σ ⊨tot { p } S { q } iff σ ⊨ { p } S { q } and σ ⊨tot { p } S { T }. 

• This just says that total correctness is partial correctness plus termination. 

• Partial correctness says that 〈 S , σ 〉→* to a final state that ⊨ q  or is ⊥).  Termination says 
every 〈 S , σ 〉→* to a final state that satisfies true (and thus ≠ ⊥)).  So we have total correct-
ness: Every 〈 S , σ 〉  →* to a final state that ⊨ q . 
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