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Sequential Nondeterminism 
CS 536: Science of Programming, Spring 2023 

 

A. Why 

• Nondeterminism can help us avoid unnecessary determinism. 

• Nondeterminism can help us develop programs without worrying about overlapping cases. 

B. Objectives 
At the end of this class you should know 

• The syntax and operational and denotational semantics of nondeterministic statements. 

C. Avoiding Unnecessary Design Choices Using Nondeterminism 

• When writing programs, it’s hard enough concentrating on the decisions we must make at any 
given time, so it’s helpful to avoid making decisions we don’t have to make. 

• Example 1: A very simple example is a statement that sets max  to the larger of x and y.  It 
doesn’t really matter which of the following two statements we use.  They’re written differently 
but behave the same: 

• if x ≥ y  then max := x  else max := y  fi 

• if y ≥ x  then max := y  else max := x  fi 

• The difference is when x = y, the first statement sets max := x ; the second sets max := y.  It 
doesn’t matter which one of these we choose, we just have to pick one. 

• Our standard if-else statement is deterministic: It can only behave one way.  A nondeterministic 
if-fi will specify that one of max := x and max := y has to be run, but it won’t say how we choose 
which one. 

• We don’t plan to execute our programs nondeterministically; we design programs using 
nondeterminism in order to delay making unnecessary decisions about the order in which 
our code makes choices. 

• When we make the code more concrete by rewriting it using everyday deterministic code, 
then we’ll decide which way to write it. 

D. Nondeterministic if-fi 
• Syntax: if B₁ ➞ S₁ ☐  B₂ ➞ S₂ ☐  … ☐  Bn  ➞ Sn  fi  

• The box symbols separate the different arms, like commas in an ordered n -tuple. 

• Don’t confuse these right arrows with ones in other contexts (implication operator and sin-
gle-step execution). 
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• Definition: Each Bi  ➞ Si  clause is a guarded command.  The guard Bi  tells us when it’s 
okay to run Si . 

• Informal semantics 

• If none of the guard tests B₁, B₂, …, Bn  are true, abort with a runtime error. 

• If exactly one guard Bi  is true then execute Si . 

• If more than one guard is true, then select a corresponding statement and execute it. 

• The selection is made nondeterministically (unpredictably); we'll discuss this more soon. 

• Example 2: if x  ≥  y  ➞ max := x  ☐  y  ≥  x  ➞ max :=  y  fi sets max to the larger of x and y. 

• If only one of x  ≥  y and y  ≥  x is true, we execute its corresponding assignment. 

• If both are true, we choose one of them and execute its assignment. 

• In this example, the two arms set max to the same value when x = y, so it doesn't matter which 
one gets used. 

• In more general examples, the different arms might behave differently but as long as each gets 
us to where we’re going, we don’t care which one gets chosen.  

• E.g., say we have an if-fi with two arms; one arm sets a variable z : = 0 ; the other arm sets 
z  := 1 .  If, for correctness's sake, we need z ≥ 0 after the if-fi, then this is fine.  (If we needed 
even ( z ), for example, we’d have a bug.) 

• We can also have if-fi statements that never have to make a nondeterministic choice. 

• Example 3: Our usual deterministic if B then S₁ else S₂ fi can be written as 
if B  ➞ S₁ ☐ ¬ B  ➞ S₂  fi. 

E. Nondeterministic Choices are Unpredictable 

• For us, “nondeterministic” means “unpredictable”.  

• Let flip ≡ if T  ➞ x := 0  ☐  T  ➞ x := 1  fi, which sets x to either 0 or 1 .  I've called it flip because it's 
similar to a coin flip, but it's not identical. 

• With a real coin flip, you expect a 50-50 chance of getting 0 or 1 , but since flip is nondeter-
ministic, its behavior is completely unpredictable. 

• A thousand calls of flip might give us anything: all 0’s, all 1’s, some pattern, random 500 
heads and 500 tails, etc.  

• Nondeterminism shouldn’t affect correctness: We write nondeterministic code when we 
don't want to worry about how choices are made: We only want to worry about producing cor-
rect results given that a choice has been made. 

• E.g., code written using flip should produce a correct final state whether we get heads or 
tails.  Of course, eventually, we'll replace flip with a deterministic coin-flipping routine, and 
at that point we'll have to worry about the fairness of the deterministic routine. 
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F. Nondeterministic Loop 

• Nondeterministic loops are very similar to nondeterministic conditionals, both in syntax and 
semantics.  We can derive nondeterministic loops using nondeterministic if and a while loop. 

• Syntax: do B₁ ➞ S₁ ☐  B₂ ➞ S₂ ☐  … ☐  Bn  ➞ Sn  od  

• Informal semantics: 

• At the top of the loop, check for any true guards. 

• If no guard is true, the loop terminates. 

• If exactly one guard is true, execute its corresponding statement and jump to the top of the 
loop. 

• If more than one guard is true, select one of the corresponding guarded statements and exe-
cute it.  (The choice is nondeterministic.)  Once we finish the guarded statement, jump to the 
top of the loop.  

• A nondeterministic do loop is equivalent to a regular while loop (with a nondeterministic test 
but) with a nondeterministic if body.  Let BB ≡ (B₁ ∨ B₂ … ∨ Bn  ) be the disjunction of the guards, 
then do B₁ ➞ S₁ ☐  … ☐  B n  ➞ S n  od behaves like while BB do if B₁ ➞ S₁ ☐  … ☐  B n  ➞ S n  fi od. 

G. Operational Semantics of Nondeterministic if-fi  
• Let IF  ≡ if B₁ ➞ S₁ ☐  B₂ ➞ S₂ ☐  … ☐  Bn  ➞ Sn  fi and let BB ≡ B₁ ∨ B₂ ∨ … B n . 

• To evaluate IF , 

• If evaluation of any guard fails (σ ( BB ) = ⊥e ), then IF  causes an error: 〈 IF , σ 〉  →  〈 E , ⊥e〉 . 

• If none of the guards are satisfied (σ ( BB ) = F ), then IF  causes an error: 〈 IF , σ 〉  →  〈 E , ⊥e〉 . 

• If one or more guarded commands Bi  ➞ Si  have σ ( Bi )= T, then one such i is chosen nonde-
terministically and we jump to the beginning of Si : 〈 IF , σ 〉→ 〈 S i , σ 〉 . 

H. Operational Semantics of Nondeterministic do-od 

• Let DO ≡  do B₁ ➞ S₁ ☐  B₂ ➞ S₂ ☐  … ☐  Bn  ➞ S n  od and let BB ≡ B ₁ ∨ B ₂ ∨ … Bn . 

• Evaluation of DO is very similar to evaluation if IF : 

• If evaluation of any guard fails (σ ( BB ) = ⊥e ), then DO causes an error: 〈DO , σ 〉→ 〈 E , ⊥e〉 . 

• If none of the guards are satisfied (σ ( BB ) = F ), then the loop halts: 〈DO , σ 〉  →  〈 E , σ 〉 . 

• If one or more guarded commands Bi  ➞ Si  have σ ( Bi ) =  T, then one such i is chosen nonde-
terministically and we jump to the beginning of Si ; after it completes, we'll jump back to the 
top of the loop: 〈DO, σ 〉  →  〈 Si ; DO, σ 〉 . 

I. Denotational Semantics of Nondeterministic Programs 

• Notation: 

• Σ is the set of all states (that proper for whatever we happen to be discussing at that time). 

• Σ⊥=  Σ∪ { all flavors of ⊥ } = Σ∪ { ⊥ d  , ⊥e } right now; other versions can be added later. 
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• As before, writing τ = ⊥  means τ∈ { ⊥d , ⊥e }, so it refers ambiguously to one or the other. 

• For a nondeterministic program, to get its denotational semantics, we have to collect all the pos-
sible final states (or the pseudo-state ⊥ ): M ( S , σ ) = { τ∈ Σ⊥| 〈 S , σ 〉→ * 〈 E , τ 〉 }. 

• For a deterministic program, there is only one such τ, so this simplifies to our earlier definition: 
M ( S , σ ) = { τ } where 〈 S , σ 〉→ * 〈 E , τ 〉  and τ∈ Σ⊥ .  

• Example 4: Let S  ≡ if T  ➞ x := 0  ☐  T  ➞ x := 1  fi.  Then 〈 S ,∅ 〉→ * 〈 E , x = 0〉  and 〈 S ,∅ 〉→ *  
〈 E , x = 1〉  are both possible, and M ( S , σ ) = { { x = 0 } ,  { x = 1 } }.  (Be careful not to write this as 
{ { x = 0 , x = 1 } } , which is a set containing a single, ill-formed state.)  For any particular execu-
tion of S in a σ, we'll get exactly one of these final states. 

• Notation: For convenience, most times we can still abbreviate M ( S , σ ) = {τ} to M ( S , σ ) = τ.  But 
let's agree not to shorten M ( skip, ∅ ) = {∅ } to M ( skip, ∅ ) =∅, since it might look like we're 
claiming that M ( skip, ∅ ) has no final state — it does, the empty state. 

• A nondeterministic program doesn't have to have multiple final states.  

• Example 5: The max program from Example 2 has only one final state.  Let Max ≡ if x  ≥ y  ➞ 
max := x  ☐  y  ≥ x  ➞ max := y  fi, in the nondeterministic case, where x  = y, both possible ex-
ecution paths take us to the same state: M ( Max, { x = α , y = α } ) = { { x = α , y = α , max = α } }. 

• Note: To keep from confusing the graders, avoid writing things that look like multisets, such 
as "{ τ , τ } where τ = { x = α , y = α , max = α }".  

• For arbitrary S, if M ( S , σ ) has more than one member, then S is nondeterministic.  The Max 
program shows us that the converse doesn't hold: If M ( S , σ ) has just one member, S still could 
be nondeterministic.  Note also that the size of M ( S , σ ) can vary depending on σ. 

• Example 6: If S  ≡ if x ≥ 0  ➞ x := x * x  ☐  x ≤ 8  ➞ x := - x  fi, then M ( S , { x = 0 } ) = { { x = 0 } }, but 
M ( S , { x = 3 } ) = { { x = 9 } , { x = – 3 } }.  

Difference between M(S,σ) = {τ} and τ ∈ M(S,σ) 

• There's a difference between M ( S , σ ) = { τ } and τ∈M ( S , σ ).  They both say that τ can be a fi-
nal state, but M ( S , σ ) = { τ } says there's only one final state, but τ∈M ( S , σ ) leaves open the 
possibility that there are other final states. 

• In particular, M ( S , σ ) = {⊥} says S  always causes an error whereas ⊥ ∈ M ( S , σ ) says that S  
might cause an error.  Remember that when we write ⊥, we're being ambiguous as to whether 
we mean ⊥d  or ⊥e .  If multiple kinds of failure are possible, we should say so, as in M ( S , σ ) = 
{ ⊥d  , ⊥e } or { ⊥d  , ⊥e }  ⊆  M ( S , σ ). 

J. Why Use Nondeterministic programs? 

• Without having defined program correctness yet, the discussion here will be informal. 
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Reason 1: Nondeterminism makes it easer to combine partial solutions 

• With nondeterministic code, it's straightforward to combine partial solutions to a problem to 
form a larger solution.  This means we can solve a large problem by solving smaller instances of 
it and combining them.  

• Example 7: Let's solve the Max problem.  Say we specify "Max takes x and y and (without 
changing them), sets max to the larger of x and y." 

• Since the program has to end with max = x or max =  y, one way to approach is to ask "When 
does max := x work?" and "When does max :=  y work?". 

• Since max := x is correct exactly when x ≥ y, the program if x ≥ y  ➞ max := x fi is (partially) 
correct.  (It's not totally correct, since it fails if x < y .) 

• Similarly, since max :=  y is correct exactly when x ≤ y, the program if x ≤ y  ➞ max := y  fi is 
also (partially) correct. 

• We can combine the two partial solutions and get 

if  x ≥ y  ➞ max := x  
☐  x ≤ y  ➞ max := y  
fi 

• This program works when x ≥ y or x ≤ y, and since that covers all possibilities, our program is 
done. 

Reason 2: Nondeterminism makes it easier to find overlapping solutions but 
delay worrying about them 

• Find overlapping solutions: When approaching a problem nondeterministically, you can con-
centrate on discovering partial solutions but put off decisions about which ones might be better. 
Here's a vague example: Say we want to process a stream of widgets; the red ones can be pro-
cessed using techniques A or B; the blue ones can be processed using using techniques B or C.  
Very roughly, do red ➞ A ☐ red ➞ B ☐ blue ➞ B ☐ blue ➞ C od.   

• Since we're using a nondeterministic approach, we can improve the individual cases sepa-
rately because we don't have to decide immediately about which process we want to run.  
For example, we might discover that red widgets can also be handled by process B₁: do red 
➞ A ☐ red ➞ B ☐ red ➞ B₁ ☐ blue ➞ B ☐ blue ➞ C od.  

• Delay worry about overlapping cases: In nondeterministic if/do, the order of the guarded 
commands makes no difference, so we can it doesn't matter if guards overlap in what states sat-
isfy them.  That means we can write the code nondeterministically, with overlapping cases, and 
not worry about the overlap.  We can remove the overlap when we rewrite the code determinis-
tically to run it. 

• Going back to the widget example, we found B₁ for red widgets but don't have to immediate-
ly ponder questions like "Should we use B or B₁ for red widgets?" and "Can we improve B for 
blue widgets (using the insight that gave us B₁ for red widgets?" 
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• Example 8: For a simpler example, let's take the Max program yet again. 

• Both of these programs are correct: 

if x ≥ y  ➞ max : = x ☐ x ≤ y  ➞ max : = y  fi 
if x ≤ y  ➞ max : = y ☐ x ≥ y  ➞ max : = x  fi 

• Since the programs behave identically when x = y, it doesn't matter if we drop that case from 
one of the tests, say the second, which yields 

if x ≥ y  ➞ max : = x ☐ x < y  ➞ max : = y  fi 
if x ≤ y  ➞ max : = y ☐ x > y  ➞ max : = x  fi 

• Introducing the asymmetry makes the code correspond to the deterministic statements 

if x ≥ y then max : = x else max : = y fi 

if x ≤ y then max : = y else max : = x fi 

• Example 9: A similar pair of examples of introducing asymmetry takes 

if x ≥ 0 ➞ y := sqrt ( x ) ☐ x ≤ 0  ➞ y := 0 fi 

to if x ≥ 0 then y := sqrt ( x ) else y := 0  fi or  

if x > 0 then y := sqrt ( x ) else y := 0 fi 

K. Example 10: Array Value Matching 

• As an example of how nondeterministic code can help us write programs, let's look at an array-
matching problem.  We're given three arrays, b0, b1 , and b2, all of length n  and all sorted in 
non-descending order.  The goal is to find indexes k0, k1 , and k2 such that 
b0 [ k0 ] = b1 [ k1 ] = b2 [ k2 ]  if such values exist. 

• But what if no such k0 , k1, and k2 exist?  One solution is to terminate with k0 = k1 = k2 = n .  
This certainly works, but we need to test each index before testing its value.  Assuming "∧" is 
short-circuiting, we test k0 < n ∧ k1 < n ∧ b0 [ k0 ] < b1 [ k1 ] to make sure that k0 and k1 are in 
range before using them as indexes. 

• We'll use an alternate approach by having sentinels:  We'll assume k0 [ n ], k1 [ n ], and 
k2 [ n ] all equal +∞ (positive infinity).  This lets us write tests like b0 [ k0 ] < b1 [ k1 ]  without 
having to test for k0 or k1 = n . 

• How does the program work?  If we set k0 = k1 = k2 = 0 initially, then we have to increment k0 or 
k1 or k2 until we find a match. 

• Let's study one pair of indexes, say k0 and k1 .  There are three cases: 

1. b0 [ k0 ] < b1 [ k1 ].   If this happens, we should increment k0 . Since the arrays are sorted 
by ≤, incrementing k1 can't possibly result in b0 [ k0 ] = b1 [ k1 ] , whereas incrementing k0 
might. 

2. b0 [ k0 ] > b1 [ k1 ].  Symmetrically, if this happens, we should increment k1 . 
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3. b0 [ k0 ] = b1 [ k1 ].  If this happens, we don't want to do anything, since we have a possible 
match.  (Of course, we still need b1[ k1 ] = b2 [ k2 ] or b0 [ k0 ] = b2 [ k2 ] — they're equiva-
lent in this case.) 

• If we write this up as a nondeterministic if-fi, we get 

if b0 [ k0 ] < b1 [ k1 ] ➞ k0 := k0 + 1 ☐ b0 [ k0 ] > b1 [ k1 ] ➞ k1 := k1 + 1 fi 

• Repeating for the other two pairs of indexes, we get  

if b1 [ k1 ] < b2 [ k2 ] ➞ k1 := k1 + 1 ☐ b1 [ k1 ] > b2 [ k2 ] ➞ k2 := k2 + 1 fi  

if b2 [ k2 ] < b0 [ k0 ] ➞ k2 := k2 + 1 ☐ b2 [ k2 ] > b0 [ k0 ] ➞ k0 := k0 + 1 fi 

• If we repeat these three if-fi statements until none of the < or > cases apply, then we're guaran-
teed that =  holds between each pair.  We can combine the six cases above into: 

// Program 10(a) 
// 
do b0 [ k0 ] < b1 [ k1 ] ➞ k0 := k0 + 1  
☐  b0 [ k0 ] > b1 [ k1 ] ➞ k1 := k1 + 1  
☐  b1 [ k1 ] < b2 [ k2 ] ➞ k1 := k1 + 1  
☐  b1 [ k1 ] > b2 [ k2 ] ➞ k2 := k2 + 1  
☐  b0 [ k0 ] < b2 [ k2 ] ➞ k0 := k0 + 1  
☐  b0 [ k0 ] > b2 [ k2 ] ➞ k2 := k2 + 1  
od  

• If none of the loop guards apply, the ≤ and ≥ combine and ensure b0 [ k0 ] = b1 [ k1 ] = b2 [ k2 ]. 

• The code can be cleaned up a couple of ways.  The obvious one is to combine guards that guard 
the same command: 

// Program 10(b) 
// 
do b0 [ k0 ] < b1 [ k1 ] ∨ b0 [ k0 ] < b2 [ k2 ]  ➞ k0 := k0 + 1  
☐  b1 [ k1 ] < b2 [ k2 ] ∨ b1 [ k1 ] < b0 [ k0 ]  ➞ k1 := k1 + 1  
☐  b2 [ k2 ] < b0 [ k0 ] ∨ b2 [ k2 ] < b1 [ k1 ]  ➞ k2 := k2 + 1  
od  

• Another way is to note that if we don't have b0 [ k0 ] = b1 [ k1 ] = b2 [ k2 ] , then there must be a < 
relation between two of the three values.  This gives us 

// Program 11(c) 
// 
do b0 [ k0 ] < b1 [ k1 ] ➞ k0 := k0 + 1  
☐  b1 [ k1 ] < b2 [ k2 ] ➞ k1 := k1 + 1  
☐  b2 [ k2 ] < b0 [ k0 ] ➞ k2 := k2 + 1  
od  

• For all three of the guards to be false, we need b0 [ k0 ] ≥ b1 [ k1 ] ≥ b2 [ k2 ] ≥ b0 [ k0 ] , which only 
happens when b0 [ k0 ] = b1 [ k1 ] = b2 [ k2 ].
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