CS 536: Science of Programming Class 07

Sequential Nondeterminism
CS 536: Science of Programming, Spring 2023

A. Why

« Nondeterminism can help us avoid unnecessary determinism.

« Nondeterminism can help us develop programs without worrying about overlapping cases.

B. Objectives

At the end of this class you should know

« The syntax and operational and denotational semantics of nondeterministic statements.

C. Avoiding Unnecessary Design Choices Using Nondeterminism
« When writing programs, it’s hard enough concentrating on the decisions we must make at any
given time, so it’s helpful to avoid making decisions we don’t have to make.

« Example 1: A very simple example is a statement that sets max to the larger of x and y. It
doesn’t really matter which of the following two statements we use. They’re written differently
but behave the same:

o ifx>y then max:=x else max:=y fi
o ify>x then max:=y else max:=x fi
» The difference is when x =y, the first statement sets max := x ; the second sets max:=y. It
doesn’t matter which one of these we choose, we just have to pick one.

« Our standard if-else statement is deterministic: It can only behave one way. A nondeterministic
if-fi will specify that one of max:=x and max :=y has to be run, but it won’t say how we choose
which one.

« We don’t plan to execute our programs nondeterministically; we design programs using
nondeterminism in order to delay making unnecessary decisions about the order in which
our code makes choices.

+ When we make the code more concrete by rewriting it using everyday deterministic code,
then we’ll decide which way to write it.

D. Nondeterministic if-fi

o Syntax:ifB;—S;0 B,—S,0 ...0 B, =S, fi
« The box symbols separate the different arms, like commas in an ordered n -tuple.

« Don’t confuse these right arrows with ones in other contexts (implication operator and sin-
gle-step execution).

CS Dept, Illinois Institute of Technology -1- © James Sasaki, 2023

CS 536: Science of Programming Class 07

« Definition: Each B; = S; clause is a guarded command. The guard B; tells us when it’s
okay to run S;.

+ Informal semantics

« If none of the guard tests B;, B,, ..., B, are true, abort with a runtime error.

« If exactly one guard B; is true then execute S;.

« If more than one guard is true, then select a corresponding statement and execute it.

+ The selection is made nondeterministically (unpredictably); we'll discuss this more soon.

o Example2:ifx >y = max:=x 0Oy > x =»max:= Yy fisets max to the larger of x and y.

« Ifonlyone of x > y and y > x is true, we execute its corresponding assignment.

« Ifboth are true, we choose one of them and execute its assignment.

« In this example, the two arms set max to the same value when x =y, so it doesn't matter which
one gets used.

« In more general examples, the different arms might behave differently but as long as each gets
us to where we’re going, we don’t care which one gets chosen.

« E.g., say we have an if-fi with two arms; one arm sets a variable z: = 0; the other arm sets
z :=1. If, for correctness's sake, we need z > 0 after the if-fi, then this is fine. (If we needed
even(z), for example, we’d have a bug.)

« We can also have if-fi statements that never have to make a nondeterministic choice.

« Example 3: Our usual deterministic if B then S; else S, fi can be written as
ifB—=S,0-B =S, fi

E. Nondeterministic Choices are Unpredictable

« For us, “nondeterministic” means “unpredictable”.

o Letflip=ifT - x:=0 0 T —x:=1 fi, which sets x to either 0 or 1. I've called it flip because it's
similar to a coin flip, but it's not identical.

« With a real coin flip, you expect a 50-50 chance of getting 0 or 1, but since flip is nondeter-
ministic, its behavior is completely unpredictable.

« A thousand calls of flip might give us anything: all 0’s, all 1’s, some pattern, random 500
heads and 500 tails, etc.

+ Nondeterminism shouldn’t affect correctness: We write nondeterministic code when we
don't want to worry about how choices are made: We only want to worry about producing cor-
rect results given that a choice has been made.

« E.g., code written using flip should produce a correct final state whether we get heads or
tails. Of course, eventually, we'll replace flip with a deterministic coin-flipping routine, and
at that point we'll have to worry about the fairness of the deterministic routine.

CS Dept, Illinois Institute of Technology -2- © James Sasaki, 2023

CS 536: Science of Programming Class 07

F. Nondeterministic Loop
« Nondeterministic loops are very similar to nondeterministic conditionals, both in syntax and
semantics. We can derive nondeterministic loops using nondeterministic if and a while loop.
« Syntax:doB,— S, 0 B,—S,0 ..0 B,—S, od
« Informal semantics:
« At the top of the loop, check for any true guards.
 If no guard is true, the loop terminates.

« If exactly one guard is true, execute its corresponding statement and jump to the top of the
loop.

« If more than one guard is true, select one of the corresponding guarded statements and exe-
cute it. (The choice is nondeterministic.) Once we finish the guarded statement, jump to the
top of the loop.

« A nondeterministic do loop is equivalent to a regular while loop (with a nondeterministic test
but) with a nondeterministic if body. Let BB = (B; v B, ... v B,) be the disjunction of the guards,
thendoB; —S; 0 ...0 B, =S, odbehaves like while BBdo jfB,— S, 0 ...00 B, — S, fiod.

G. Operational Semantics of Nondeterministic if-fi
o« LetIF =ifB;—S,0 B,—S,0 ...0 B,—S, fiandletBB=B;vB,v...B,.
o To evaluate IF,
« If evaluation of any guard fails (¢ (BB) = L,), then IF causes an error: {IF,a> — <{E, 1,)>.
« If none of the guards are satisfied (o (BB) =F), then IF causes an error: {IF,g> — <E, 1,)>.

« If one or more guarded commands B; — S; have o (B;)=T, then one such i is chosen nonde-
terministically and we jump to the beginning of S;: <IF, 0> —=<S;,0)>.

H. Operational Semantics of Nondeterministic do-od
« LetDO=doB,—S,0 B,—=S,0 ..0 B,—=S,odandletBB=B;vB,v...B,.

« Evaluation of DO is very similar to evaluation if IF:
« If evaluation of any guard fails (¢ (BB) = L,), then DO causes an error: {DO, o> —=<E, 1.
« If none of the guards are satisfied (g (BB) =F), then the loop halts: <DO,c> — <E,0).

« If one or more guarded commands B; = S; have g (B;) = T, then one such i is chosen nonde-
terministically and we jump to the beginning of S;; after it completes, we'll jump back to the
top of the loop: < DO, > — <{S;; DO,c>.

I. Denotational Semantics of Nondeterministic Programs

« Notation:
« X is the set of all states (that proper for whatever we happen to be discussing at that time).

o« 2, = XYU{allflavorsof L}=XU{1,, L.} right now; other versions can be added later.

CS Dept, Illinois Institute of Technology -3- © James Sasaki, 2023

CS 536: Science of Programming Class 07

« As before, writing 7=1L means 7€ { 1,4, L.}, so it refers ambiguously to one or the other.

« For a nondeterministic program, to get its denotational semantics, we have to collect all the pos-
sible final states (or the pseudo-state L): M(S,0)={7€X, | <S,0>—=*<E,T>}.

« For a deterministic program, there is only one such T, so this simplifies to our earlier definition:
M(S,0)={7t}where<S,0>—=*}<{E, 7> and7€X,.

o Example4:LetS =ifT = x:=0 0 T = x:=1 fi. Then<S,J>—>*<E,x=0> and<S,J>—*
{E, x=1) are both possible,and M(S,c)={{x=0}, {x=1}}. (Be careful not to write this as
{{x=0, x=1}},which is a set containing a single, ill-formed state.) For any particular execu-
tion of S in a g, we'll get exactly one of these final states.

« Notation: For convenience, most times we can still abbreviate M (S, o)={t}to M (S, o) =1. But
let's agree not to shorten M (skip, &) ={J } to M (skip, &) =7, since it might look like we're
claiming that M (skip, &) has no final state — it does, the empty state.

+ A nondeterministic program doesn't have to have multiple final states.

« Example 5: The max program from Example 2 has only one final state. Let Max=ifx >y —
max:=x 0O y 2x = max:=y fi,in the nondeterministic case, where x =y, both possible ex-
ecution paths take us to the same state: M (Max, {x=«,y=«a})={{x=«a,y=a,max=«a}}.

» Note: To keep from confusing the graders, avoid writing things that look like multisets, such
as"{t, 7} wheret={x=«,y=a, max=a}"

« For arbitrary S, if M (S, o) has more than one member, then S is nondeterministic. The Max
program shows us that the converse doesn't hold: If M (S,) has just one member, S still could
be nondeterministic. Note also that the size of M (S, o) can vary depending on o.

o Example 6:IfS =ifx>0 = x:=x*x 0 x<8 = x:=-x fi,then M(S,{x=0})={{x=0}}, but
M(S, {x=3})={{x=9},{x=-3}}.

Difference between M(S,c) = {t} and T € M(S,0)

o There's a difference between M (S,0) = {7} and 7€M (S, o). They both say that t can be a fi-
nal state, but M (S, o) = { 7} says there's only one final state, but te M (S, o) leaves open the
possibility that there are other final states.

o In particular, M (S, o) = {L} says S always causes an error whereas L € M (S, o) says that S
might cause an error. Remember that when we write 1, we're being ambiguous as to whether
we mean L, or 1,. If multiple kinds of failure are possible, we should say so, asin M (S, g) =
{lq, Letor{iy, L.} © M(S,0).

J. Why Use Nondeterministic programs?

« Without having defined program correctness yet, the discussion here will be informal.

CS Dept, Illinois Institute of Technology -4- © James Sasaki, 2023

CS 536: Science of Programming Class 07

Reason 1: Nondeterminism makes it easer to combine partial solutions

« With nondeterministic code, it's straightforward to combine partial solutions to a problem to
form a larger solution. This means we can solve a large problem by solving smaller instances of
it and combining them.

« Example 7: Let's solve the Max problem. Say we specify "Max takes x and y and (without
changing them), sets max to the larger of x and y."
« Since the program has to end with max =x or max = y, one way to approach is to ask "When
does max := x work?" and "When does max:= y work?".
« Since max := x is correct exactly when x >y, the program if x>y — max:= x fi is (partially)
correct. (It's not totally correct, since it fails if x<y.)
« Similarly, since max:= y is correct exactly when x <y, the program if x<y — max:=y fiis
also (partially) correct.
« We can combine the two partial solutions and get
if x>y = max:=x
O X<y = max:=y
fi
This program works when x >y or x <y, and since that covers all possibilities, our program is
done.

Reason 2: Nondeterminism makes it easier to find overlapping solutions but
delay worrying about them

« Find overlapping solutions: When approaching a problem nondeterministically, you can con-
centrate on discovering partial solutions but put off decisions about which ones might be better.
Here's a vague example: Say we want to process a stream of widgets; the red ones can be pro-
cessed using techniques A or B; the blue ones can be processed using using techniques B or C.
Very roughly, do red - A o red = B 0 blue — B 0 blue — C od.

« Since we're using a nondeterministic approach, we can improve the individual cases sepa-
rately because we don't have to decide immediately about which process we want to run.
For example, we might discover that red widgets can also be handled by process B;: do red
— AOored—Bored— B; O0blue— B o blue = Cod.

+ Delay worry about overlapping cases: In nondeterministic if/do, the order of the guarded
commands makes no difference, so we can it doesn't matter if guards overlap in what states sat-
isfy them. That means we can write the code nondeterministically, with overlapping cases, and
not worry about the overlap. We can remove the overlap when we rewrite the code determinis-
tically to run it.

+ Going back to the widget example, we found B, for red widgets but don't have to immediate-
ly ponder questions like "Should we use B or B; for red widgets?" and "Can we improve B for
blue widgets (using the insight that gave us B, for red widgets?"

CS Dept, Illinois Institute of Technology -5- © James Sasaki, 2023

CS 536: Science of Programming Class 07

« Example 8: For a simpler example, let's take the Max program yet again.
» Both of these programs are correct:
ifx>2y > max:=x 0 x<y = max:=y fi
ifx<y »max:=y o x2y - max:=x fi
« Since the programs behave identically when x =y, it doesn't matter if we drop that case from
one of the tests, say the second, which yields
ifx2y 2 max:=x 0 x<y = max:=y fi
ifx<y »max:=y o x>y > max:=x fi
« Introducing the asymmetry makes the code correspond to the deterministic statements
if x>y then max:=x else max:=y fi
if x<y then max:=y else max:=x fi
o Example 9: A similar pair of examples of introducing asymmetry takes
ifx>20—->y:=sqrt(x) 0 x<0 = y:=0fi
to ifx>0theny:=sqrt(x)else y:=0 fior
if x>0 theny:=sqrt(x) else y:=0 fi

K. Example 10: Array Value Matching

« As an example of how nondeterministic code can help us write programs, let's look at an array-
matching problem. We're given three arrays, b0, b1, and b2, all of length n and all sorted in
non-descending order. The goal is to find indexes k0, k1, and k2 such that
bO[kO]=b1[k1]=b2[k2] if such values exist.

o But what if no such k0, k1, and k2 exist? One solution is to terminate with kO=k1=k2=n.
This certainly works, but we need to test each index before testing its value. Assuming "A" is
short-circuiting, we test kO<na k1 <na b0[k0]<b1[k1]tomake sure that kO and k1 are in
range before using them as indexes.

« We'll use an alternate approach by having sentinels: We'll assume k0[n], k1[n], and
k2 [n] all equal +o (positive infinity). This lets us write tests like b0 [k0] <b1 [k1] without
having to test for k0 or k1=n.

« How does the program work? If we set k0 = k1 = k2 =0 initially, then we have to increment k0 or
k1 or k2 until we find a match.

« Let's study one pair of indexes, say kO and k1. There are three cases:

1. bO[kO]<b1[k1l]. Ifthishappens, we should increment k0. Since the arrays are sorted
by <, incrementing k1 can't possibly resultin bO[k0]=b1[k1], whereas incrementing k0
might.

2. b0[kO0]>b1[k1]. Symmetrically, if this happens, we should increment k1 .

CS Dept, Illinois Institute of Technology -6- © James Sasaki, 2023

CS 536: Science of Programming Class 07

3. b0[kO0]=b1[k1]. If this happens, we don't want to do anything, since we have a possible
match. (Of course, we still need b1/ k1]=b2[k2] or bO[kO]=Db2[k2] — they're equiva-
lent in this case.)

« If we write this up as a nondeterministic if-fi, we get
if PO[kKO]<b1[k1]—> k0:=kO+1 O bO[kO]>b1[kl]— k1:=k1+1 fi
+ Repeating for the other two pairs of indexes, we get
if b1[k1]<b2[k2]—= kl:=k1+1 0 b1[k1]>b2[k2]— k2:=k2+1fi
if b2[k2]<bO[k0] = k2:=k2+1 0 b2[k2]>DbO[kO0] = k0:=k0+1 fi
« If we repeat these three if-fi statements until none of the < or > cases apply, then we're guaran-
teed that = holds between each pair. We can combine the six cases above into:
// Program 10(a)
Il
dobO[kO]<b1[kl]— kO:=kO0+1
O bO[kO]>b1[kl]— k1l:=kl+1
O b1[k1]<b2[k2]— k1:=k1+1
O b1[k1]>b2[k2]—> k2:=k2+1
O bO[kO]<b2[k2]— k0:=k0+1
O bO[kO]>b2[k2]—k2:=k2+1
od

« If none of the loop guards apply, the < and > combine and ensure bO[kO]=b1[k1]=b2[k2].

« The code can be cleaned up a couple of ways. The obvious one is to combine guards that guard
the same command:
// Program 10(b)
Il
dobO[kO]<b1[k1]v bO[KkO]<b2[k2] — kO0:=k0+1
O b1[k1]<b2[k2]v b1[k1]<bO[kO] — k1:=k1+1
O b2[k2]<bO[kO]v b2[k2]<bl[kl] - k2:=k2+1
od

« Another way is to note that if we don't have bO[k0]=b1[k1]=b2[k2], then there must be a <
relation between two of the three values. This gives us
/[Program 11(c)
Il
dob0[kO]<b1[kl]— kO:=k0+1
O bi[k1]<b2[k2]— kl:=kl+1
O b2[k2]<bO[k0] = k2:=k2+1
od

« For all three of the guards to be false, we need bO[k0]>b1[k1]>b2[k2]>b0[kO], which only
happens when bO[kO]=b1[k1]=b2[Kk2].

CS Dept, Illinois Institute of Technology -7- © James Sasaki, 2023

