
CS 536: Science of Programming Wed 2023-02-01 13:05 Class 07

Sequential Nondeterminism
CS 536: Science of Programming, Spring 2023

 

A. Why

• Nondeterminism can help us avoid unnecessary determinism.

• Nondeterminism can help us develop programs without worrying about overlapping cases.

B. Objectives
At the end of this class you should know

• The syntax and operational and denotational semantics of nondeterministic statements.

C. Avoiding Unnecessary Design Choices Using Nondeterminism

• When writing programs, it’s hard enough concentrating on the decisions we must make at any
given time, so it’s helpful to avoid making decisions we don’t have to make.

• Example 1: A very simple example is a statement that sets max to the larger of x and y. It
doesn’t really matter which of the following two statements we use. They’re written differently
but behave the same:

• if x ≥ y then max := x else max := y fi

• if y ≥ x then max := y else max := x fi

• The difference is when x = y, the first statement sets max := x ; the second sets max := y. It
doesn’t matter which one of these we choose, we just have to pick one.

• Our standard if-else statement is deterministic: It can only behave one way. A nondeterministic
if-fi will specify that one of max := x and max := y has to be run, but it won’t say how we choose
which one.

• We don’t plan to execute our programs nondeterministically; we design programs using
nondeterminism in order to delay making unnecessary decisions about the order in which
our code makes choices.

• When we make the code more concrete by rewriting it using everyday deterministic code,
then we’ll decide which way to write it.

D. Nondeterministic if-fi
• Syntax: if B₁ ➞ S₁ ☐ B₂ ➞ S₂ ☐ … ☐ Bn  ➞ Sn fi

• The box symbols separate the different arms, like commas in an ordered n -tuple.

• Don’t confuse these right arrows with ones in other contexts (implication operator and sin-
gle-step execution).

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20231

CS 536: Science of Programming Wed 2023-02-01 13:05 Class 07

• Definition: Each Bi  ➞ Si clause is a guarded command. The guard Bi  tells us when it’s
okay to run Si .

• Informal semantics

• If none of the guard tests B₁, B₂, …, Bn  are true, abort with a runtime error.

• If exactly one guard Bi  is true then execute Si .

• If more than one guard is true, then select a corresponding statement and execute it.

• The selection is made nondeterministically (unpredictably); we'll discuss this more soon.

• Example 2: if x  ≥  y  ➞ max := x ☐ y  ≥  x  ➞ max :=  y fi sets max to the larger of x and y.

• If only one of x  ≥  y and y  ≥  x is true, we execute its corresponding assignment.

• If both are true, we choose one of them and execute its assignment.

• In this example, the two arms set max to the same value when x = y, so it doesn't matter which
one gets used.

• In more general examples, the different arms might behave differently but as long as each gets
us to where we’re going, we don’t care which one gets chosen.

• E.g., say we have an if-fi with two arms; one arm sets a variable z : = 0 ; the other arm sets
z := 1 . If, for correctness's sake, we need z ≥ 0 after the if-fi, then this is fine. (If we needed
even (z), for example, we’d have a bug.)

• We can also have if-fi statements that never have to make a nondeterministic choice.

• Example 3: Our usual deterministic if B then S₁ else S₂ fi can be written as
if B ➞ S₁ ☐ ¬ B ➞ S₂ fi.

E. Nondeterministic Choices are Unpredictable

• For us, “nondeterministic” means “unpredictable”.

• Let flip ≡ if T ➞ x := 0 ☐ T ➞ x := 1 fi, which sets x to either 0 or 1 . I've called it flip because it's
similar to a coin flip, but it's not identical.

• With a real coin flip, you expect a 50-50 chance of getting 0 or 1 , but since flip is nondeter-
ministic, its behavior is completely unpredictable.

• A thousand calls of flip might give us anything: all 0’s, all 1’s, some pattern, random 500
heads and 500 tails, etc.

• Nondeterminism shouldn’t affect correctness: We write nondeterministic code when we
don't want to worry about how choices are made: We only want to worry about producing cor-
rect results given that a choice has been made.

• E.g., code written using flip should produce a correct final state whether we get heads or
tails. Of course, eventually, we'll replace flip with a deterministic coin-flipping routine, and
at that point we'll have to worry about the fairness of the deterministic routine.

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20232

CS 536: Science of Programming Wed 2023-02-01 13:05 Class 07

F. Nondeterministic Loop

• Nondeterministic loops are very similar to nondeterministic conditionals, both in syntax and
semantics. We can derive nondeterministic loops using nondeterministic if and a while loop.

• Syntax: do B₁ ➞ S₁ ☐ B₂ ➞ S₂ ☐ … ☐ Bn  ➞ Sn od

• Informal semantics:

• At the top of the loop, check for any true guards.

• If no guard is true, the loop terminates.

• If exactly one guard is true, execute its corresponding statement and jump to the top of the
loop.

• If more than one guard is true, select one of the corresponding guarded statements and exe-
cute it. (The choice is nondeterministic.) Once we finish the guarded statement, jump to the
top of the loop.

• A nondeterministic do loop is equivalent to a regular while loop (with a nondeterministic test
but) with a nondeterministic if body. Let BB ≡ (B₁ ∨ B₂ … ∨ Bn) be the disjunction of the guards,
then do B₁ ➞ S₁ ☐ … ☐ B n  ➞ S n od behaves like while BB do if B₁ ➞ S₁ ☐ … ☐ B n  ➞ S n fi od.

G. Operational Semantics of Nondeterministic if-fi
• Let IF ≡ if B₁ ➞ S₁ ☐ B₂ ➞ S₂ ☐ … ☐ Bn  ➞ Sn fi and let BB ≡ B₁ ∨ B₂ ∨ … B n .

• To evaluate IF ,

• If evaluation of any guard fails (σ (BB) = ⊥e), then IF causes an error: 〈 IF , σ 〉  →  〈 E , ⊥e〉 .

• If none of the guards are satisfied (σ (BB) = F), then IF causes an error: 〈 IF , σ 〉  →  〈 E , ⊥e〉 .

• If one or more guarded commands Bi  ➞ Si have σ (Bi)= T, then one such i is chosen nonde-
terministically and we jump to the beginning of Si : 〈 IF , σ 〉→ 〈 S i , σ 〉 .

H. Operational Semantics of Nondeterministic do-od

• Let DO ≡ do B₁ ➞ S₁ ☐ B₂ ➞ S₂ ☐ … ☐ Bn  ➞ S n od and let BB ≡ B ₁ ∨ B ₂ ∨ … Bn .

• Evaluation of DO is very similar to evaluation if IF :

• If evaluation of any guard fails (σ (BB) = ⊥e), then DO causes an error: 〈DO , σ 〉→ 〈 E , ⊥e〉 .

• If none of the guards are satisfied (σ (BB) = F), then the loop halts: 〈DO , σ 〉  →  〈 E , σ 〉 .

• If one or more guarded commands Bi  ➞ Si have σ (Bi) = T, then one such i is chosen nonde-
terministically and we jump to the beginning of Si ; after it completes, we'll jump back to the
top of the loop: 〈DO, σ 〉  →  〈 Si ; DO, σ 〉 .

I. Denotational Semantics of Nondeterministic Programs

• Notation:

• Σ is the set of all states (that proper for whatever we happen to be discussing at that time).

• Σ⊥= Σ∪ { all flavors of ⊥ } = Σ∪ { ⊥ d , ⊥e } right now; other versions can be added later.

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20233

CS 536: Science of Programming Wed 2023-02-01 13:05 Class 07

• As before, writing τ = ⊥ means τ∈ { ⊥d , ⊥e }, so it refers ambiguously to one or the other.

• For a nondeterministic program, to get its denotational semantics, we have to collect all the pos-
sible final states (or the pseudo-state ⊥): M (S , σ) = { τ∈ Σ⊥| 〈 S , σ 〉→ * 〈 E , τ 〉 }.

• For a deterministic program, there is only one such τ, so this simplifies to our earlier definition:
M (S , σ) = { τ } where 〈 S , σ 〉→ * 〈 E , τ 〉 and τ∈ Σ⊥ .

• Example 4: Let S ≡ if T ➞ x := 0 ☐ T ➞ x := 1 fi. Then 〈 S ,∅ 〉→ * 〈 E , x = 0〉 and 〈 S ,∅ 〉→ *
〈 E , x = 1〉 are both possible, and M (S , σ) = { { x = 0 } , { x = 1 } }. (Be careful not to write this as
{ { x = 0 , x = 1 } } , which is a set containing a single, ill-formed state.) For any particular execu-
tion of S in a σ, we'll get exactly one of these final states.

• Notation: For convenience, most times we can still abbreviate M (S , σ) = {τ} to M (S , σ) = τ. But
let's agree not to shorten M (skip, ∅) = {∅ } to M (skip, ∅) =∅, since it might look like we're
claiming that M (skip, ∅) has no final state — it does, the empty state.

• A nondeterministic program doesn't have to have multiple final states.

• Example 5: The max program from Example 2 has only one final state. Let Max ≡ if x ≥ y ➞
max := x ☐ y ≥ x ➞ max := y fi, in the nondeterministic case, where x = y, both possible ex-
ecution paths take us to the same state: M (Max, { x = α , y = α }) = { { x = α , y = α , max = α } }.

• Note: To keep from confusing the graders, avoid writing things that look like multisets, such
as "{ τ , τ } where τ = { x = α , y = α , max = α }".

• For arbitrary S, if M (S , σ) has more than one member, then S is nondeterministic. The Max
program shows us that the converse doesn't hold: If M (S , σ) has just one member, S still could
be nondeterministic. Note also that the size of M (S , σ) can vary depending on σ.

• Example 6: If S ≡ if x ≥ 0 ➞ x := x * x ☐ x ≤ 8 ➞ x := - x fi, then M (S , { x = 0 }) = { { x = 0 } }, but
M (S , { x = 3 }) = { { x = 9 } , { x = – 3 } }.

Difference between M(S,σ) = {τ} and τ ∈ M(S,σ)

• There's a difference between M (S , σ) = { τ } and τ∈M (S , σ). They both say that τ can be a fi-
nal state, but M (S , σ) = { τ } says there's only one final state, but τ∈M (S , σ) leaves open the
possibility that there are other final states.

• In particular, M (S , σ) = {⊥} says S always causes an error whereas ⊥ ∈ M (S , σ) says that S
might cause an error. Remember that when we write ⊥, we're being ambiguous as to whether
we mean ⊥d or ⊥e . If multiple kinds of failure are possible, we should say so, as in M (S , σ) =
{ ⊥d , ⊥e } or { ⊥d , ⊥e } ⊆ M (S , σ).

J. Why Use Nondeterministic programs?

• Without having defined program correctness yet, the discussion here will be informal.

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20234

CS 536: Science of Programming Wed 2023-02-01 13:05 Class 07

Reason 1: Nondeterminism makes it easer to combine partial solutions

• With nondeterministic code, it's straightforward to combine partial solutions to a problem to
form a larger solution. This means we can solve a large problem by solving smaller instances of
it and combining them.

• Example 7: Let's solve the Max problem. Say we specify "Max takes x and y and (without
changing them), sets max to the larger of x and y."

• Since the program has to end with max = x or max = y, one way to approach is to ask "When
does max := x work?" and "When does max := y work?".

• Since max := x is correct exactly when x ≥ y, the program if x ≥ y ➞ max := x fi is (partially)
correct. (It's not totally correct, since it fails if x < y .)

• Similarly, since max := y is correct exactly when x ≤ y, the program if x ≤ y ➞ max := y fi is
also (partially) correct.

• We can combine the two partial solutions and get

if x ≥ y ➞ max := x
☐ x ≤ y ➞ max := y
fi

• This program works when x ≥ y or x ≤ y, and since that covers all possibilities, our program is
done.

Reason 2: Nondeterminism makes it easier to find overlapping solutions but
delay worrying about them

• Find overlapping solutions: When approaching a problem nondeterministically, you can con-
centrate on discovering partial solutions but put off decisions about which ones might be better.
Here's a vague example: Say we want to process a stream of widgets; the red ones can be pro-
cessed using techniques A or B; the blue ones can be processed using using techniques B or C.
Very roughly, do red ➞ A ☐ red ➞ B ☐ blue ➞ B ☐ blue ➞ C od.

• Since we're using a nondeterministic approach, we can improve the individual cases sepa-
rately because we don't have to decide immediately about which process we want to run.
For example, we might discover that red widgets can also be handled by process B₁: do red
➞ A ☐ red ➞ B ☐ red ➞ B₁ ☐ blue ➞ B ☐ blue ➞ C od.

• Delay worry about overlapping cases: In nondeterministic if/do, the order of the guarded
commands makes no difference, so we can it doesn't matter if guards overlap in what states sat-
isfy them. That means we can write the code nondeterministically, with overlapping cases, and
not worry about the overlap. We can remove the overlap when we rewrite the code determinis-
tically to run it.

• Going back to the widget example, we found B₁ for red widgets but don't have to immediate-
ly ponder questions like "Should we use B or B₁ for red widgets?" and "Can we improve B for
blue widgets (using the insight that gave us B₁ for red widgets?"

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20235

CS 536: Science of Programming Wed 2023-02-01 13:05 Class 07

• Example 8: For a simpler example, let's take the Max program yet again.

• Both of these programs are correct:

if x ≥ y ➞ max : = x ☐ x ≤ y ➞ max : = y fi
if x ≤ y ➞ max : = y ☐ x ≥ y ➞ max : = x fi

• Since the programs behave identically when x = y, it doesn't matter if we drop that case from
one of the tests, say the second, which yields

if x ≥ y ➞ max : = x ☐ x < y ➞ max : = y fi
if x ≤ y ➞ max : = y ☐ x > y ➞ max : = x fi

• Introducing the asymmetry makes the code correspond to the deterministic statements

if x ≥ y then max : = x else max : = y fi

if x ≤ y then max : = y else max : = x fi

• Example 9: A similar pair of examples of introducing asymmetry takes

if x ≥ 0 ➞ y := sqrt (x) ☐ x ≤ 0 ➞ y := 0 fi

to if x ≥ 0 then y := sqrt (x) else y := 0 fi or

if x > 0 then y := sqrt (x) else y := 0 fi

K. Example 10: Array Value Matching

• As an example of how nondeterministic code can help us write programs, let's look at an array-
matching problem. We're given three arrays, b0, b1 , and b2, all of length n and all sorted in
non-descending order. The goal is to find indexes k0, k1 , and k2 such that
b0 [k0] = b1 [k1] = b2 [k2] if such values exist.

• But what if no such k0 , k1, and k2 exist? One solution is to terminate with k0 = k1 = k2 = n .
This certainly works, but we need to test each index before testing its value. Assuming "∧" is
short-circuiting, we test k0 < n ∧ k1 < n ∧ b0 [k0] < b1 [k1] to make sure that k0 and k1 are in
range before using them as indexes.

• We'll use an alternate approach by having sentinels: We'll assume k0 [n], k1 [n], and
k2 [n] all equal +∞ (positive infinity). This lets us write tests like b0 [k0] < b1 [k1] without
having to test for k0 or k1 = n .

• How does the program work? If we set k0 = k1 = k2 = 0 initially, then we have to increment k0 or
k1 or k2 until we find a match.

• Let's study one pair of indexes, say k0 and k1 . There are three cases:

1. b0 [k0] < b1 [k1]. If this happens, we should increment k0 . Since the arrays are sorted
by ≤, incrementing k1 can't possibly result in b0 [k0] = b1 [k1] , whereas incrementing k0
might.

2. b0 [k0] > b1 [k1]. Symmetrically, if this happens, we should increment k1 .

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20236

CS 536: Science of Programming Wed 2023-02-01 13:05 Class 07

3. b0 [k0] = b1 [k1]. If this happens, we don't want to do anything, since we have a possible
match. (Of course, we still need b1[k1] = b2 [k2] or b0 [k0] = b2 [k2] — they're equiva-
lent in this case.)

• If we write this up as a nondeterministic if-fi, we get

if b0 [k0] < b1 [k1] ➞ k0 := k0 + 1 ☐ b0 [k0] > b1 [k1] ➞ k1 := k1 + 1 fi

• Repeating for the other two pairs of indexes, we get

if b1 [k1] < b2 [k2] ➞ k1 := k1 + 1 ☐ b1 [k1] > b2 [k2] ➞ k2 := k2 + 1 fi

if b2 [k2] < b0 [k0] ➞ k2 := k2 + 1 ☐ b2 [k2] > b0 [k0] ➞ k0 := k0 + 1 fi

• If we repeat these three if-fi statements until none of the < or > cases apply, then we're guaran-
teed that = holds between each pair. We can combine the six cases above into:

// Program 10(a)
//
do b0 [k0] < b1 [k1] ➞ k0 := k0 + 1
☐ b0 [k0] > b1 [k1] ➞ k1 := k1 + 1
☐ b1 [k1] < b2 [k2] ➞ k1 := k1 + 1
☐ b1 [k1] > b2 [k2] ➞ k2 := k2 + 1
☐ b0 [k0] < b2 [k2] ➞ k0 := k0 + 1
☐ b0 [k0] > b2 [k2] ➞ k2 := k2 + 1
od

• If none of the loop guards apply, the ≤ and ≥ combine and ensure b0 [k0] = b1 [k1] = b2 [k2].

• The code can be cleaned up a couple of ways. The obvious one is to combine guards that guard
the same command:

// Program 10(b)
//
do b0 [k0] < b1 [k1] ∨ b0 [k0] < b2 [k2] ➞ k0 := k0 + 1
☐ b1 [k1] < b2 [k2] ∨ b1 [k1] < b0 [k0] ➞ k1 := k1 + 1
☐ b2 [k2] < b0 [k0] ∨ b2 [k2] < b1 [k1] ➞ k2 := k2 + 1
od

• Another way is to note that if we don't have b0 [k0] = b1 [k1] = b2 [k2] , then there must be a <
relation between two of the three values. This gives us

// Program 11(c)
//
do b0 [k0] < b1 [k1] ➞ k0 := k0 + 1
☐ b1 [k1] < b2 [k2] ➞ k1 := k1 + 1
☐ b2 [k2] < b0 [k0] ➞ k2 := k2 + 1
od

• For all three of the guards to be false, we need b0 [k0] ≥ b1 [k1] ≥ b2 [k2] ≥ b0 [k0] , which only
happens when b0 [k0] = b1 [k1] = b2 [k2].

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20237

