CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

Denotational Semantics; Runtime Errors

CS 536: Science of Programming, Spring 2023
2023-01-31: pp. 1,5,6

A. Why

« A program or statement can be viewed as denoting a state transformation.

« Infinite loops and runtime errors cause failure of normal program execution.

B. Outcomes

At the end of today, you should know how to
« Use denotational semantics to describe overall execution of programs in our language.

« Determine that evaluation of an expression or program fails due to a runtime error.

C. Denotational Semantics Definition and Rules
« We've seen the “small” step-by-step operational semantics for our programs. Today we'll look at
a “large” step semantics.
 Definition: If in state g, program S terminates in 7, then 7 is the denotational semantics of S
in g. Symbolically, if <S, 0> - *{E, 7>, then we write M(S,0)={1}.
« The reason we have a singleton set containing t instead of just t is that later, we'll look at
non-deterministic computations, which can have more than one possible final state.

« Notation: We'll often write M (S, g) =t instead of { 7 }. The only (obscure) time the difference is
important is when 7 = &; in that case we should write M (S,0)={J }.

« Example 1: Let c be astateandletS= x :=1;y:=2. Since<{x:=1;y:=2,0)
—-<y:=2,0[xp1]>—=<E,c[x»1][y»2]>,wehave M(S,0)={c[x»1][y~»2]}.
[2023-01-31]
M(x:=1;y:=2,0)

= M(y:=2,0[x»1]) asgt x:=1
= M(E,o[x»1][y»2]) asgt y:=2
={o[xp1][yr2]} defn M

+ Notation: In the literature, some people write hollow square brackets around arguments that
are syntactic to emphasize that they are indeed syntactic. E.g, our g(e) would be written g e].

» Notation: Another notation defines M[S] or M (S) as a state transformation function, which
you can apply to a state o to get 7. One writes7=M[S](c)orM(S)(c)orM[SJoor M(S)o.
In yet another notation we pass a set of possible start states to M (S, ...) and get a set of possible
end states; we'd write M(S,{o})={1}.

CS Dept, Illinois Institute of Technology -1- © James Sasaki, 2023

CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

Denotational Semantics Rules
o Since M(S,0)=tmeans<S,a)> —*<E, 7>, we can give specific rules for M (S, o) depending
on the kind of S.

« Skip and Assignment Statements: These statements complete in only one step, so the opera-
tional semantics rules give the denotational semantics immediately.

o M(skip,o)={a}.

e M(v:=e,o)={c[vwro(e)]}.

e« M(b[e,]:=e,c)={a[b[a]~p]}wherex=0(e;) and B=ad(e).

« Composition Statements: M (S;; S,,0)=M(S,,7) where {t}=M(S;,). To justify this, say
we have {S;; S;,0>=>*S,, 7> —=*<E,t'>. Since M(S;,0)={7}, werun S, starting in state
T,SO0M(S1; S2,0)=M(S,,7)=M(S,,M(S:,0)). Note: In M (S,, M(S;, g)), the subscripts
appear as 2 then 1, not 1 then 2.

o Notation: We'll bend the notation a bit and allow M (S,, M (S;, g)) as short for M(S,, 7) when
M(S:,0)={1}.

« Conditional Statements: The meaning of an if-else statement is either the meaning of the true
branch or the meaning of the false branch.

o« Ifa(B)=T,then M (if B then S, else S, fi,c)=M(S,,0T)

o Ifcg(B)=F,then M(ifBthenS, elseS, fi,a)=M(S,,0)

o Example 2: LetS= ify then x:=x+1 else z:=x+2 fi, then

o Ifo(y)=T,thenM(S,0)={o[xra(x)+1]}

o Ifo(y)=F,thenM(S,a)={c[z»0(x)+2]}

« Iterative Statements: One way to definite the meaning of W = while B do S od is recursively.
The definition is appealing intuitively but is not well-formed if W leads to an infinite loop.

e Ifo(B)=F,thenM(W,o0)={0c}

e Ifo(B)=T,then M(W,0)=M(S; W,c)=M(W,M(S,0)).

« Another way to characterize M (W, o) involves looking at the series of states in which we eval-
uate the test.

« Letopo=0,andfor k=0, 1, ...,,let{oy.1}=M(S, o,). Then gy, 01, 0>, ... is the sequence of
states seen at successive while loop tests: The k’th time we evaluate the loop test, we use
state oy.

« Now we can define M (W, a) = { o, } for the least k in which B is false, if there is one. If
there isn't, we have an infinite loop.

o Then M (W, o) is the (set containing the) first state in this sequence that satisfies - B, as-
suming there is such a state. (If there isn’t, we have an infinite loop.)

o Example 3: Let W = while x <n do S od, where the loop body S=x:=x+1; y:=y+y, and let's cal-
culate M (W, o) whereo={x=0, n=3, y=1}.

CS Dept, Illinois Institute of Technology -2- © James Sasaki, 2023

CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

« The behavior of S in an arbitrary state tis M (S, t[x»a][y~ B])={t[x»ax+1][y»2B]}.
Then our sequence of states is
e 0p=0={x=0,n=3,y=1}
e M(S,00)={0,}whereg,={x=1, n=3, y=2}
e M(S,0,)={0,}whereo,={x=2, n=3, y=4},and
e M(S,0,)={0o3}whereo;={x=3, n=3, y=8}.
« Of this sequence, g; is the first state that satisfiesx>n,so M(W,ag)={03}={{x=3,n=3,
y=8}}
« Since we stop at g3, there's no need to calculate M (S, 03)={ 0,4} to find that g, ={ x=4,
n=3,y=16}. (It'snotincorrect, it's just not useful.)

D. Convergence and Divergence of Loops

Not all loops terminate. Evaluation of an infinite loop yields an unending path of — steps: Ei-
ther an infinite sequence of different configurations or a finite-length cycle of configurations.
More generally in computer science we can also also have infinite recursion, which we won’t
study in detail but is treated similarly to infinite iteration.

(Recall that S starting in 0 converges to 7 / terminates in tif <S, > — *<E, 7> (operationally)
or M(S,oc)={7} (denotationally). If S does not converge, it's said to diverge.)

Note: Divergence is one way in which a program fails to successfully terminate.

Rather than write M (S,) =& for a divergent calculation, we'll use a “pseudo state” L (pro-
nounced “bottom™), so M (S, c)={ L} means that S doesn't terminate successfully in a final
state. (Either it doesn't terminate, i.e., diverges, or it gets some sort of runtime error and halts.)

We’ll introduce other flavors of 1 as we look at other ways to not get successful termination.

Divergence: The pseudo-state L; (“bottom sub-d”)

Notation: Denotationally, M (S, c)={ L, } means S diverges in 0. Note that although we’re
writing it in a place where you’d expect a memory state, L, is not an actual memory state; we’ll
call it a pseudo-state as apposed to an actual or real memory state like g and 7.

Notation: Operationally, < S, 0> — *{E, L;> means that S starting in ¢ diverges. Again, we're
not using 14 as an actual memory state here, but since M(S,0)={7} means<S,0> —=*C(E, 1),
if we're going to write M (S, g)={ 1, } to say that S diverges, writing <S, 6> - *{E, L4 is nota-
tionally consistent?.

To determine when M (W, o) ={ 1, }, recall that in the previous section we looked at the series
of states gy, 01, 02, ... in which we evaluate the loop test. For this sequence, g, =g, and
Or+1=M(S, g) for k>0. For terminating loops, M (W, g) is the first state in the sequence that

1 We should let — * include a countably infinite number of steps, since you can only infer divergence by

standing back after watching that may steps.

CS Dept, Illinois Institute of Technology -3- © James Sasaki, 2023

CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

satisfies - B. We can now write M (W, g)={ L,; } to indicate that no state in the sequence satis-
fies - B.

« Example 4: Let W = while T do skip od and ¢ be any state. Then<{ W, a> — <{skip; W,0> —
{W,o>. Hence M(W,ag)={L1, }. As a directed graph, this is a two-node cycle, { W, c> 2
skip; W, 0> .

o« Example 5: Let W = whilex+ndox:=x-1odandletc={x=-1,n=0}.

e Letog=0={x=-1, n=0}

e Let{o}=M(x:=x-1,09)={0o[x»-2]}={{x=-2,n=0}}
o Let{o,}=M(x:=x-1,0,)={0:1[x»-3]}={{x=-3,n=0}}
« Ingeneral,let{o, }=M(x:=x-1,0,.1)={{x=-k-1,n=0}}

« Since every oy Ex*n,we have M(W,o)={ L;}.

E. Expressions With Runtime Errors: The pseudo-state L,
« Using 1, lets us talk about a program not successfully terminating because it simply doesn’t
terminate at all.

« Runtime errors cause a program to terminate, but unsuccessfully E.g, in o, the assignment
z:=x/y fails if 0 (y) = 0 because evaluation of o (x/y) fails. There are two notions of failure
here: The expression fails, and this causes the statement to fail.

« Definition: o (e)= L, means evaluation of expression e in state ¢ causes a runtime error.

« Here, 1, is used as a pseudo-value of an expression, to indicate an error. It’s not a value;
we're writing it in place of an actual value.

« If e can fail at runtime, then instead of o (e) € V for some set of values V, we now have
g(e)eVU{Ll,}. Of course, some expressions never fail: ¢(2 +2)EZ, not just
g(2+2)eZu{1,}.

« Primary Failure: The primitive values and operations being supported determine some set of

basic runtime errors. For us, let’s include:

« Array index out of bounds: a(b[e])=1,ifa(e)<0 or >0 (size(b)); similar for multiple
dimensions.

« Division by zero:a(e,/e;)=a(e;%e,)=L1,ifa(e;)=0.

« Square root of negative number: a(sqrt(e))=1,ifa(e)<0.

o Example6:b[-1],n/0,and sqrt(-1) failforallo. b[k] failsin state {b=(2,3,5,8),
k=4}butnotinstate{b=(6), k=0}.

+ Hereditary Failure: If evaluating a subexpression fails, then the overall expression fails.

« If op is a unary operator,thenag(op e)=_L,ifa(e)=L,.

« If op is a binary operator, then g(e; op e,)=_1,ifa(e;) oro(e,)=L1,.

« For a conditional expression, o (if B then e, else e, fi) = 1, if one of the following three situa-
tions occurs: (1) o(B)=1,(2)o(B)=T andog(e;)=1,0r(3)c(B)=F anda(e;)=1,.

CS Dept, Illinois Institute of Technology -4- © James Sasaki, 2023

CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

« As usual, if expressions are executed lazily: We don’t worry about a hypothetical failure
of the branch we don’t evaluate.

» [2023-01-31] if o(e) = Le then b[e]=Le.
o« Example 7:0(x/y)=1, whena(y)=0,buto(ify=0 then 0 else x/y fi) never=1,.

F. Statements With Runtime Errors

« An expression that causes a runtime error causes the statement it appears in terminate unsuc-
cessfully. We’ll write <S, 0> — <E, L,> for the operational semantics of such a statement.
This use of 1, as a (pseudo)-state is different from its use as a pseudo-value ino(e)=L,.

+ Definition: (Statements with expressions with runtime errors) If a statement evaluates an
expression that causes a runtime error, then the statement terminates unsuccessfully. To the
operational semantics, we add:

o« Ifo(e)=1,,then<v:=e,0> — <E, L,).
o« Ifa(bl[e;]) ora(e;)=1,,then<b[e;]:=e,,0> = < E, L,)>.
o« Ifdg(B)=1,,then<ifBthenS;elseS,fiic> — < E, L,>.
o If 0(B) does not fail, we continue with <S;, o> or <S,, o). Failure of those automati-

cally cause failure of the overall conditional, so there's no need to treat failure of the
true or false branch as a separate case.

If<81: G> g <E1 J—e> then<sl; SZ: G> g <E’ J—e>'
« Ifo(B)=1,,then<{whileBdoSod,c> — <E,1,)>.

o If 0(B) is true, we continue with <S; while B do S od, o>, and failure of this causes fail-

ure of the loop, so we don't need to treat failure of the loop body as a separate case.

« The pseudo-states L; and 1, share some properties, so it’s helpful to have a more general nota-
tion for “error”.

« Notation: | refers generically to L; and/or L,. In particular we use <S,d> —*<E, 1> when
it's not important which of 1, or L; can occur. Similarly, LEM (S, o) means S, o) leadsto 1,4
or L,.

Properties and Consequences of L

» Trying to use L: Since we are writing L in some of the places where an actual memory state
would appear, we should be thorough and look at the other places states appear so we can ex-
tend those notions or notations.

« 1 is not a well-formed state.

« When we say “for all states...” or “for some state...,” we don't include L.
+ We can't add a binding to L: L[vef]=1.

« We can't bind a variableto L: o(v)*Landog[vw~1]= 1.

« We can't take the value of a variable or expressionin L:If =1 thena(v)=ag(e)=1. (More
succinctly, L(v)=1(e)=1))

CS Dept, Illinois Institute of Technology -5- © James Sasaki, 2023

CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

« Operationally, execution halts as soon we generate L as a “state”: <S, 1> —=°<E, 1.

« Denotationally, we can't run a programin L: M (S, L)={_L}.

« From the properties we have, it follows that we can't evaluate something after generating L.

o If<S;,0> = <E,1>,then<S8;;S;,0> = <E, L>.

o IfM(S;,0)={L1},thenM(S;;S,,0)=M(S;,M(S1,0))=M(S,,L)={1}.

o If W= whileBdoS,odando(B)=T butM(S;,0)={L},then M(W,c)={_L}.

o (Indetaill, M(W,a)=M(S:; W,a)=M(W,M(S:,0))=M(W,L)={1}.)

« Satisfaction and Validity and L: Note: 1 never satisfies a predicate: L p for all p, even if p is
the constant T. In general, we now have three possibilities for a state trying to satisfy a predi-
cate:gkEp,o=-p,oro=1. Soo# p impliesok=-p or o= 1, notjust g=-p.

« Noteifo=1, then ok p and g - p, both. The converse doesn't hold, though. E.g., if p is
the conditional expression if x=0 then x/x =0 else 2 =2 fi, then { x=0 } # p because 0/0 caus-
es a runtime error. For the false branch, {x=1}=2=2,s0{x=1}#-(2=2),s0{x=1}
¥ - D.

« Logical negation and L: We still have that g~ - p implies g # p, but the converse no longer
holds. It's possible now for the meaning of p to be L (we'll look at this more in a moment), so
o# p doesn'timply o - p. We need a new answer to the question of what o= -p means. The
solution is to treat - p as shorthand for p — F where F is the predicate false.

« Just a quick note: For the meaning of T and F, we have =T and o F for all g # L. (We can
also derive F by defining F=T # T). For all o that are not 1, we getc=F—F,so0=-F.

« Generating 1 while testing for satisfaction: We certainly don't wanttosay {y=0}=y/y=1.
To handle the situation of o~ p when evaluation of p causes an error, we can add L to the se-
mantics of basic operations and tests.

« For any relation (like less than, etc), we have (f§ relation §) yields L if § or § are L.

« For any binary operation (like addition, etc), we have (« operation p) yields L if for § = L.
« Similarly for a unary operation, we have (operation 1) yields L.

« [2023-01-31] this also applies to logical relations/operations.

« Some of the implications of this are reasonably intuitive: (L plus one) yields L. But some im-
plications are less intuitive: Semantic operations and tests like L #2, 1 <1,1=1,and L # 1 all
yield L (not T or F).

« Returningtoy/y=1,wehaveory/y=1iffo(y/y)=0(1) iffa(y)+a(y)=1,s0ifo(y)=
some f#0,thencory/y=1iff f+p=1iff 1=1iff T.
o Butifo(y)=0,thenory/y=1iff0+0=1iff 1=1iff |. Henceowry/y=1.
« But also, since L #1 is 1, we also haveory/y+1.

« So as expected, here o satisfies neither y/y=1nory/y#1.=

CS Dept, Illinois Institute of Technology -6- © James Sasaki, 2023

