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A. Why 

• A program or statement can be viewed as denoting a state transformation. 

• Infinite loops and runtime errors cause failure of normal program execution. 

B. Outcomes 
At the end of today, you should know how to 

• Use denotational semantics to describe overall execution of programs in our language. 

• Determine that evaluation of an expression or program fails due to a runtime error. 

C. Denotational Semantics Definition and Rules 

• We've seen the “small” step-by-step operational semantics for our programs.  Today we'll look at 
a “large” step semantics.  

• Definition: If in state σ, program S terminates in τ, then τ is the denotational semantics of S  
in σ .  Symbolically, if 〈 S , σ 〉→ *〈 E , τ 〉 , then we write M ( S , σ ) = { τ }. 

• The reason we have a singleton set containing τ instead of just τ is that later, we'll look at 
non-deterministic computations, which can have more than one possible final state. 

• Notation: We'll often write M ( S , σ ) = τ instead of { τ }. The only (obscure) time the difference is 
important is when τ =∅; in that case we should write M ( S , σ ) = {∅ }. 

• Example 1: Let σ be a state and let S ≡  x  := 1 ; y := 2 .  Since 〈 x := 1 ; y := 2 , σ 〉
→ 〈 y := 2 , σ [ x ↦ 1 ] 〉→ 〈 E , σ [ x ↦ 1 ] [ y ↦ 2 ] 〉 , we have M ( S , σ ) = { σ [ x ↦ 1 ] [ y ↦ 2 ] }. 

[2023-01-31] 

M ( x := 1 ; y := 2 , σ )  
=  M ( y := 2 , σ [ x ↦ 1 ] )     asgt x:=1 
=  M ( E , σ [ x ↦ 1 ] [ y ↦ 2 ] )    asgt y:=2 
= { σ [ x ↦ 1 ] [ y ↦ 2 ] }    defn M 

• Notation: In the literature, some people write hollow square brackets around arguments that 
are syntactic to emphasize that they are indeed syntactic.  E.g, our σ ( e ) would be written σ ⟦ e ⟧. 

• Notation: Another notation defines M ⟦ S ⟧  or M ( S ) as a state transformation function, which 
you can apply to a state σ to get τ.  One writes τ = M ⟦ S ⟧ ( σ ) or M ( S ) ( σ ) or M ⟦ S ⟧ σ or M ( S ) σ.  
In yet another notation we pass a set of possible start states to M ( S , … )  and get a set of possible 
end states; we'd write M ( S , { σ } ) =  { τ }. 
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Denotational Semantics Rules 

• Since M ( S , σ ) = τ means 〈 S , σ 〉  → * 〈 E , τ 〉 , we can give specific rules for M ( S , σ ) depending 
on the kind of S. 

• Skip and Assignment Statements: These statements complete in only one step, so the opera-
tional semantics rules give the denotational semantics immediately. 

• M ( skip, σ ) = { σ }. 

• M ( v:= e, σ ) = { σ [ v ↦ σ ( e ) ] }. 

• M ( b [ e₁ ] := e , σ ) = { σ [ b [ α ] ↦ β ] } where α = σ ( e₁ )  and β = σ ( e ) . 

• Composition Statements: M ( S₁ ;  S₂ , σ ) = M ( S₂ , τ )  where { τ } = M ( S₁ , σ ) .  To justify this, say 
we have 〈 S₁ ;  S₂ , σ 〉→ *〈 S₂ , τ 〉→ * 〈 E , τ′ 〉 .  Since M ( S₁ , σ ) = { τ }, we run S₂ starting in state 
τ, so M ( S₁ ;  S₂ , σ ) = M ( S₂ , τ ) = M ( S₂ , M ( S₁ , σ ) ) .  Note: In M ( S₂ , M ( S₁ , σ )), the subscripts 
appear as 2 then 1, not 1 then 2. 

• Notation: We'll bend the notation a bit and allow M ( S₂ , M ( S₁ , σ ) ) as short for M ( S₂ , τ ) when 
M ( S₁ , σ ) = { τ }.  

• Conditional Statements: The meaning of an if-else statement is either the meaning of the true 
branch or the meaning of the false branch. 

• If σ ( B ) = T, then M ( if B then S₁ else S₂ fi, σ ) = M ( S₁ , σ )  

• If σ ( B ) = F, then M ( if B then S₁ else S₂ fi, σ ) = M ( S₂ , σ )  

• Example 2: Let S ≡  if y  then x := x + 1  else z := x + 2  fi, then 

• If σ ( y ) = T, then M ( S , σ ) = { σ [ x ↦ σ ( x ) + 1 ] }  

• If σ ( y ) = F, then M ( S , σ ) = { σ [ z ↦ σ ( x ) + 2 ] }  

• Iterative Statements: One way to definite the meaning of W ≡  while B do S od is recursively.  
The definition is appealing intuitively but is not well-formed if W leads to an infinite loop. 

• If σ ( B ) = F, then M ( W, σ ) = { σ }  

• If σ ( B ) = T, then M ( W, σ ) = M ( S ; W, σ ) = M ( W, M ( S , σ ) ). 

• Another way to characterize M ( W, σ ) involves looking at the series of states in which we eval-
uate the test. 

• Let σ₀ = σ , and for k = 0 ,  1 ,  …, let { σk + 1 } = M ( S , σk   ) .  Then σ₀ , σ₁ , σ₂ ,  … is the sequence of 
states seen at successive while loop tests: The k’th time we evaluate the loop test, we use 
state σk . 

• Now we can define M ( W, σ ) = { σk   } for the least k  in which B  is false, if there is one.  If 
there isn't, we have an infinite loop. 

• Then M ( W, σ )  is the (set containing the) first state in this sequence that satisfies ¬ B , as-
suming there is such a state.  (If there isn’t, we have an infinite loop.) 

• Example 3: Let W ≡  while x < n  do S od, where the loop body S ≡ x := x + 1 ;  y := y + y, and let's cal-
culate M ( W, σ ) where σ = { x = 0 ,  n = 3 ,  y = 1 }.  
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• The behavior of S in an arbitrary state τ is M ( S , τ [ x ↦ α ] [ y ↦ β ] ) = { τ [ x ↦ α + 1 ] [ y ↦ 2 β ] }.  
Then our sequence of states is 

• σ₀ = σ = { x = 0 ,  n = 3 ,  y = 1 }  

• M ( S , σ₀ ) = { σ₁ } where σ₁ = { x = 1 ,  n = 3 ,  y = 2 } 

• M ( S , σ₁ ) = { σ₂ } where σ₂ = { x = 2 ,  n = 3 ,  y = 4 }, and 

• M ( S , σ₂ ) = { σ₃ } where σ₃ = { x = 3 ,  n = 3 ,  y = 8 }. 

• Of this sequence,  σ₃ is the first state that satisfies x ≥ n, so M ( W, σ ) = { σ₃ } = { { x = 3 , n = 3 , 
y = 8 } }. 

• Since we stop at σ₃ , there's no need to calculate M ( S , σ₃ ) = { σ₄ } to find that σ₄ = { x = 4 , 
n = 3 , y = 16 }.  (It's not incorrect, it's just not useful.) 

D. Convergence and Divergence of Loops 

• Not all loops terminate. Evaluation of an infinite loop yields an unending path of →  steps: Ei-
ther an infinite sequence of different configurations or a finite-length cycle of configurations.  
More generally in computer science we can also also have infinite recursion, which we won’t 
study in detail but is treated similarly to infinite iteration. 

• (Recall that S starting in σ  converges to τ  / terminates in τ if 〈 S , σ 〉→ * 〈 E , τ 〉  (operationally) 
or M ( S , σ ) = { τ }  (denotationally).  If S  does not converge, it's said to diverge.) 

• Note: Divergence is one way in which a program fails to successfully terminate.  

• Rather than write M ( S , σ ) =∅  for a divergent calculation, we'll use a “pseudo state” ⊥ (pro-
nounced “bottom”), so M ( S , σ ) = { ⊥ }  means that S doesn't terminate successfully in a final 
state.  (Either it doesn't terminate, i.e., diverges, or it gets some sort of runtime error and halts.) 

• We’ll introduce other flavors of ⊥ as we look at other ways to not get successful termination. 

Divergence: The pseudo-state ⊥d  (“bottom sub-d”) 

• Notation: Denotationally, M ( S , σ ) = { ⊥d   } means S diverges in σ.  Note that although we’re 
writing it in a place where you’d expect a memory state,⊥d  is not an actual memory state; we’ll 
call it a pseudo-state as apposed to an actual or real memory state like σ  and τ. 

• Notation: Operationally, 〈 S , σ 〉→ *〈 E , ⊥d〉  means that S starting in σ diverges.  Again, we're 
not using ⊥d  as an actual memory state here, but since M ( S , σ ) = { τ } means 〈 S , σ 〉→ *〈 E , τ 〉 , 
if we're going to write M ( S , σ ) = { ⊥d   } to say that S diverges, writing 〈 S , σ 〉→ *〈 E , ⊥d〉  is nota-
tionally consistent . 1

• To determine when M ( W, σ ) = { ⊥d   }, recall that in the previous section we looked at the series 
of states σ₀ , σ₁ , σ₂ , … in which we evaluate the loop test.  For this sequence, σ₀ = σ, and 
σk + 1 = M ( S , σk   ) for k ≥ 0.  For terminating loops, M ( W, σ ) is the first state in the sequence that 

 We should let → * include a countably infinite number of steps, since you can only infer divergence by 1

standing back after watching that may steps.
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satisfies ¬ B. We can now write M ( W, σ ) = { ⊥d   } to indicate that no state in the sequence satis-
fies ¬ B. 

• Example 4: Let W ≡  while T  do skip od and σ be any state.  Then 〈W, σ 〉→  〈 skip ;  W, σ 〉  →  
〈W, σ 〉 .  Hence M ( W, σ ) = { ⊥d   }.  As a directed graph, this is a two-node cycle, 〈W, σ 〉⇄ 
〈 skip ; W, σ 〉 . 

• Example 5: Let W ≡  while x ≠ n do x := x - 1 od and let σ = { x = – 1 , n = 0 }. 

• Let σ₀ = σ = { x = - 1 ,  n = 0 } 

• Let { σ₁ } = M ( x := x - 1 , σ₀ ) = { σ₀ [ x ↦ – 2 ] } = { { x = – 2 , n = 0 } } 

• Let { σ₂ } = M ( x := x - 1 , σ₁ ) = { σ₁ [ x ↦ – 3 ] } = { { x = – 3 , n = 0 } } 

• In general, let { σk   } = M ( x := x - 1 , σk - 1   ) = { { x = – k – 1 , n = 0 } } 

• Since every σk  ⊨ x ≠ n, we have M ( W, σ ) = { ⊥d }. 

E. Expressions With Runtime Errors: The pseudo-state ⊥e   

• Using ⊥d  lets us talk about a program not successfully terminating because it simply doesn’t 
terminate at all. 

• Runtime errors cause a program to terminate, but unsuccessfully  E.g, in σ, the assignment 
z := x / y fails if σ ( y ) = 0 because evaluation of σ ( x / y ) fails.  There are two notions of failure 
here: The expression fails, and this causes the statement to fail. 

• Definition: σ ( e ) = ⊥e  means evaluation of expression e in state σ causes a runtime error. 

• Here, ⊥e  is used as a pseudo-value of an expression, to indicate an error.  It’s not a value; 
we're writing it in place of an actual value. 

• If e can fail at runtime, then instead of σ ( e )∈V for some set of values V, we now have 
σ ( e )∈V∪ { ⊥e } .  Of course, some expressions never fail: σ ( 2 + 2 )∈ ℤ, not just 
σ ( 2 + 2 )∈ ℤ∪ { ⊥e }. 

• Primary Failure: The primitive values and operations being supported determine some set of 
basic runtime errors.  For us, let’s include: 

• Array index out of bounds: σ ( b [ e ] ) = ⊥e  if σ ( e ) < 0  or ≥ σ ( size ( b ) ); similar for multiple 
dimensions. 

• Division by zero: σ ( e₁ / e₂ ) = σ ( e₁% e₂ ) = ⊥e  if σ ( e₂ ) = 0. 

• Square root of negative number: σ ( sqrt ( e ) ) = ⊥e  if σ ( e ) < 0. 

• Example 6: b [ – 1 ] , n / 0 , and sqrt ( – 1 )  fail for all σ .  b [ k ]  fails in state { b = ( 2 , 3 , 5 , 8 ), 
k = 4 } but not in state { b = ( 6 ),  k = 0 }. 

• Hereditary Failure: If evaluating a subexpression fails, then the overall expression fails. 

• If op  is a unary operator, then σ ( op  e ) = ⊥e  if σ ( e ) = ⊥e . 

• If op  is a binary operator, then σ ( e₁  op  e₂ ) = ⊥e  if σ ( e₁ )  or σ ( e₂ ) = ⊥e . 

• For a conditional expression, σ ( if B then e₁ else e₂ fi ) = ⊥e  if one of the following three situa-
tions occurs: (1) σ ( B ) = ⊥e  (2) σ ( B ) = T  and σ ( e₁ ) = ⊥e  or (3) σ ( B ) = F  and σ ( e₂ ) = ⊥e . 
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• As usual, if expressions are executed lazily: We don’t worry about a hypothetical failure 
of the branch we don’t evaluate. 

• [2023-01-31]  if σ(e) = ⊥e then b[e]=⊥e.  

• Example 7: σ ( x / y ) = ⊥e  when σ ( y ) = 0 , but σ ( if y = 0  then 0  else x / y  fi )  never=⊥e . 

F. Statements With Runtime Errors 

• An expression that causes a runtime error causes the statement it appears in terminate unsuc-
cessfully.  We’ll write 〈 S , σ 〉  →  〈 E , ⊥e〉  for the operational semantics of such a statement.  
This use of ⊥e  as a (pseudo)-state is different from its use as a pseudo-value in σ ( e ) = ⊥e . 

• Definition: (Statements with expressions with runtime errors)  If a statement evaluates an 
expression that causes a runtime error, then the statement terminates unsuccessfully.  To the 
operational semantics, we add: 

• If σ ( e ) = ⊥e , then 〈 v := e , σ 〉  →  〈 E , ⊥e〉 .  

• If σ ( b [ e₁ ] )  or σ ( e₂ ) = ⊥e , then 〈 b [ e₁ ] := e₂ , σ 〉  →  〈   E , ⊥e〉 .  

• If σ ( B ) = ⊥e , then 〈 if B then S₁ else S₂ fi, σ 〉  →  〈   E , ⊥e〉 .  

• If σ ( B ) does not fail, we continue with 〈 S₁ , σ 〉  or 〈 S₂ , σ 〉 . Failure of those automati-
cally cause failure of the overall conditional, so there's no need to treat failure of the 
true or false branch as a separate case. 

• If 〈 S₁ , σ 〉  →  〈 E , ⊥e〉  then 〈 S₁ ;  S₂ , σ 〉  →  〈 E , ⊥e〉 .  

• If σ ( B ) = ⊥e , then 〈while B do S od, σ 〉  →  〈 E , ⊥e〉 .  

• If σ ( B )  is true, we continue with 〈 S ;  while B do S od, σ 〉 , and failure of this causes fail-
ure of the loop, so we don't need to treat failure of the loop body as a separate case. 

• The pseudo-states ⊥d  and ⊥e  share some properties, so it’s helpful to have a more general nota-
tion for “error”. 

• Notation: ⊥ refers generically to ⊥d  and/or ⊥e .  In particular we use 〈 S , σ 〉  → * 〈 E , ⊥〉  when 
it's not important which of ⊥e   or ⊥d  can occur.  Similarly, ⊥∈M ( S , σ ) means 〈 S , σ 〉  leads to ⊥d  
or ⊥e . 

Properties and Consequences of ⊥  

• Trying to use ⊥: Since we are writing ⊥ in some of the places where an actual memory state 
would appear, we should be thorough and look at the other places states appear so we can ex-
tend those notions or notations. 

• ⊥ is not a well-formed state. 

• When we say “for all states…” or “for some state…,” we don't include ⊥. 

• We can't add a binding to ⊥: ⊥[ v ↦ β ] = ⊥. 

• We can't bind a variable to ⊥: σ ( v ) ≠ ⊥ and σ [ v ↦ ⊥] = ⊥.  

• We can't take the value of a variable or expression in ⊥: If σ = ⊥ then σ ( v ) = σ ( e ) = ⊥.  (More 
succinctly, ⊥( v ) = ⊥( e ) = ⊥.) 
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• Operationally, execution halts as soon we generate ⊥ as a “state”: 〈 S , ⊥〉→ ⁰ 〈 E , ⊥〉 . 

• Denotationally, we can't run a program in ⊥: M ( S , ⊥ ) = { ⊥ }. 

• From the properties we have, it follows that we can't evaluate something after generating ⊥. 

• If 〈 S₁ , σ 〉  →  〈 E , ⊥〉 , then 〈 S₁ ; S₂ , σ 〉  →  〈 E , ⊥〉 . 

• If M ( S₁ , σ ) = { ⊥ } , then M ( S₁ ; S₂ , σ ) = M ( S₂ , M ( S₁ , σ ) ) = M ( S₂ , ⊥ ) = { ⊥ } . 

• If W ≡  while B do S₁ od and σ ( B ) = T  but M ( S₁ , σ ) = { ⊥ } , then M ( W, σ ) = { ⊥ } . 

• (In detail, M ( W, σ ) = M ( S₁ ;  W, σ ) = M ( W, M ( S₁ , σ ) ) = M ( W, ⊥ ) = { ⊥ } .) 

• Satisfaction and Validity and ⊥: Note: ⊥ never satisfies a predicate: ⊥⊭ p for all p, even if p is 
the constant T .  In general, we now have three possibilities for a state trying to satisfy a predi-
cate: σ ⊨ p , σ ⊨ ¬ p , or σ = ⊥.  So σ ⊭ p implies σ ⊨ ¬ p or σ = ⊥, not just σ ⊨ ¬ p. 

• Note if σ = ⊥,  then σ ⊭ p  and σ ⊭ ¬ p , both.  The converse doesn't hold, though.  E.g., if p is 
the conditional expression if x = 0 then x / x = 0 else 2 = 2 fi, then { x = 0 } ⊭ p because 0 / 0 caus-
es a runtime error.  For the false branch, { x = 1 } ⊨ 2 = 2, so { x = 1 } ⊭ ¬ ( 2 = 2 ) , so { x = 1 }  
⊭ ¬ p. 

• Logical negation and ⊥: We still have that σ ⊨ ¬ p implies σ ⊭ p , but the converse no longer 
holds.  It's possible now for the meaning of p to be ⊥ (we'll look at this more in a moment), so 
σ ⊭ p  doesn't imply σ ⊨ ¬ p.  We need a new answer to the question of what σ ⊨ ¬ p means.  The 
solution is to treat ¬ p as shorthand for p→ F  where F is the predicate false. 

• Just a quick note: For the meaning of T and F, we have σ ⊨ T and σ ⊭ F for all σ ≠ ⊥.  (We can 
also derive F by defining F ≡ T ≠ T ).  For all σ that are not ⊥, we get σ ⊨ F→ F , so σ ⊨ ¬ F . 

• Generating ⊥ while testing for satisfaction: We certainly don't want to say { y = 0 } ⊨ y / y = 1. 
To handle the situation of σ ⊨ p when evaluation of p causes an error, we can add ⊥ to the se-
mantics of basic operations and tests. 

• For any relation (like less than, etc), we have ( β relation δ ) yields ⊥ if β or δ are ⊥. 

• For any binary operation (like addition, etc), we have (α  operation β ) yields ⊥ if β or δ = ⊥. 

• Similarly for a unary operation, we have ( operation ⊥) yields ⊥. 

• [2023-01-31] this also applies to logical relations/operations. 

• Some of the implications of this are reasonably intuitive: ( ⊥ plus one )  yields ⊥.  But some im-
plications are less intuitive: Semantic operations and tests like ⊥ ≠ 2, ⊥ < ⊥, ⊥ = ⊥, and ⊥ ≠ ⊥ all 
yield ⊥ (not T or F ). 

• Returning to y / y = 1, we have σ ⊨ y / y = 1 iff σ ( y / y ) = σ ( 1 )  iff σ ( y ) ÷ σ ( y ) = 1 , so if σ ( y ) =  
some β ≠ 0, then σ ⊨ y / y = 1 iff β ÷ β = 1 iff 1 = 1 iff T. 

• But if σ ( y ) = 0 , then σ ⊨ y / y = 1  iff 0 ÷ 0 = 1 iff ⊥ = 1 iff ⊥.  Hence σ ⊭ y / y = 1. 

• But also, since ⊥ ≠ 1 is ⊥, we also have σ ⊭ y / y ≠ 1. 

• So as expected, here σ satisfies neither y / y = 1 nor y / y ≠ 1.= 
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