
CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

Denotational Semantics; Runtime Errors
CS 536: Science of Programming, Spring 2023

 2023-01-31: pp. 1,5,6

A. Why

• A program or statement can be viewed as denoting a state transformation.

• Infinite loops and runtime errors cause failure of normal program execution.

B. Outcomes
At the end of today, you should know how to

• Use denotational semantics to describe overall execution of programs in our language.

• Determine that evaluation of an expression or program fails due to a runtime error.

C. Denotational Semantics Definition and Rules

• We've seen the “small” step-by-step operational semantics for our programs. Today we'll look at
a “large” step semantics.

• Definition: If in state σ, program S terminates in τ, then τ is the denotational semantics of S
in σ . Symbolically, if 〈 S , σ 〉→ *〈 E , τ 〉 , then we write M (S , σ) = { τ }.

• The reason we have a singleton set containing τ instead of just τ is that later, we'll look at
non-deterministic computations, which can have more than one possible final state.

• Notation: We'll often write M (S , σ) = τ instead of { τ }. The only (obscure) time the difference is
important is when τ =∅; in that case we should write M (S , σ) = {∅ }.

• Example 1: Let σ be a state and let S ≡ x := 1 ; y := 2 . Since 〈 x := 1 ; y := 2 , σ 〉
→ 〈 y := 2 , σ [x ↦ 1] 〉→ 〈 E , σ [x ↦ 1] [y ↦ 2] 〉 , we have M (S , σ) = { σ [x ↦ 1] [y ↦ 2] }.

[2023-01-31]

M (x := 1 ; y := 2 , σ)
= M (y := 2 , σ [x ↦ 1]) asgt x:=1
= M (E , σ [x ↦ 1] [y ↦ 2]) asgt y:=2
= { σ [x ↦ 1] [y ↦ 2] } defn M

• Notation: In the literature, some people write hollow square brackets around arguments that
are syntactic to emphasize that they are indeed syntactic. E.g, our σ (e) would be written σ ⟦ e ⟧.

• Notation: Another notation defines M ⟦ S ⟧ or M (S) as a state transformation function, which
you can apply to a state σ to get τ. One writes τ = M ⟦ S ⟧ (σ) or M (S) (σ) or M ⟦ S ⟧ σ or M (S) σ.
In yet another notation we pass a set of possible start states to M (S , …) and get a set of possible
end states; we'd write M (S , { σ }) = { τ }.

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20231

CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

Denotational Semantics Rules

• Since M (S , σ) = τ means 〈 S , σ 〉 → * 〈 E , τ 〉 , we can give specific rules for M (S , σ) depending
on the kind of S.

• Skip and Assignment Statements: These statements complete in only one step, so the opera-
tional semantics rules give the denotational semantics immediately.

• M (skip, σ) = { σ }.

• M (v:= e, σ) = { σ [v ↦ σ (e)] }.

• M (b [e₁] := e , σ) = { σ [b [α] ↦ β] } where α = σ (e₁) and β = σ (e) .

• Composition Statements: M (S₁ ; S₂ , σ) = M (S₂ , τ) where { τ } = M (S₁ , σ) . To justify this, say
we have 〈 S₁ ; S₂ , σ 〉→ *〈 S₂ , τ 〉→ * 〈 E , τ′ 〉 . Since M (S₁ , σ) = { τ }, we run S₂ starting in state
τ, so M (S₁ ; S₂ , σ) = M (S₂ , τ) = M (S₂ , M (S₁ , σ)) . Note: In M (S₂ , M (S₁ , σ)), the subscripts
appear as 2 then 1, not 1 then 2.

• Notation: We'll bend the notation a bit and allow M (S₂ , M (S₁ , σ)) as short for M (S₂ , τ) when
M (S₁ , σ) = { τ }.

• Conditional Statements: The meaning of an if-else statement is either the meaning of the true
branch or the meaning of the false branch.

• If σ (B) = T, then M (if B then S₁ else S₂ fi, σ) = M (S₁ , σ)

• If σ (B) = F, then M (if B then S₁ else S₂ fi, σ) = M (S₂ , σ)

• Example 2: Let S ≡ if y then x := x + 1 else z := x + 2 fi, then

• If σ (y) = T, then M (S , σ) = { σ [x ↦ σ (x) + 1] }

• If σ (y) = F, then M (S , σ) = { σ [z ↦ σ (x) + 2] }

• Iterative Statements: One way to definite the meaning of W ≡ while B do S od is recursively.
The definition is appealing intuitively but is not well-formed if W leads to an infinite loop.

• If σ (B) = F, then M (W, σ) = { σ }

• If σ (B) = T, then M (W, σ) = M (S ; W, σ) = M (W, M (S , σ)).

• Another way to characterize M (W, σ) involves looking at the series of states in which we eval-
uate the test.

• Let σ₀ = σ , and for k = 0 , 1 , …, let { σk + 1 } = M (S , σk) . Then σ₀ , σ₁ , σ₂ , … is the sequence of
states seen at successive while loop tests: The k’th time we evaluate the loop test, we use
state σk .

• Now we can define M (W, σ) = { σk } for the least k in which B is false, if there is one. If
there isn't, we have an infinite loop.

• Then M (W, σ) is the (set containing the) first state in this sequence that satisfies ¬ B , as-
suming there is such a state. (If there isn’t, we have an infinite loop.)

• Example 3: Let W ≡ while x < n do S od, where the loop body S ≡ x := x + 1 ; y := y + y, and let's cal-
culate M (W, σ) where σ = { x = 0 , n = 3 , y = 1 }.

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20232

CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

• The behavior of S in an arbitrary state τ is M (S , τ [x ↦ α] [y ↦ β]) = { τ [x ↦ α + 1] [y ↦ 2 β] }.
Then our sequence of states is

• σ₀ = σ = { x = 0 , n = 3 , y = 1 }

• M (S , σ₀) = { σ₁ } where σ₁ = { x = 1 , n = 3 , y = 2 }

• M (S , σ₁) = { σ₂ } where σ₂ = { x = 2 , n = 3 , y = 4 }, and

• M (S , σ₂) = { σ₃ } where σ₃ = { x = 3 , n = 3 , y = 8 }.

• Of this sequence, σ₃ is the first state that satisfies x ≥ n, so M (W, σ) = { σ₃ } = { { x = 3 , n = 3 ,
y = 8 } }.

• Since we stop at σ₃ , there's no need to calculate M (S , σ₃) = { σ₄ } to find that σ₄ = { x = 4 ,
n = 3 , y = 16 }. (It's not incorrect, it's just not useful.)

D. Convergence and Divergence of Loops

• Not all loops terminate. Evaluation of an infinite loop yields an unending path of → steps: Ei-
ther an infinite sequence of different configurations or a finite-length cycle of configurations.
More generally in computer science we can also also have infinite recursion, which we won’t
study in detail but is treated similarly to infinite iteration.

• (Recall that S starting in σ converges to τ / terminates in τ if 〈 S , σ 〉→ * 〈 E , τ 〉 (operationally)
or M (S , σ) = { τ } (denotationally). If S does not converge, it's said to diverge.)

• Note: Divergence is one way in which a program fails to successfully terminate.

• Rather than write M (S , σ) =∅ for a divergent calculation, we'll use a “pseudo state” ⊥ (pro-
nounced “bottom”), so M (S , σ) = { ⊥ } means that S doesn't terminate successfully in a final
state. (Either it doesn't terminate, i.e., diverges, or it gets some sort of runtime error and halts.)

• We’ll introduce other flavors of ⊥ as we look at other ways to not get successful termination.

Divergence: The pseudo-state ⊥d (“bottom sub-d”)

• Notation: Denotationally, M (S , σ) = { ⊥d } means S diverges in σ. Note that although we’re
writing it in a place where you’d expect a memory state,⊥d is not an actual memory state; we’ll
call it a pseudo-state as apposed to an actual or real memory state like σ and τ.

• Notation: Operationally, 〈 S , σ 〉→ *〈 E , ⊥d〉 means that S starting in σ diverges. Again, we're
not using ⊥d as an actual memory state here, but since M (S , σ) = { τ } means 〈 S , σ 〉→ *〈 E , τ 〉 ,
if we're going to write M (S , σ) = { ⊥d } to say that S diverges, writing 〈 S , σ 〉→ *〈 E , ⊥d〉 is nota-
tionally consistent . 1

• To determine when M (W, σ) = { ⊥d }, recall that in the previous section we looked at the series
of states σ₀ , σ₁ , σ₂ , … in which we evaluate the loop test. For this sequence, σ₀ = σ, and
σk + 1 = M (S , σk) for k ≥ 0. For terminating loops, M (W, σ) is the first state in the sequence that

 We should let → * include a countably infinite number of steps, since you can only infer divergence by 1

standing back after watching that may steps.

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20233

CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

satisfies ¬ B. We can now write M (W, σ) = { ⊥d } to indicate that no state in the sequence satis-
fies ¬ B.

• Example 4: Let W ≡ while T do skip od and σ be any state. Then 〈W, σ 〉→ 〈 skip ; W, σ 〉 →
〈W, σ 〉 . Hence M (W, σ) = { ⊥d }. As a directed graph, this is a two-node cycle, 〈W, σ 〉⇄
〈 skip ; W, σ 〉 .

• Example 5: Let W ≡ while x ≠ n do x := x - 1 od and let σ = { x = – 1 , n = 0 }.

• Let σ₀ = σ = { x = - 1 , n = 0 }

• Let { σ₁ } = M (x := x - 1 , σ₀) = { σ₀ [x ↦ – 2] } = { { x = – 2 , n = 0 } }

• Let { σ₂ } = M (x := x - 1 , σ₁) = { σ₁ [x ↦ – 3] } = { { x = – 3 , n = 0 } }

• In general, let { σk } = M (x := x - 1 , σk - 1) = { { x = – k – 1 , n = 0 } }

• Since every σk ⊨ x ≠ n, we have M (W, σ) = { ⊥d }.

E. Expressions With Runtime Errors: The pseudo-state ⊥e

• Using ⊥d lets us talk about a program not successfully terminating because it simply doesn’t
terminate at all.

• Runtime errors cause a program to terminate, but unsuccessfully E.g, in σ, the assignment
z := x / y fails if σ (y) = 0 because evaluation of σ (x / y) fails. There are two notions of failure
here: The expression fails, and this causes the statement to fail.

• Definition: σ (e) = ⊥e means evaluation of expression e in state σ causes a runtime error.

• Here, ⊥e is used as a pseudo-value of an expression, to indicate an error. It’s not a value;
we're writing it in place of an actual value.

• If e can fail at runtime, then instead of σ (e)∈V for some set of values V, we now have
σ (e)∈V∪ { ⊥e } . Of course, some expressions never fail: σ (2 + 2)∈ ℤ, not just
σ (2 + 2)∈ ℤ∪ { ⊥e }.

• Primary Failure: The primitive values and operations being supported determine some set of
basic runtime errors. For us, let’s include:

• Array index out of bounds: σ (b [e]) = ⊥e if σ (e) < 0 or ≥ σ (size (b)); similar for multiple
dimensions.

• Division by zero: σ (e₁ / e₂) = σ (e₁% e₂) = ⊥e if σ (e₂) = 0.

• Square root of negative number: σ (sqrt (e)) = ⊥e if σ (e) < 0.

• Example 6: b [– 1] , n / 0 , and sqrt (– 1) fail for all σ . b [k] fails in state { b = (2 , 3 , 5 , 8),
k = 4 } but not in state { b = (6), k = 0 }.

• Hereditary Failure: If evaluating a subexpression fails, then the overall expression fails.

• If op is a unary operator, then σ (op e) = ⊥e if σ (e) = ⊥e .

• If op is a binary operator, then σ (e₁ op e₂) = ⊥e if σ (e₁) or σ (e₂) = ⊥e .

• For a conditional expression, σ (if B then e₁ else e₂ fi) = ⊥e if one of the following three situa-
tions occurs: (1) σ (B) = ⊥e (2) σ (B) = T and σ (e₁) = ⊥e or (3) σ (B) = F and σ (e₂) = ⊥e .

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20234

CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

• As usual, if expressions are executed lazily: We don’t worry about a hypothetical failure
of the branch we don’t evaluate.

• [2023-01-31] if σ(e) = ⊥e then b[e]=⊥e.

• Example 7: σ (x / y) = ⊥e when σ (y) = 0 , but σ (if y = 0 then 0 else x / y fi) never=⊥e .

F. Statements With Runtime Errors

• An expression that causes a runtime error causes the statement it appears in terminate unsuc-
cessfully. We’ll write 〈 S , σ 〉 → 〈 E , ⊥e〉 for the operational semantics of such a statement.
This use of ⊥e as a (pseudo)-state is different from its use as a pseudo-value in σ (e) = ⊥e .

• Definition: (Statements with expressions with runtime errors) If a statement evaluates an
expression that causes a runtime error, then the statement terminates unsuccessfully. To the
operational semantics, we add:

• If σ (e) = ⊥e , then 〈 v := e , σ 〉 → 〈 E , ⊥e〉 .

• If σ (b [e₁]) or σ (e₂) = ⊥e , then 〈 b [e₁] := e₂ , σ 〉 → 〈 E , ⊥e〉 .

• If σ (B) = ⊥e , then 〈 if B then S₁ else S₂ fi, σ 〉 → 〈 E , ⊥e〉 .

• If σ (B) does not fail, we continue with 〈 S₁ , σ 〉 or 〈 S₂ , σ 〉 . Failure of those automati-
cally cause failure of the overall conditional, so there's no need to treat failure of the
true or false branch as a separate case.

• If 〈 S₁ , σ 〉 → 〈 E , ⊥e〉 then 〈 S₁ ; S₂ , σ 〉 → 〈 E , ⊥e〉 .

• If σ (B) = ⊥e , then 〈while B do S od, σ 〉 → 〈 E , ⊥e〉 .

• If σ (B) is true, we continue with 〈 S ; while B do S od, σ 〉 , and failure of this causes fail-
ure of the loop, so we don't need to treat failure of the loop body as a separate case.

• The pseudo-states ⊥d and ⊥e share some properties, so it’s helpful to have a more general nota-
tion for “error”.

• Notation: ⊥ refers generically to ⊥d and/or ⊥e . In particular we use 〈 S , σ 〉 → * 〈 E , ⊥〉 when
it's not important which of ⊥e or ⊥d can occur. Similarly, ⊥∈M (S , σ) means 〈 S , σ 〉 leads to ⊥d
or ⊥e .

Properties and Consequences of ⊥

• Trying to use ⊥: Since we are writing ⊥ in some of the places where an actual memory state
would appear, we should be thorough and look at the other places states appear so we can ex-
tend those notions or notations.

• ⊥ is not a well-formed state.

• When we say “for all states…” or “for some state…,” we don't include ⊥.

• We can't add a binding to ⊥: ⊥[v ↦ β] = ⊥.

• We can't bind a variable to ⊥: σ (v) ≠ ⊥ and σ [v ↦ ⊥] = ⊥.

• We can't take the value of a variable or expression in ⊥: If σ = ⊥ then σ (v) = σ (e) = ⊥. (More
succinctly, ⊥(v) = ⊥(e) = ⊥.)

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20235

CS 536: Science of Programming Mon 2023-01-31, 15:35 Class 6

• Operationally, execution halts as soon we generate ⊥ as a “state”: 〈 S , ⊥〉→ ⁰ 〈 E , ⊥〉 .

• Denotationally, we can't run a program in ⊥: M (S , ⊥) = { ⊥ }.

• From the properties we have, it follows that we can't evaluate something after generating ⊥.

• If 〈 S₁ , σ 〉 → 〈 E , ⊥〉 , then 〈 S₁ ; S₂ , σ 〉 → 〈 E , ⊥〉 .

• If M (S₁ , σ) = { ⊥ } , then M (S₁ ; S₂ , σ) = M (S₂ , M (S₁ , σ)) = M (S₂ , ⊥) = { ⊥ } .

• If W ≡ while B do S₁ od and σ (B) = T but M (S₁ , σ) = { ⊥ } , then M (W, σ) = { ⊥ } .

• (In detail, M (W, σ) = M (S₁ ; W, σ) = M (W, M (S₁ , σ)) = M (W, ⊥) = { ⊥ } .)

• Satisfaction and Validity and ⊥: Note: ⊥ never satisfies a predicate: ⊥⊭ p for all p, even if p is
the constant T . In general, we now have three possibilities for a state trying to satisfy a predi-
cate: σ ⊨ p , σ ⊨ ¬ p , or σ = ⊥. So σ ⊭ p implies σ ⊨ ¬ p or σ = ⊥, not just σ ⊨ ¬ p.

• Note if σ = ⊥, then σ ⊭ p and σ ⊭ ¬ p , both. The converse doesn't hold, though. E.g., if p is
the conditional expression if x = 0 then x / x = 0 else 2 = 2 fi, then { x = 0 } ⊭ p because 0 / 0 caus-
es a runtime error. For the false branch, { x = 1 } ⊨ 2 = 2, so { x = 1 } ⊭ ¬ (2 = 2) , so { x = 1 }
⊭ ¬ p.

• Logical negation and ⊥: We still have that σ ⊨ ¬ p implies σ ⊭ p , but the converse no longer
holds. It's possible now for the meaning of p to be ⊥ (we'll look at this more in a moment), so
σ ⊭ p doesn't imply σ ⊨ ¬ p. We need a new answer to the question of what σ ⊨ ¬ p means. The
solution is to treat ¬ p as shorthand for p→ F where F is the predicate false.

• Just a quick note: For the meaning of T and F, we have σ ⊨ T and σ ⊭ F for all σ ≠ ⊥. (We can
also derive F by defining F ≡ T ≠ T). For all σ that are not ⊥, we get σ ⊨ F→ F , so σ ⊨ ¬ F .

• Generating ⊥ while testing for satisfaction: We certainly don't want to say { y = 0 } ⊨ y / y = 1.
To handle the situation of σ ⊨ p when evaluation of p causes an error, we can add ⊥ to the se-
mantics of basic operations and tests.

• For any relation (like less than, etc), we have (β relation δ) yields ⊥ if β or δ are ⊥.

• For any binary operation (like addition, etc), we have (α operation β) yields ⊥ if β or δ = ⊥.

• Similarly for a unary operation, we have (operation ⊥) yields ⊥.

• [2023-01-31] this also applies to logical relations/operations.

• Some of the implications of this are reasonably intuitive: (⊥ plus one) yields ⊥. But some im-
plications are less intuitive: Semantic operations and tests like ⊥ ≠ 2, ⊥ < ⊥, ⊥ = ⊥, and ⊥ ≠ ⊥ all
yield ⊥ (not T or F).

• Returning to y / y = 1, we have σ ⊨ y / y = 1 iff σ (y / y) = σ (1) iff σ (y) ÷ σ (y) = 1 , so if σ (y) =
some β ≠ 0, then σ ⊨ y / y = 1 iff β ÷ β = 1 iff 1 = 1 iff T.

• But if σ (y) = 0 , then σ ⊨ y / y = 1 iff 0 ÷ 0 = 1 iff ⊥ = 1 iff ⊥. Hence σ ⊭ y / y = 1.

• But also, since ⊥ ≠ 1 is ⊥, we also have σ ⊭ y / y ≠ 1.

• So as expected, here σ satisfies neither y / y = 1 nor y / y ≠ 1.=

CS Dept, Illinois Institute of Technology – – © James Sasaki, 20236

