
CS 536: Science of Programming	 Mon 2023-01-24, 12:05	 Class 4

  State Updates, Satisfaction of

Quantified Predicates

  CS 536: Science of Programming, Spring 2023

2023-01-24 pp.4,5

A. Why?

• A predicate is satisfied relative to a state; it is valid if it is satisfied in all states.

• State updates occur when we introduce new variables or change the values of existing vari-
ables.

B. Outcomes

At the end of this class, you should

• Know what it means to update a state.

• Know what it means for a quantified predicate to be valid of be satisfied in a state.

C. "Updating" States

• To check quantified predicates for satisfaction, we need to look at different states that are relat-
ed to, but not identical to, our starting state.

• Example 1: For { y = 1 } ⊨∀x∈ ℤ . x ² ≥ y - 1 , we need to know that { y = 1 , x =α } ⊨ x ² ≥ y - 1 for
every α∈ ℤ . I.e., we need to know that

• ….

• { y = 1 , x = - 1 } ⊨ x ² ≥ y - 1

• { y = 1 , x = 0 } ⊨ x ² ≥ y - 1

• { y = 1 , x = 1 } ⊨ x ² ≥ y - 1

• { y = 1 , x = 2 } ⊨ x ² ≥ y - 1

• ….

• Similarly, for { z = 4 } ⊨ ∃x∈ ℤ . x ≥ z , we need { z = 4 , x =α } ⊨ x ≥ z for some particular inte-
ger α (α = 5 works nicely).

• There is a complicating factor. If the quantified variable already appears in the state, then we
need to replace its binding with one that gives the value we’re interested in checking.

• Example 2: We already know { z = 4 } ⊨ ∃x∈ ℤ . x ≥ z because { z = 4 , x = 5 } ⊨ x ≥ z . If we start
with the state { z = 4 , x = - 1 5 } , which already has a binding for x , we ignore it because at the
time we test for satisfaction of x ≥ z , we're using z = 4 . In other words, we test for { z = 4 , x = 5 }
⊨ x ≥ z regardless of whether we started with a value for x or not (i.e., { z = 4 , x = –15 } or
{ z = 4 }).

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20231

CS 536: Science of Programming	 Mon 2023-01-24, 12:05	 Class 4

• In { z = 4 , x = 5 } ⊨ ∃x∈ ℤ . x ≥ z , the x in x = 5 is not the same as the x in x ≥ z . The problem is
that we have two variables, both spelled “x ”. If we give the x ’s different names, the difference
becomes clear. Let xo be the “outer” x and xi be the “inner” x , then

  { z = 4 , xo = - 1 5 } ⊨ ∃xi∈ ℤ . xi ≥ z

 because

  { z = 4 , xo = -15 , xi = 5 } ⊨ xi ≥ z

• But there really isn't any use for us to keep xo because there's no way to access it. We would
need it more complicated languages where you have code that can take the then-current xo and
save it for later use.

• Definition: For any state σ , variable x , and value α , the update of σ at x with α , written 1

σ [x ↦α] , is the state that is a copy of σ except that it binds variable x to value α .

• Let τ = σ [x ↦α] , then τ (x) =α ; if variable y ≢ x , then τ (y) = σ (y).

• Note τ (x) =α regardless of whether σ (x) is defined or not. If σ (x) is defined, its type and
exact value are irrelevant.

• Set theoretically,

• If x has no binding in σ , then σ [x ↦α] is σ∪ { x =α }: It's like σ but has been extended with
x = α .

• If x has a binding in σ , say σ = { x = β } ∪ σ₀ where σ₀ is the rest of σ , then σ [x ↦α] is σ₀∪
{ x =α } . It's like σ but has the binding x =α , not x = β . (Having two bindings for x would be
illegal.)

• Important: Calling it the “update” of σ is kind of misleading because we're not modifying σ .

• Taking σ [x ↦α] does not do an update in place; if we define τ = σ [x ↦α] , then σ is still σ .

• Conceptually, we aren't modifying σ , we're looking at a state much like it.

• But “update” is the traditional name, and me personally, I can't find any word that's exactly
right. We're not always extending σ, we're not always superseding σ, ….

• Note though we can give σ [x ↦α] a new name, it's not required; we just have to write it out ex-
plicitly when we use it.

• If v stands for a variable (not literally the variable v) then if v ≡ x , then σ [x ↦α] (v) =
σ [x ↦α] (x) =α , otherwise (if x ≢ v), then σ [x ↦α] (v) = σ (v).

• (You have to read σ [x ↦α] (v) left-to-right — we’re taking the function σ [x ↦α] and apply-
ing it to v. I.e., σ [x ↦α] (v) = (σ [x ↦α]) (v), where the left pair of parentheses are for
grouping and the ones around v are for the function call.)

• Example 3: If σ = { x = 2 , y = 6 } , then σ [x ↦ 0] = { x = 0 , y = 6 } , so

 Unfortunately, “update” is the traditional name, and for myself, I can't find any word that's exactly right. 1

We're not always extending σ , we're not always superseding σ , ….

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20232

CS 536: Science of Programming	 Mon 2023-01-24, 12:05	 Class 4

• σ [x ↦ 0] (x) = 0 	 	 	 	 (Even though σ (x) = 2)

• σ [x ↦ 0] (y) = σ (y) = 6 	 	 (Since we didn’t update y)

• σ [x ↦ 0] (x + y) = 0 + 6 = 6 	 (Since the x in x + y gets evaluated to 0)

• σ [x ↦ 0] ⊨ x ² ≤ 0 		 	 	 (Even though our starting σ ⊭x ² ≤ 0)

• The value part of an update has to be a semantic value, not a syntactic one, so if you wanted to
add one to x , you can't use “σ [x ↦ x + 1] ” because it isn’t well-formed (the x on the left side of
↦must be syntactic, the x on the right side of ↦ has to be semantic, and the conflict can only be
resolved by making one of the x 's something else..

• On the other hand, “σ [x ↦ σ (x + 1)] ” or “σ [x ↦α + 1] where α = σ (x)” do make sense.

Multiple Updates

• We can do a sequence of updates on a state. E.g., σ [x ↦ 0] [y ↦ 8] is a doubly updated state. Se-
quences of updates are read left-to-right, so this is (σ [x ↦ 0])[y ↦ 8] .

• Example 4: If σ = { x = 2 , y = 6 } , then σ [x ↦ 0] [y ↦ 8] = { x = 0 , y = 6 } [y ↦ 8] = { x = 0 , y = 8 } .

• Example 5: σ [x ↦ 0] [y ↦ 8] = σ [y ↦ 8] [x ↦ 0] because he order of update doesn't matter if you
have two different variables.

• Example 6: σ [x ↦ 0] [x ↦ 1 7] = σ [x ↦ 1 7] ≠ σ [x ↦ 1 7] [x ↦ 0] = σ [x ↦ 0] : If you update the
same variable twice, the second update supersedes the first.

• Of course, if the second update is identical to the first, nothing happens: σ [x ↦α] [x ↦α]
= σ [x ↦α]

• If you have to evaluate an expression, be sure to do it in the correct state.

• Let σ (x) = 1 and let τ = σ [x ↦ 2] , then τ [z ↦ σ (x) + 10] maps z to σ (x) + 10 = 1 + 10 = 11 .
We can omit τ and also write σ [x ↦ 2] [z ↦ σ (x) + 10] , which gives the same state as τ .

• On the other hand, look at τ [z ↦ τ (x) + 10] . Since τ = σ [x ↦ 2] , the value of τ (x) + 10 = 12 ,
so τ [z ↦ τ (x) + 10] = τ [z ↦ 12] .

• If we hadn't given the name τ = σ [x ↦ 2] , then we would had to write
σ [x ↦ 2] [z ↦ σ [x ↦ 2] (x) + 10] . This is pretty ugly, so giving σ [x ↦ 2] a name like τ makes
things more readable.

D. Updating Array Values

• Updating array elements like b [0] is a bit more complicated than updating simple variables
like x and y . First, let’s extend our notion of updating states to updating general functions.

• Definition: If δ is a function on one argument and α and β are valid members of the domain
and range of δ respectively, then the update of δ at α with β , written δ [α↦ β] , is the function
defined by δ [α↦ β] (γ) = β if γ =α and δ [α↦ β] (γ) = δ (γ) if γ ≠α . The name α should be a
semantic constant (like 0 or zero).

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20233

CS 536: Science of Programming	 Mon 2023-01-24, 12:05	 Class 4

• [2023-01-24] Definition: Say σ is a (proper) state for an array b, with η = the function σ (b). If α
is a valid index value for b , then σ [b [α] ↦ β] means σ [b ↦ η [α↦ β]] . So updating σ at b [α]
with β involves updating σ with an updated version of η , namely η [α↦ β] , as the value of b .

• Example 7: Say σ = { x = 3 , b = (2 , 4 , 6) } , then σ [b [0] ↦ 8] = { x = 3 , b = (8 , 4 , 6) } . Here, σ (b)
is (2 , 4 , 6) as a function (which can also be written { (0 , 2) , (1 , 4) , (2 , 6)] } , so σ (b) [0 ↦ 8]
(the update of function σ (b)) is the function (2 , 4 , 6) [0 ↦ 8] = (8 , 4 , 6) .

• The notation σ [b [α] ↦ β] is a bit of a hack: The name b is syntactic but α is semantic. The re-
striction that α be a constant like 0 or zero avoids the complications that result if you allow α to
be the name for a complicated semantic expression like τ (e) . The intuition is that α models
the memory offset from b [0] that we need to find in order to do the update.

E. Satisfaction of Quantified Predicates

• One use of updated states is for describing how assignment works. (We’ll see this later.) The
other use for updated states is for defining when quantified predicates are satisfied.

• Definition: σ ⊨ ∃x∈ S . p if for one or more witness values α∈ S , it’s the case that σ [x ↦α] ⊨ p .
Note we're asking a hypothetical question: “If we were to calculate σ [x ↦α] , would we find that
it satisfies p ?”

• Example 8a: For any state σ , we can show σ ⊨ ∃x . x ² ≤ 0 using 0 as the witness:
σ [x ↦ 0] ⊨ x ² ≤ 0 , since σ [x ↦ 0] (x ² ≤ 0) = σ [x ↦ 0] (x ²) ≤ σ [x ↦ 0] (0) = (0 ² ≤ 0) = T .

• Remember, σ (x) is irrelevant, since σ [x ↦α] overrides any value for σ (x).

• Example 8b: If σ (x) is, say 5 , it’s still the case that σ ⊨ ∃x . x ² ≤ 0 using 0 as the witness be-
cause we σ [x ↦ 0] ⊨ x ² ≤ 0 , regardless of σ (x) = 5 .

• If there are many successful witness values, we don’t have to specify all of them; we just need
one.

• Example 9: If σ (y) = 3 , then σ ⊨ ∃x . x ² ≤ y with x = 0 or 1 (or - 1) as possible witness values.

• Definition: σ ⊨∀x∈ S.p if for every value α∈ S , we have σ [x ↦α] ⊨ p . (Again, this is hypotheti-
cal: “If for every α , we were to calculate σ [x ↦α] , would we find that it satisfies p ?”

• Example 10: To know σ ⊨∀x∈ ℤ . x ² ≥ x , we need to know σ [x ↦α] ⊨ x ² ≥ x for every α∈ ℤ .
Since for every integer α , indeed α ² is ≥ α , this does hold. Recall that it doesn’t matter
what σ (x) is, since we’re interested in σ [x ↦α] .

• When asking if σ satisfies ∀x∈ S . q or ∃x∈ S . q , we don’t care about σ (x). For a predicate p in
general, for the question “Does σ ⊨ p ?” only depends on how σ operates on the non-quantified
variables of p.

• Example 11: Since the body of ∀x∈ ℤ . x ² ≥ x uses only the quantified variable x , it doesn’t
matter what bindings σ has when checking σ ⊨∀x∈ ℤ . x ² ≥ x . Even σ =∅ works:
∅ ⊨∀x∈ ℤ . x ² ≥ x .

• Note with nested quantifiers, the notation does get more complicated.

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20234

CS 536: Science of Programming	 Mon 2023-01-24, 12:05	 Class 4

• Example 12: Intuitively, σ ⊨∀x . (x > y ²→ (∃z . (z > y ⁴))) means 
	 For every α∈ ℤ , if α > σ (y)² , then there is some β∈ ℤ such that β > σ (y) ⁴ . 
We can justify this observation by going through the definitions.

σ ⊨∀x . x > y ²→∃z . z > y ⁴

iff for every α∈ ℤ , σ [x ↦α] ⊨ x > y ²→∃z . z > y ⁴ 		 	 	 	 	 	 defn ⊨∀

iff for every α∈ ℤ , if σ [x ↦α] ⊨ x > y ² , then σ [x ↦α] ⊨ ∃z . z > y ⁴ 	 	 defn →

iff for every α∈ ℤ , if α > σ (y)² , then σ [x ↦α] ⊨ ∃z . z > y ⁴ 	 	 	 	 defn ... ⊨ x > y ²

iff for every α∈ ℤ , if α > σ (y)² , then there is some β∈ ℤ such that σ [x ↦α] [z ↦ β] ⊨ z > y ⁴  
[2023-01-23]	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 defn ⊨ ∃  

iff for every α∈ ℤ , if α > σ (y)² , then there is some β∈ ℤ such that β > σ (y) ⁴  
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 defn ...⊨ z > y ⁴

• Note defining intermediate names like "let τ = σ [x ↦α] [z ↦ β] " is allowed, if you wish.

Justifying DeMorgan’s Laws for Quantified Predicates

• In general, we want our systems of reasoning to be sound: We want the textual transformations
that make up logical equivalence to reflect truths about how our semantics work.

• Example 15: Here is a check of DeMorgan’s law for existentials, which says ¬ ∃x . p ⇔∀x . ¬ p .
Semantically, we want each of these to be valid if and only if the other is. So we need σ ⊨ ¬ ∃x . p
if and only if σ ⊨∀x . ¬ p .

σ ⊨ ¬ ∃x∈ S . p

iff σ ⊭ ∃x . p 	 	 	 	 	 	 	 	 	 	 	 defn of σ ⊨ ¬  
iff not (there is an α∈ S such that σ [x ↦α] ⊨ p)	 	 defn of σ ⊨ ∃  
iff for no α∈ S does σ [x ↦α] ⊨ p 	 	 	 	 	 	 (rephrasing)

iff for every α∈ S we have σ [x ↦α] ⊭ p	 	 	 	 equiv. of “no ⊨ ” vs “every ⊭ ”

iff for every α∈ S we have σ [x ↦α] ⊨ ¬ p 		 	 	 defn of σ ⊨ ¬ predicate

iff σ ⊨∀x . ¬ p 	 	 	 	 	 	 	 	 	 	 	 defn of σ ⊨∀

• Showing the semantic property that ⊨ ¬ ∃x . p↔∀x . ¬ p gives us a justification for adding
¬ ∃x . p ⇔∀x . ¬ p as a proof rule.

• Quick review of terms:

• Validity: ⊨ p means σ ⊨ p for all σ . I.e., “p is valid”. Example: ⊨ x + 1 > x

• Not valid ⊭ p means for some σ , σ ⊭ p . (σ is the counterexample state.)

• Example: ⊭ x ² > 0 iff for some σ , σ ⊭ x² > 0 iff for some σ , ¬ (σ (x) ² > 0) iff for some σ ,
σ (x) ² ≤ 0 . If σ (x) = 0 , then σ satisfies this requirement. ([2023-01-24] σ [x ↦ 0] is a coun-
terexample state.)

• Example: ⊭ ∃y. x < 0 ∨ x² < y < (x + 1) ²

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20235

CS 536: Science of Programming	 Mon 2023-01-24, 12:05	 Class 4

iff for some σ , σ ⊭ ∃y. x > 0 ∧ x² < y < (x + 1) ²

iff for some σ , for every α , σ [y ↦α] ⊭ x < 0 ∨ x² < y < (x + 1) ² .

iff for some σ , for every α , σ [y ↦α] ⊨ x ≥ 0 ∧ ¬ (x² < y < (x + 1) ²) [using DeMorgan's]

If we let β = σ (x) , then the line above holds

iff for some β , for every α , β ≥ 0 ∧ ¬ (β ² <α < (β + 1) ²) .

Using β = 0 satisfies this requirement.

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20236

