State Updates, Satisfaction of **Quantified Predicates**

CS 536: Science of Programming, Spring 2023

2023-01-24 pp.4,5

A. Why?

- A predicate is satisfied relative to a state; it is valid if it is satisfied in all states.
- State updates occur when we introduce new variables or change the values of existing variables.

B. Outcomes

At the end of this class, you should

- Know what it means to update a state.
- Know what it means for a quantified predicate to be valid of be satisfied in a state.

C. "Updating" States

- To check quantified predicates for satisfaction, we need to look at different states that are related to, but not identical to, our starting state.
- *Example 1*: For $\{y=1\} \models \forall x \in \mathbb{Z}$. $x^2 \ge y-1$, we need to know that $\{y=1, x=\alpha\} \models x^2 \ge y-1$ for every $\alpha \in \mathbb{Z}$. I.e., we need to know that

- {y = 1, x = -1} $\models x^2 \ge y 1$
- {y = 1, x = 0} $\models x^2 \ge y 1$
- {y = 1, x = 1} $\models x^2 \ge y 1$
- $\{y = 1, x = 2\} \models x^2 \ge y 1$
-
- Similarly, for $\{z = 4\} \models \exists x \in \mathbb{Z} : x \ge z$, we need $\{z = 4, x = \alpha\} \models x \ge z$ for some particular integer α (α = 5 works nicely).
- There is a complicating factor. If the quantified variable already appears in the state, then we need to *replace* its binding with one that gives the value we're interested in checking.
- **Example 2**: We already know $\{z = 4\} \models \exists x \in \mathbb{Z} : x \ge z$ because $\{z = 4, x = 5\} \models x \ge z$. If we start with the state $\{z = 4, x = -15\}$, which already has a binding for x, we ignore it because at the time we test for satisfaction of $x \ge z$, we're using z = 4. In other words, we test for $\{z = 4, x = 5\}$ $\models x \ge z$ regardless of whether we started with a value for x or not (i.e., $\{z = 4, x = -15\}$ or $\{z = 4\}$).

• In $\{z = 4, x = 5\} \models \exists x \in \mathbb{Z} . x \ge z$, the x in x = 5 is not the same as the x in $x \ge z$. The problem is that we have two variables, both spelled "x". If we give the x's different names, the difference becomes clear. Let xo be the "outer" x and xi be the "inner" x, then

$$\{z=4, xo=-15\} \models \exists xi \in \mathbb{Z} . xi \ge z$$

because

$$\{z = 4, xo = -15, xi = 5\} \models xi \ge z$$

- But there really isn't any use for us to keep *xo* because there's no way to access it. We would need it more complicated languages where you have code that can take the then-current *xo* and save it for later use.
- **Definition**: For any state σ , variable x, and value α , the **update**¹ **of** σ **at** x **with** α , written $\sigma[x \mapsto \alpha]$, is the state that is a copy of σ except that it binds variable x to value α .
 - Let $\tau = \sigma[x \mapsto \alpha]$, then $\tau(x) = \alpha$; if variable $y \neq x$, then $\tau(y) = \sigma(y)$.
 - Note $\tau(x) = \alpha$ regardless of whether $\sigma(x)$ is defined or not. If $\sigma(x)$ is defined, its type and exact value are irrelevant.
- Set theoretically,
 - If x has no binding in σ , then $\sigma[x \mapsto \alpha]$ is $\sigma \cup \{x = \alpha\}$: It's like σ but has been extended with $x = \alpha$.
 - If x has a binding in σ , say $\sigma = \{x = \beta\} \cup \sigma_0$ where σ_0 is the rest of σ , then $\sigma[x \mapsto \alpha]$ is $\sigma_0 \cup \{x = \alpha\}$. It's like σ but has the binding $x = \alpha$, not $x = \beta$. (Having two bindings for x would be illegal.)
- *Important*: Calling it the "update" of σ is kind of misleading because we're not modifying σ .
 - Taking $\sigma[x \mapsto \alpha]$ *does not do* an update in place; if we define $\tau = \sigma[x \mapsto \alpha]$, then σ is still σ .
 - Conceptually, we aren't modifying σ , we're looking at a state much like it.
 - But "update" is the traditional name, and me personally, I can't find any word that's exactly right. We're not always *extending* σ, we're not always *superseding* σ,
- Note though we can give $\sigma[x \mapsto \alpha]$ a new name, it's not required; we just have to write it out explicitly when we use it.
 - If *v* stands for a variable (not literally the variable *v*) then if $v \equiv x$, then $\sigma[x \mapsto \alpha](v) = \sigma[x \mapsto \alpha](x) = \alpha$, otherwise (if $x \neq v$), then $\sigma[x \mapsto \alpha](v) = \sigma(v)$.
 - (You have to read $\sigma[x \mapsto \alpha](v)$ left-to-right we're taking the function $\sigma[x \mapsto \alpha]$ and applying it to v. I.e., $\sigma[x \mapsto \alpha](v) = (\sigma[x \mapsto \alpha])(v)$, where the left pair of parentheses are for grouping and the ones around v are for the function call.)
- *Example 3*: If $\sigma = \{x = 2, y = 6\}$, then $\sigma[x \mapsto 0] = \{x = 0, y = 6\}$, so

-2-

¹ Unfortunately, "update" is the traditional name, and for myself, I can't find any word that's exactly right. We're not always *extending* σ , we're not always *superseding* σ ,

- $\sigma[x \mapsto 0](x) = 0$ (Even though $\sigma(x) = 2$)
- $\sigma[x \mapsto 0](y) = \sigma(y) = 6$ (Since we didn't update y)
- $\sigma[x \mapsto 0](x+y) = 0 + 6 = 6$ (Since the x in x+y gets evaluated to 0)
- $\sigma[x \mapsto 0] \models x^2 \le 0$ (Even though our starting $\sigma \nvDash x^2 \le 0$)
- The value part of an update has to be a semantic value, not a syntactic one, so if you wanted to add one to *x*, you can't use "σ[*x* ↦ *x* + 1]" because it isn't well-formed (the *x* on the left side of ↦ must be syntactic, the *x* on the right side of ↦ has to be semantic, and the conflict can only be resolved by making one of the *x*'s something else..
 - On the other hand, " $\sigma[x \mapsto \sigma(x+1)]$ " or " $\sigma[x \mapsto \alpha+1]$ where $\alpha = \sigma(x)$ " do make sense.

Multiple Updates

- We can do a sequence of updates on a state. E.g., $\sigma[x \mapsto 0][y \mapsto 8]$ is a doubly updated state. Sequences of updates are read left-to-right, so this is $(\sigma[x \mapsto 0])[y \mapsto 8]$.
- *Example 4*: If $\sigma = \{x = 2, y = 6\}$, then $\sigma[x \mapsto 0][y \mapsto 8] = \{x = 0, y = 6\}[y \mapsto 8] = \{x = 0, y = 8\}$.
- *Example 5*: $\sigma[x \mapsto 0][y \mapsto 8] = \sigma[y \mapsto 8][x \mapsto 0]$ because he order of update doesn't matter if you have two different variables.
- *Example 6*: $\sigma[x \mapsto 0][x \mapsto 17] = \sigma[x \mapsto 17] \neq \sigma[x \mapsto 17][x \mapsto 0] = \sigma[x \mapsto 0]$: If you update the same variable twice, the second update supersedes the first.
- Of course, if the second update is identical to the first, nothing happens: $\sigma[x \mapsto \alpha][x \mapsto \alpha] = \sigma[x \mapsto \alpha]$
- If you have to evaluate an expression, be sure to do it in the correct state.
 - Let $\sigma(x) = 1$ and let $\tau = \sigma[x \mapsto 2]$, then $\tau[z \mapsto \sigma(x) + 10]$ maps z to $\sigma(x) + 10 = 1 + 10 = 11$. We can omit τ and also write $\sigma[x \mapsto 2][z \mapsto \sigma(x) + 10]$, which gives the same state as τ .
 - On the other hand, look at $\tau[z \mapsto \tau(x) + 10]$. Since $\tau = \sigma[x \mapsto 2]$, the value of $\tau(x) + 10 = 12$, so $\tau[z \mapsto \tau(x) + 10] = \tau[z \mapsto 12]$.
 - If we hadn't given the name $\tau = \sigma[x \mapsto 2]$, then we would had to write $\sigma[x \mapsto 2][z \mapsto \sigma[x \mapsto 2](x) + 10]$. This is pretty ugly, so giving $\sigma[x \mapsto 2]$ a name like τ makes things more readable.

D. Updating Array Values

- Updating array elements like *b*[0] is a bit more complicated than updating simple variables like *x* and *y*. First, let's extend our notion of updating states to updating general functions.
- **Definition**: If δ is a function on one argument and α and β are valid members of the domain and range of δ respectively, then the **update of** δ **at** α **with** β , written $\delta[\alpha \mapsto \beta]$, is the function defined by $\delta[\alpha \mapsto \beta](\gamma) = \beta$ if $\gamma = \alpha$ and $\delta[\alpha \mapsto \beta](\gamma) = \delta(\gamma)$ if $\gamma \neq \alpha$. The name α should be a semantic constant (like <u>0</u> or zero).

- [2023-01-24] **Definition**: Say σ is a (proper) state for an array b, with η = the function $\sigma(b)$. If α is a valid index value for b, then $\sigma[b[\alpha] \mapsto \beta]$ means $\sigma[b \mapsto \eta[\alpha \mapsto \beta]]$. So updating σ at $b[\alpha]$ with β involves updating σ with an updated version of η , namely $\eta[\alpha \mapsto \beta]$, as the value of b.
- *Example* 7: Say $\sigma = \{x = 3, b = (2, 4, 6)\}$, then $\sigma[b[0] \mapsto 8] = \{x = 3, b = (8, 4, 6)\}$. Here, $\sigma(b)$ is (2, 4, 6) as a function (which can also be written $\{(0, 2), (1, 4), (2, 6)\}\}$, so $\sigma(b)[0 \mapsto 8]$ (the update of function $\sigma(b)$) is the function $(2, 4, 6)[0 \mapsto 8] = (8, 4, 6)$.
- The notation $\sigma[b[\alpha] \mapsto \beta]$ is a bit of a hack: The name *b* is syntactic but α is semantic. The restriction that α be a constant like <u>0</u> or <u>zero</u> avoids the complications that result if you allow α to be the name for a complicated semantic expression like $\tau(e)$. The intuition is that α models the <u>memory offset from b[0] that we need to find in order to do the update</u>.

E. Satisfaction of Quantified Predicates

- One use of updated states is for describing how assignment works. (We'll see this later.) The other use for updated states is for defining when quantified predicates are satisfied.
- *Definition*: σ⊨∃x∈S.p if for one or more *witness* values α∈S, it's the case that σ[x ↦ α] ⊨ p.
 Note we're asking a hypothetical question: "If we were to calculate σ[x ↦ α], would we find that it satisfies p?"
 - **Example 8a**: For any state σ , we can show $\sigma \models \exists x . x^2 \le 0$ using 0 as the witness: $\sigma[x \mapsto 0] \models x^2 \le 0$, since $\sigma[x \mapsto 0](x^2 \le 0) = \sigma[x \mapsto 0](x^2) \le \sigma[x \mapsto 0](0) = (0^2 \le 0) = T$.
- Remember, $\sigma(x)$ is irrelevant, since $\sigma[x \mapsto \alpha]$ overrides any value for $\sigma(x)$.
 - **Example 8b**: If $\sigma(x)$ is, say 5, it's still the case that $\sigma \models \exists x \, x^2 \le 0$ using 0 as the witness because we $\sigma[x \mapsto 0] \models x^2 \le 0$, regardless of $\sigma(x) = 5$.
- If there are many successful witness values, we don't have to specify all of them; we just need one.
 - *Example 9*: If $\sigma(y) = 3$, then $\sigma \models \exists x . x^2 \le y$ with x = 0 or 1 (or -1) as possible witness values.
- **Definition**: $\sigma \models \forall x \in S.p$ if for every value $\alpha \in S$, we have $\sigma[x \mapsto \alpha] \models p$. (Again, this is hypothetical: "If for every α , we were to calculate $\sigma[x \mapsto \alpha]$, would we find that it satisfies p?"
 - **Example 10**: To know $\sigma \models \forall x \in \mathbb{Z} . x^2 \ge x$, we need to know $\sigma[x \mapsto \alpha] \models x^2 \ge x$ for every $\alpha \in \mathbb{Z}$. Since for every integer α , indeed α^2 is $\ge \alpha$, this does hold. Recall that it doesn't matter what $\sigma(x)$ is, since we're interested in $\sigma[x \mapsto \alpha]$.
- When asking if σ satisfies $\forall x \in S. q$ or $\exists x \in S. q$, we don't care about $\sigma(x)$. For a predicate p in general, for the question "Does $\sigma \models p$?" only depends on how σ operates on the non-quantified variables of p.
 - **Example 11**: Since the body of $\forall x \in \mathbb{Z} . x^2 \ge x$ uses only the quantified variable x, it doesn't matter what bindings σ has when checking $\sigma \models \forall x \in \mathbb{Z} . x^2 \ge x$. Even $\sigma = \emptyset$ works: $\emptyset \models \forall x \in \mathbb{Z} . x^2 \ge x$.
- Note with nested quantifiers, the notation does get more complicated.

• **Example 12**: Intuitively, $\sigma \models \forall x. (x > y^2 \rightarrow (\exists z. (z > y^4)))$ means

For every $\alpha \in \mathbb{Z}$, if $\alpha > \sigma(y)^2$, then there is some $\beta \in \mathbb{Z}$ such that $\beta > \sigma(y)^4$. We can justify this observation by going through the definitions.

 $\sigma \models \forall x. x > y^2 \rightarrow \exists z. z > y^4$ iff for every $\alpha \in \mathbb{Z}$, $\sigma[x \mapsto \alpha] \models x > y^2 \rightarrow \exists z. z > y^4$ defn $\models \forall$ iff for every $\alpha \in \mathbb{Z}$, if $\sigma[x \mapsto \alpha] \models x > y^2$, then $\sigma[x \mapsto \alpha] \models \exists z. z > y^4$ defn \rightarrow iff for every $\alpha \in \mathbb{Z}$, if $\alpha > \sigma(y)^2$, then $\sigma[x \mapsto \alpha] \models \exists z. z > y^4$ defn $... \models x > y^2$ iff for every $\alpha \in \mathbb{Z}$, if $\alpha > \sigma(y)^2$, then there is some $\beta \in \mathbb{Z}$ such that $\sigma[x \mapsto \alpha][z \mapsto \beta] \models z > y^4$ [2023-01-23]
defn $\models \exists$ iff for every $\alpha \in \mathbb{Z}$, if $\alpha > \sigma(y)^2$, then there is some $\beta \in \mathbb{Z}$ such that $\beta > \sigma(y)^4$ defn $... \models z > y^4$

• Note defining intermediate names like "let $\tau = \sigma [x \mapsto \alpha] [z \mapsto \beta]$ " is allowed, if you wish.

Justifying DeMorgan's Laws for Quantified Predicates

- In general, we want our systems of reasoning to be *sound*: We want the textual transformations that make up logical equivalence to reflect truths about how our semantics work.
- **Example 15**: Here is a check of DeMorgan's law for existentials, which says $\neg \exists x . p \Leftrightarrow \forall x . \neg p$. Semantically, we want each of these to be valid if and only if the other is. So we need $\sigma \models \neg \exists x . p$ if and only if $\sigma \models \forall x . \neg p$.

$\sigma \vDash \exists x \in S.p$		
	$\operatorname{iff} \sigma \nvDash \exists x. p$	defn of $\sigma \vDash \neg$
	iff not (there is an $\alpha \in S$ such that $\sigma[x \mapsto \alpha] \models p$)	defn of $\sigma \models \exists$
	iff for no $\alpha \in S$ does $\sigma[x \mapsto \alpha] \models p$	(rephrasing)
	iff for every $\alpha \in S$ we have $\sigma [x \mapsto \alpha] \neq p$	equiv. of "no \vDash " vs "every \nvDash "
	iff for every $\alpha \in S$ we have $\sigma[x \mapsto \alpha] \models \neg p$	defn of $\sigma \vDash \neg$ predicate
	$\inf \sigma \vDash \forall x. \neg p$	defn of $\sigma \vDash \forall$

- Showing the semantic property that $\models \neg \exists x. p \Leftrightarrow \forall x. \neg p$ gives us a justification for adding $\neg \exists x. p \Leftrightarrow \forall x. \neg p$ as a proof rule.
- Quick review of terms:
 - *Validity*: $\vDash p$ means $\sigma \vDash p$ for all σ . I.e., "*p* is valid". Example: $\vDash x + 1 > x$
 - *Not valid* $\nvDash p$ means for some σ , $\sigma \nvDash p$. (σ is the counterexample state.)
 - **Example**: $\forall x^2 > 0$ iff for some $\sigma, \sigma \neq x^2 > 0$ iff for some $\sigma, \neg(\sigma(x)^2 > 0)$ iff for some σ , $\sigma(x)^2 \le 0$. If $\sigma(x) = 0$, then σ satisfies this requirement. ([2023-01-24] $\sigma[x \mapsto 0]$ is a counterexample state.)
 - *Example*: $\neq \exists y. x < 0 \lor x^2 < y < (x+1)^2$

iff for some σ , $\sigma \nvDash \exists y. x > 0 \land x^2 < y < (x+1)^2$ iff for some σ , for every α , $\sigma[y \bowtie \alpha] \nvDash x < 0 \lor x^2 < y < (x+1)^2$. iff for some σ , for every α , $\sigma[y \bowtie \alpha] \vDash x \ge 0 \land \neg (x^2 < y < (x+1)^2)$ [using DeMorgan's] If we let $\beta = \sigma(x)$, then the line above holds

iff for some β , for every α , $\beta \ge 0 \land \neg (\beta^2 < \alpha < (\beta + 1)^2)$.

Using $\beta = 0$ satisfies this requirement.