
CS 536: Science of Programming Class 3

  Types, Expressions, and Arrays

  CS 536: Science of Programming, Spring 2023
ver. Sun 2023-01-15, 18:00

A. Why?

• Expressions represent values relative to a state.

• Types describe common properties of sets of values.

• The value of an array is a function value from index values to array values.

B. Outcomes
At the end of this class, you should

• Know what expressions and their values we'll be using in our language

• Know how states are expanded to include values of arrays

C. Types and Expressions

• Let’s start looking at programming language we’ll be using.

• The datatypes will be pretty simple (no records or function types, for example).

• Primitive types: int (integers) and bool (boolean). We can add other types like characters,
strings, and floating-point numbers, but for what we’re doing, integers and booleans are
enough.

• Composite types: Multi-dimensional arrays of primitive types of values, with integer
indexes.

• Expressions are built from

• Constants: Integers (0, 1, -1, …) and boolean constants (T, F).

• Simple variables of primitive types.

• Operations

• On integers: Binary +, -, *, /, min, max, %, =, ≠, <, ≤, >, ≥, divides, Unary –, sqrt.

• / and sqrt truncate toward zero, to an integer. E.g., 13 / 3 = 4, 13 / –3 = –4, and
sqrt(17) = 4. Division and mod (%) by zero and sqrt of negative values generate
runtime errors.

• On booleans: ¬, ∧, ∨, →, ↔, =, ≠ (note = and ↔ mean the same thing).

• On arrays: size and array element selection.

• Conditional expressions

• if B then e₁ else e₂ fi. Semantically, if B evaluates to true, then evaluate e₁; if B evaluates
to false, then evaluate e₂. The C / Java syntax (B ? e₁ : e₂) is also okay.

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20231

CS 536: Science of Programming Class 3

• Restrictions: To ensure that the entire conditional expression has a consistent type, e₁
and e₂ must have the same type. (This is sometimes called “balancing”.) The type must
also be simple (not an array type or function type.

• Arrays

• As usual, b[e] is array element selection. size(b) gives the length of b. For multi-
dimensional arrays, we have b[e₁][e₂]...[en] and size1(b), size2(b), etc. Arrays are zero-
origin and fixed-size.

• You can have array parameters with functions and predicates (as in size(b)) .

• Restrictions: No array assignments, no expressions of type array; this includes array
slices (b[e₁] of a two-dimensional array, for example). To support these, we'd need
identifiers to map to memory locations, with a separate function mapping locations to
values. (This is also why we don't have pointers.)

• General restrictions

• No expressions with functional or array values. (So they all have primitive types.)

• Example: if B then f(x) else g(x) fi is legal; if B then f else g fi (x) is not.

• We don't have assignment expressions (we'll see later how to simulate them).

• We don't have records (adding them isn't that hard, but they don't really add much.
theoretically speaking).

• We won't explicitly declare variables; we will assume we can infer the types. The default
type is integer.

• Notation: c and d are constants; e and s are general expressions; B and C are boolean
expressions, a and b are array names, and u, v, etc. are variables. Greek letters like α and β
stand for semantic values.

D. Examples of Expressions

• Example 1: if x < 0 then 0 else sqrt(x) fi yields 0 if i is negative, otherwise it yields the square
root of x.

• Example 2: if x < 0 then x+y else x*y)+z fi means “If x < 0 evaluates to true, then we evaluate
x+y and add the result to z, otherwise evaluate x*y and add the result to z.” (x, y, and z must all
be integers.)

• Example 3: if i < 0 then b[0] else i ≥ size(b) then b[size(b)-1] else b[i] fi yields b[i] if i is in
range; if i is negative, it yields b[0]; if i is too large, it yields the last element of b.

• Example 4: b[if i < 0 then 0 else i ≥ size(b) then size(b)-1 else i fi] yields the same value as
Example 3, but it does this by calculating the index first.

• Example 5: A (conditional) expression can’t yield a function, so if B then f(x) else g(x) fi is legal;
if B then f else g fi (x) is not.

• Example 6: We can’t have array-valued expressions, so (assuming a and b are 1-dimensional
arrays), if x then a[0] else b[0]) fi is legal, if x then a else b fi[0] is not.

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20232

CS 536: Science of Programming Class 3

E. Syntactic Values and Semantic Values

• When we discuss the meanings of programs, some of the items are syntactic (like expressions)
and some items are semantic (values, states). So there's a problem with symbols like “2” or “+”.
Sometimes we use them in our programs; this is a syntactic use. But sometimes we mean a
mathematical value, the thing denoted by “2” or “two” or "plus" or so on.

• In general, the context tells you whether something is syntactic or semantic. E.g.,

• Example 7: In “Does x occur in the predicate p?” since p is a predicate, it is syntactic, so for
x to occur in it, x must be syntactic also.

• Example 8: In z ≡ 2+2, the ≡ symbol is for syntactic equality, so both z and 2+2 are syntactic.

• Example 9: In “σ(2+2) = 2+2 = 4, the σ is semantic (a state) and the first 2+2 is syntactic, since
we're looking for its value in σ. The second 2+2 is semantic because σ takes expressions and
returns semantic values. (Hence the second + sign is semantic). The result 4 is also
semantic. Also, the two equal signs are semantic equality.

• Example 10: "The value in σ of 2+2 is two plus two, which is four" is the same as Example 9
but it uses English to write out the semantic values and operations.

F. Semantic Values and Values of Expressions

• Notation: In this section, if I really want to emphasize that something is semantic, I'll underline
it. So just 2 is syntactic (i.e., the keystroke), but 2 is semantic (i.e., the number in ℕ). The same
semantic value often can be described in different ways: 2, two, 1+1, and one plus one, for
example.

• Example 11: Rewriting Examples 9 and 10: σ(2+2) = 2+2 =  4  or: the value in σ of 2+2 is two plus
two, which is four. Technically, the equality tests could be underlined, but σ(2+2) = 2+2 =  4 
really seems like more trouble than it's worth. Furthermore, = (underlined equal) looks a lot
like ≡ (syntactic equality).

• Example 12: If σ is the state that maps x to  5 , we could rewrite "σ = {x = 5 }” as “σ = {x = 5 } =
{(x, 5)}”.

• In general, expressions have values relative to a state. E.g., relative to {x = 1, y = 2}, the
expression x+y has the value 3. Recall that we write σ(x) for the value of the variable x and
extend this to σ(e) for the value of the expression e.

• The value of σ(e) depends on what kind of expression e is, so we use recursion on the structure
of e (the base cases are variables and constants and we recursively evaluate subexpressions).

• σ(x) = the value that σ binds variable x to

• σ(c) = the value of the constant c. E.g., σ(2) = 2 . (Note σ is irrelevant here.)

• σ(e₁ + e₂) = σ(e₁) plus σ(e₂) [and similar for –, *, etc.]

• σ(e₁ < e₂) = T iff σ(e₁) is less than σ(e₂) [similar for ≤, =, etc].

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20233

CS 536: Science of Programming Class 3

• σ(e₁ ∧ e₂) = T iff σ(e₁) and σ(e₂) are both = T [similar for ∨, etc].

• σ(if B then e₁ else e₂ fi) = σ(e₁) if σ(B) = T. It = σ(e₂) if σ(B) = F.

• We'll put off the σ(b[e]) case, the value of the array indexing expression b[e], for just a bit
until we look at the value of an array variable.

• Example 13: Let σ = {x = 1}, let τ = σ ∪ {y = 1}, and let e ≡ (x = if y > 0 then 17 else y fi).

• To calculate e, first we look up τ(x) and get  1 . (Since τ extends σ with a binding for y,
τ behaves like σ except on y.)

• Now we need τ(if y > 0 then 17 else y fi).

• τ(y > 0) means ”Is τ(y) greater than zero?” Since τ(y) =  1 , the answer is T.

• τ(y > 0) = T, so τ(if y > 0 then 17 else y fi) = τ(17). I.e., since the test evaluates to T, the
value of the conditional is the value of 17.

• τ(17) = 17, of course.

• So τ(if y > 0 then 17 else y fi) = 17.

• For the overall expression, we're comparing τ(x) and τ(if y > 0 then 17 else y fi) for
equality. I.e., we test  1  = 17 and we get F.

• So τ(e) = F.

• The empty state: Since a state is a set of bindings, the empty set ∅ is a state (the empty state).
It’s proper for any expression or predicate that doesn’t include variables. E.g., In state ∅, the
expression 2+2 evaluates to four. (In fact, since we don’t care about bindings for variables that
don’t appear in an expression, we can say that in any state σ, 2+2 evaluates to 4.

• Example 14: Let σ = ∅ (the empty state) then

• σ(2+2 = 4) = σ(2+2) equals σ(4) = … = 4 equals 4 = T.

• With operators, you have to distinguish the syntactic symbol from the semantic symbol. So
σ(v+w) = σ(v)  +  σ(w) is correct: The second plus is the semantic meaning of the syntactic
symbol +. You could also write σ(v+w) = σ(v) plus σ(w); here, plus has a semantic meaning.
(If the language under discussion includes an infix binary plus operator, then σ(v plus w) would
be legal.)

G. Arrays and Their Values

• Compare the usual way we write states on the blackboard. Below, the left state is σ = {x = 1,
y = F} = {(x, 1), (y, F)}. The right one, τ, defines an array variable b and an integer x.

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20234

σ τ 0 1 2

x 1 y F b 1 5 9 x 5

CS 536: Science of Programming Class 3

 
• We'll take the value of an array to be a function from index values to stored values, so τ(b[0]) =

3, τ(b[1]) = 5, and τ(b[2]) = 9. We could write τ = {b[0] = 3, b[1] = 5, b[2] = 9, x = 5} = {(b[0], 3),
(b[1], 5), (b[2], 9), (x, 5)}, but a more convenient notation would be nice.

• Notation: Let β be the function with β(0) = 3, β(1) = 5, β(2) = 9, then we can say τ = {b = β, x = 5} =
{(b, β), (x, 5)}. (I'm using a greek letter β because the function is semantic, taking index values to
memory values.). Since a function is a set of ordered pairs, we can also write β = {(0, 3), (1, 5), (2,
9)}. Since β is actually a sequence, let's allow ourselves to abbreviate this to β = (3, 5, 9). (Note
this last notation looks like the graphical picture of τ.)

• We we have a number of ways to express τ, all valid. Going from shortest to longest we have

• τ = {b = β, x = 5} where β = (3, 5, 9) A sequence

• τ = {b[0] = 3, b[1] = 5, b[2] = 9, x = 5} A set of individual bindings

• τ = {b = β, x = 5} where β = {(0, 3), (1, 5), (2, 9)} A set of ordered pairs

• τ = {b = β, x = 5} where β(0) = 3, β(1) = 5, β(2) = 9 A list of individual bindings

H. Value of An Array Indexing Expression

• Going back to the definition of the value of an expression in a state, here's the array case:

• σ(b[e]) = β(α) where β = σ(b) and α = σ(e). The variable b is an array name, so σ(b) = a function
we're calling β. We call β on the value of the index expression e, hence α = σ(e), and the value
β(α) is the meaning of b[e].

• You can also write σ(b[e]) = (σ(b))(σ(e)) if you don't want to define α and β. Function application
is left-associative, so σ(b)(σ(e)) = (σ(b))(σ(e)). I.e., σ(b) is a function we're applying to σ(e).

• So another way to write the definition is σ(b[e]) = σ(b)(σ(e)) = β(α) where β = σ(b) and α = σ(e).

• With our earlier example then, σ(b[x-4]) = σ(b)(σ(x-4)) = β (σ(x) minus four) = β(5 minus four) =
β(1) = 5, where β is as described earlier, β = (3, 5, 9).

• Example 15: Let σ = {x = 1, b = α} where α = (2, 0, 4). Then

• σ(x) = 1

• σ(x+1) =  σ(x) + σ(1) = 1+1 = 2

• σ(b) = α

• σ(b[x+1]) = (σ(b))(σ(x+1)) = α(2) = 4

• If we don't want to write out the intermediate steps first, we could write

• σ(b[x+1]) = (σ(b))( σ(x+1) ) = α(σ(x)+1) = α(1+1) = α(2) = 4.

• Example 16: Let σ = {x = 1, b = α} where α = (2, 0, 4), then

• σ(b[x+1]- 2) = σ(b[x+1]) –  σ(2) = (σ(b))(σ(x+1)) – 2
= (σ(b))(σ(x)+ 1)) – 2

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20235

CS 536: Science of Programming Class 3

= α(1+1) – 2
= α(2)–2 = 4 – 2 = 2.

CS Dept., Illinois Institute of Technology - - © J. Sasaki 20236

