Types, Expressions, and Arrays

CS 536: Science of Programming, Spring 2023

ver. Sun 2023-01-15, 18:00

A. Why?

- Expressions represent values relative to a state.
- Types describe common properties of sets of values.
- The value of an array is a function value from index values to array values.

B. Outcomes

At the end of this class, you should

- Know what expressions and their values we'll be using in our language
- Know how states are expanded to include values of arrays

C. Types and Expressions

- Let's start looking at programming language we'll be using.
- The datatypes will be pretty simple (no records or function types, for example).
- Primitive types: int (integers) and bool (boolean). We can add other types like characters, strings, and floating-point numbers, but for what we're doing, integers and booleans are enough.
- Composite types: Multi-dimensional arrays of primitive types of values, with integer indexes.
- Expressions are built from
- Constants: Integers ($0,1,-1, \ldots$) and boolean constants (T, F).
- Simple variables of primitive types.
- Operations
- On integers: Binary +, -, *, /, min, max, $\%,=, \neq,<, \leq,>, \geq$, divides, Unary - , sqrt.
- / and sqrt truncate toward zero, to an integer. E.g., $13 / 3=4,13 /-3=-4$, and $\operatorname{sqrt}(17)=4$. Division and $\bmod (\%)$ by zero and sqrt of negative values generate runtime errors.
- On booleans: $\neg, \wedge, ~ \vee, \rightarrow, \leftrightarrow,=, \neq($ note $=$ and \leftrightarrow mean the same thing).
- On arrays: size and array element selection.
- Conditional expressions
- if B then e_{1} else $e_{2} f i$. Semantically, if B evaluates to true, then evaluate e_{1}; if B evaluates to false, then evaluate e_{2}. The C / Java syntax (B ? $e_{1}: e_{2}$) is also okay.
- Restrictions: To ensure that the entire conditional expression has a consistent type, e_{1} and e_{2} must have the same type. (This is sometimes called "balancing".) The type must also be simple (not an array type or function type.
- Arrays
- As usual, $b[e]$ is array element selection. $\operatorname{size}(b)$ gives the length of b. For multidimensional arrays, we have $b\left[e_{1}\right]\left[e_{2}\right] \ldots\left[e_{n}\right]$ and $\operatorname{size} 1(b), \operatorname{size} 2(b)$, etc. Arrays are zeroorigin and fixed-size.
- You can have array parameters with functions and predicates (as in $\operatorname{size}(b)$).
- Restrictions: No array assignments, no expressions of type array; this includes array slices ($b\left[e_{1}\right]$ of a two-dimensional array, for example). To support these, we'd need identifiers to map to memory locations, with a separate function mapping locations to values. (This is also why we don't have pointers.)

- General restrictions

- No expressions with functional or array values. (So they all have primitive types.)
- Example: if B then $f(x)$ else $g(x)$ fis is legal; if B then f else $g \boldsymbol{f i}(x)$ is not.
- We don't have assignment expressions (we'll see later how to simulate them).
- We don't have records (adding them isn't that hard, but they don't really add much. theoretically speaking).
- We won't explicitly declare variables; we will assume we can infer the types. The default type is integer.
- Notation: c and d are constants; e and s are general expressions; B and C are boolean expressions, a and b are array names, and u, v, etc. are variables. Greek letters like α and β stand for semantic values.

D. Examples of Expressions

- Example 1: if $x<0$ then 0 else sqrt(x) fi yields 0 if i is negative, otherwise it yields the square root of x.
- Example 2: if $x<0$ then $x+y$ else $\left.x^{*} y\right)+z$ fi means "If $x<0$ evaluates to true, then we evaluate $x+y$ and add the result to z, otherwise evaluate $x^{*} y$ and add the result to z." (x, y, and z must all be integers.)
- Example 3: if $i<0$ then b[0] else $i \geq \operatorname{size}(b)$ then b[size(b)-1] else b[i]fi yields b[i] if i is in range; if i is negative, it yields $b[0]$; if i is too large, it yields the last element of b.
- Example 4: b[if $i<0$ then 0 else $i \geq \operatorname{size}(b)$ then size(b)-1 else $i f i]$ yields the same value as Example 3, but it does this by calculating the index first.
- Example 5: A (conditional) expression can’t yield a function, so if B then $f(x)$ else $g(x) f i$ is legal; if B then f else $g \boldsymbol{f i}(x)$ is not.
- Example 6: We can't have array-valued expressions, so (assuming a and b are 1-dimensional arrays), if x then $a[0]$ else $b[0]$) $f i$ is legal, if x then a else bfi[0] is not.

E. Syntactic Values and Semantic Values

- When we discuss the meanings of programs, some of the items are syntactic (like expressions) and some items are semantic (values, states). So there's a problem with symbols like " 2 " or " + ". Sometimes we use them in our programs; this is a syntactic use. But sometimes we mean a mathematical value, the thing denoted by "2" or "two" or "plus" or so on.
- In general, the context tells you whether something is syntactic or semantic. E.g.,
- Example 7: In "Does x occur in the predicate p ?" since p is a predicate, it is syntactic, so for x to occur in it, x must be syntactic also.
- Example 8: In $z \equiv 2+2$, the \equiv symbol is for syntactic equality, so both z and $2+2$ are syntactic.
- Example 9: In " $\sigma(2+2)=2+2=4$, the σ is semantic (a state) and the first $2+2$ is syntactic, since we're looking for its value in σ. The second $2+2$ is semantic because σ takes expressions and returns semantic values. (Hence the second + sign is semantic). The result 4 is also semantic. Also, the two equal signs are semantic equality.
- Example 10: "The value in σ of $2+2$ is two plus two, which is four" is the same as Example 9 but it uses English to write out the semantic values and operations.

F. Semantic Values and Values of Expressions

- Notation: In this section, if I really want to emphasize that something is semantic, I'll underline it. So just 2 is syntactic (i.e., the keystroke), but $\underline{2}$ is semantic (i.e., the number in \mathbb{N}). The same semantic value often can be described in different ways: $\underline{2}$, two,$\underline{1+1}$, and one plus one, for example.
- Example 11: Rewriting Examples 9 and 10: $\sigma(2+2)=\underline{2+2}=\underline{4}$ or: the value in σ of $2+2$ is two plus two, which is four. Technically, the equality tests could be underlined, but $\sigma(2+2) \equiv 2+2=4$ really seems like more trouble than it's worth. Furthermore, \equiv (underlined equal) looks a lot like \equiv (syntactic equality).
- Example 12: If $\underline{\sigma}$ is the state that maps x to $\underline{5}$, we could rewrite " $\sigma=\{x=5\}$ " as" $\underline{\sigma}=\{x=\underline{5}\}=$ $\{(x, 5)\}$ ".
- In general, expressions have values relative to a state. E.g., relative to $\{x=\underline{1}, y=\underline{2}\}$, the expression $x+y$ has the value $\underline{3}$. Recall that we write $\sigma(x)$ for the value of the variable x and extend this to $\sigma(e)$ for the value of the expression e.
- The value of $\sigma(e)$ depends on what kind of expression e is, so we use recursion on the structure of e (the base cases are variables and constants and we recursively evaluate subexpressions).
- $\sigma(x)=$ the value that σ binds variable x to
- $\sigma(c)=$ the value of the constant c. E.g., $\sigma(2)=\underline{2}$. (Note σ is irrelevant here.)
- $\sigma\left(e_{1}+e_{2}\right)=\sigma\left(e_{1}\right)$ plus $\sigma\left(e_{2}\right)$ [and similar for - , ${ }^{*}$, etc.]
- $\sigma\left(e_{1}<e_{2}\right)=\underline{T}$ iff $\sigma\left(e_{1}\right)$ is less than $\sigma\left(e_{2}\right)$ [similar for $\leq,=$, etc].
- $\sigma\left(e_{1} \wedge e_{2}\right)=\underline{T}$ iff $\sigma\left(e_{1}\right)$ and $\sigma\left(e_{2}\right)$ are both $=\underline{T}$ [similar for v, etc].
- $\sigma\left(\right.$ if B then e_{1} else $\left.e_{2} f i\right)=\sigma\left(e_{1}\right)$ if $\sigma(B)=\underline{T}$. It $=\sigma\left(e_{2}\right)$ if $\sigma(B)=\underline{F}$.
- We'll put off the $\sigma(b[e])$ case, the value of the array indexing expression $b[e]$, for just a bit until we look at the value of an array variable.
- Example 13: Let $\sigma=\{x=1\}$, let $\tau=\sigma \cup\{y=1\}$, and let $e \equiv(x=$ if $y>0$ then 17 else y fi).
- To calculate e, first we look up $\tau(x)$ and get $\underline{1}$. (Since τ extends σ with a binding for y, τ behaves like σ except on y.)
- Now we need $\tau($ if $y>0$ then 17 else y fi).
- $\tau(y>0)$ means "Is $\tau(y)$ greater than zero?" Since $\tau(\mathrm{y})=\underline{1}$, the answer is \underline{T}.
- $\tau(y>0)=\underline{T}$, so $\tau($ if $y>0$ then 17 else y fi $)=\tau(17)$. I.e., since the test evaluates to \underline{T}, the value of the conditional is the value of 17 .
- $\tau(17)=17$, of course.
- So $\tau($ if $y>0$ then 17 else y fi $)=\underline{17}$.
- For the overall expression, we're comparing $\tau(x)$ and $\tau($ if $y>0$ then 17 else y fi) for equality. I.e., we test $\underline{1}=\underline{17}$ and we get $\underline{\underline{F}}$.
- $\operatorname{So} \tau(e)=\underline{F}$.
- The empty state: Since a state is a set of bindings, the empty set \varnothing is a state (the empty state). It's proper for any expression or predicate that doesn't include variables. E.g., In state \varnothing, the expression $2+2$ evaluates to four. (In fact, since we don't care about bindings for variables that don't appear in an expression, we can say that in any state $\sigma, 2+2$ evaluates to 4 .
- Example 14: Let $\sigma=\varnothing$ (the empty state) then
- $\sigma(2+2=4)=\sigma(2+2)$ equals $\sigma(4)=\ldots=\underline{4}$ equals $\underline{4}=\underline{T}$.
- With operators, you have to distinguish the syntactic symbol from the semantic symbol. So $\sigma(v+w)=\sigma(v)+\sigma(w)$ is correct: The second plus is the semantic meaning of the syntactic symbol + . You could also write $\sigma(v+w)=\sigma(v)$ plus $\sigma(w)$; here, plus has a semantic meaning. (If the language under discussion includes an infix binary plus operator, then σ (v plus w) would be legal.)

G. Arrays and Their Values

- Compare the usual way we write states on the blackboard. Below, the left state is $\sigma=\{x=1$, $y=\mathrm{F}\}=\{(x, 1),(y, \mathrm{~F})\}$. The right one, τ, defines an array variable b and an integer x.
- We'll take the value of an array to be a function from index values to stored values, so $\tau(b[0])=$ $3, \tau(b[1])=5$, and $\tau(b[2])=9$. We could write $\tau=\{b[0]=3, b[1]=5, b[2]=9, x=5\}=\{(b[0], 3)$, ($b[1], 5$), ($b[2], 9),(x, 5)\}$, but a more convenient notation would be nice.
- Notation: Let β be the function with $\beta(0)=3, \beta(1)=5, \beta(2)=9$, then we can say $\tau=\{b=\beta, x=5\}=$ $\{(b, \beta),(x, 5)\}$. (I'm using a greek letter β because the function is semantic, taking index values to memory values.). Since a function is a set of ordered pairs, we can also write $\beta=\{(0,3),(1,5),(2$, $9)\}$. Since β is actually a sequence, let's allow ourselves to abbreviate this to $\beta=(3,5,9)$. (Note this last notation looks like the graphical picture of τ.)
- We we have a number of ways to express τ, all valid. Going from shortest to longest we have
- $\tau=\{b=\beta, x=5\}$ where $\beta=(3,5,9)$
- $\tau=\{b[0]=3, b[1]=5, b[2]=9, x=5\}$
- $\tau=\{b=\beta, x=5\}$ where $\beta=\{(0,3),(1,5),(2,9)\}$
- $\tau=\{b=\beta, x=5\}$ where $\beta(0)=3, \beta(1)=5, \beta(2)=9$

A sequence

A set of individual bindings
A set of ordered pairs
A list of individual bindings

H. Value of An Array Indexing Expression

- Going back to the definition of the value of an expression in a state, here's the array case:
- $\sigma(b[e])=\beta(\alpha)$ where $\beta=\sigma(b)$ and $\alpha=\sigma(e)$. The variable b is an array name, so $\sigma(b)=$ a function we're calling β. We call β on the value of the index expression e, hence $\alpha=\sigma(e)$, and the value $\beta(\alpha)$ is the meaning of $b[e]$.
- You can also write $\sigma(b[e])=(\sigma(b))(\sigma(e))$ if you don't want to define α and β. Function application is left-associative, so $\sigma(b)(\sigma(e))=(\sigma(b))(\sigma(e))$. I.e., $\sigma(b)$ is a function we're applying to $\sigma(e)$.
- So another way to write the definition is $\sigma(b[e])=\sigma(b)(\sigma(e))=\beta(\alpha)$ where $\beta=\sigma(b)$ and $\alpha=\sigma(e)$.
- With our earlier example then, $\sigma(b[x-4])=\sigma(b)(\sigma(x-4))=\beta(\sigma(x)$ minus four $)=\beta(5$ minus four $)=$ $\beta(1)=5$, where β is as described earlier, $\beta=(3,5,9)$.
- Example 15: Let $\sigma=\{x=1, b=\alpha\}$ where $\alpha=(2,0,4)$. Then
- $\sigma(x)=1$
- $\sigma(x+1)=\sigma(x)+\sigma(1)=1+1=2$
- $\sigma(b)=a$
- $\sigma(b[x+1])=(\sigma(b))(\sigma(x+1))=\alpha(2)=4$
- If we don't want to write out the intermediate steps first, we could write
- $\sigma(b[x+1])=(\sigma(b))(\sigma(x+1))=\alpha(\sigma(x)+1)=\alpha(1+1)=\alpha(2)=4$.
- Example 16: Let $\sigma=\{x=1, b=\alpha\}$ where $\alpha=(2,0,4)$, then
- $\sigma(b[x+1]-2)=\sigma(b[x+1])-\sigma(2)=(\sigma(b))(\sigma(x+1))-\underline{2}$
$=(\sigma(b))(\sigma(x)+1))-\underline{2}$

$$
\begin{aligned}
& =\alpha(\underline{1+1})-\underline{2} \\
& =\underline{\alpha(2)-2}=\underline{4-2}=\underline{2} .
\end{aligned}
$$

