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A. Why? 

• Expressions represent values relative to a state. 

• Types describe common properties of sets of values. 

• The value of an array is a function value from index values to array values. 

B. Outcomes 
At the end of this class, you should 

• Know what expressions and their values we'll be using in our language 

• Know how states are expanded to include values of arrays 

C. Types and Expressions 

• Let’s start looking at programming language we’ll be using. 

• The datatypes will be pretty simple (no records or function types, for example). 

• Primitive types: int (integers) and bool (boolean).  We can add other types like characters, 
strings, and floating-point numbers, but for what we’re doing, integers and booleans are 
enough. 

• Composite types: Multi-dimensional arrays of primitive types of values, with integer 
indexes. 

• Expressions are built from 

• Constants: Integers (0, 1, -1, …) and boolean constants (T, F). 

• Simple variables of primitive types. 

• Operations 

• On integers: Binary +, -, *, /, min, max, %, =, ≠, <, ≤, >, ≥, divides, Unary –, sqrt. 

• / and sqrt truncate toward zero, to an integer.  E.g., 13 / 3 = 4,  13 / –3 = –4, and  
sqrt(17) = 4.  Division and mod (%) by zero and sqrt of negative values generate 
runtime errors. 

• On booleans: ¬, ∧, ∨, →, ↔, =, ≠ (note = and ↔ mean the same thing). 

• On arrays: size and array element selection. 

• Conditional expressions  

• if B then e₁ else e₂ fi.  Semantically, if B evaluates to true, then evaluate e₁; if B evaluates 
to false, then evaluate e₂.  The C / Java syntax (B ? e₁ : e₂) is also okay. 
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• Restrictions: To ensure that the entire conditional expression has a consistent type, e₁ 
and e₂ must have the same type.  (This is sometimes called “balancing”.)  The type must 
also be simple (not an array type or function type. 

• Arrays 

• As usual, b[e] is array element selection.  size(b) gives the length of b. For multi-
dimensional arrays, we have b[e₁][e₂]...[en] and size1(b), size2(b), etc.  Arrays are zero-
origin and fixed-size. 

• You can have array parameters with functions and predicates (as in size(b)) . 

• Restrictions: No array assignments, no expressions of type array; this includes array 
slices (b[e₁] of a two-dimensional array, for example).  To support these, we'd need 
identifiers to map to memory locations, with a separate function mapping locations to 
values.  (This is also why we don't have pointers.)   

• General restrictions 

• No expressions with functional or array values.  (So they all have primitive types.) 

• Example: if B then f(x) else g(x) fi is legal; if B then f else g fi (x) is not. 

• We don't have assignment expressions (we'll see later how to simulate them). 

• We don't have records (adding them isn't that hard, but they don't really add much. 
theoretically speaking). 

• We won't explicitly declare variables; we will assume we can infer the types.  The default 
type is integer. 

• Notation: c and d are constants; e and s are general expressions; B and C are boolean 
expressions, a and b are array names, and u, v, etc. are variables. Greek letters like α and β 
stand for semantic values. 

D. Examples of Expressions 

• Example 1: if x < 0 then 0 else sqrt(x) fi yields 0 if i is negative, otherwise it yields the square 
root of x. 

• Example 2: if x < 0 then x+y else x*y)+z fi means “If x < 0 evaluates to true, then we evaluate 
x+y and add the result to z, otherwise evaluate x*y and add the result to z.”  (x, y, and z must all 
be integers.) 

• Example 3: if i < 0 then b[0] else i ≥ size(b) then b[size(b)-1] else b[i] fi yields b[i] if i is in 
range; if i is negative, it yields b[0]; if i is too large, it yields the last element of b. 

• Example 4: b[ if i < 0 then 0 else i ≥ size(b) then size(b)-1 else i fi ] yields the same value as 
Example 3, but it does this by calculating the index first. 

• Example 5: A (conditional) expression can’t yield a function, so if B then f(x) else g(x) fi is legal; 
if B then f else g fi (x) is not. 

• Example 6: We can’t have array-valued expressions, so (assuming a and b are 1-dimensional 
arrays), if x then a[0] else b[0]) fi is legal, if x then a else b fi[0] is not. 
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E. Syntactic Values and Semantic Values 

• When we discuss the meanings of programs, some of the items are syntactic (like expressions) 
and some items are semantic (values, states).  So there's a problem with symbols like “2” or “+”.  
Sometimes we use them in our programs; this is a syntactic use.  But sometimes we mean a 
mathematical value, the thing denoted by “2” or “two” or "plus" or so on. 

• In general, the context tells you whether something is syntactic or semantic.  E.g., 

• Example 7: In “Does x occur in the predicate p?” since p is a predicate, it is syntactic, so for 
x to occur in it, x must be syntactic also. 

• Example 8: In z ≡ 2+2, the ≡ symbol is for syntactic equality, so both z and 2+2 are syntactic. 

• Example 9: In “σ(2+2) = 2+2 = 4, the σ is semantic (a state) and the first 2+2 is syntactic, since 
we're looking for its value in σ.  The second 2+2 is semantic because σ takes expressions and 
returns semantic values.  (Hence the second + sign is semantic).  The result 4 is also 
semantic.  Also, the two equal signs are semantic equality. 

• Example 10: "The value in σ of 2+2 is two plus two, which is four" is the same as Example 9 
but it uses English to write out the semantic values and operations. 

F. Semantic Values and Values of Expressions 

• Notation: In this section, if I really want to emphasize that something is semantic, I'll underline 
it.  So just 2 is syntactic (i.e., the keystroke), but 2 is semantic (i.e., the number in ℕ).  The same 
semantic value often can be described in different ways: 2, two, 1+1, and one plus one, for 
example. 

• Example 11:  Rewriting Examples 9 and 10: σ(2+2) = 2+2 =  4  or: the value in σ of 2+2 is two plus 
two, which is four.  Technically, the equality tests could be underlined, but σ(2+2) = 2+2 =  4  
really seems like more trouble than it's worth.  Furthermore, = (underlined equal) looks a lot 
like ≡ (syntactic equality). 

• Example 12: If σ is the state that maps x to  5 , we could rewrite "σ = {x = 5 }” as  “σ = {x = 5 } = 
{(x, 5)}”.   

• In general, expressions have values relative to a state.  E.g., relative to {x = 1, y = 2}, the 
expression x+y has the value 3. Recall that we write σ(x) for the value of the variable x and 
extend this to σ(e) for the value of the expression e. 

• The value of σ(e) depends on what kind of expression e is, so we use recursion on the structure 
of e (the base cases are variables and constants and we recursively evaluate subexpressions). 

• σ(x) = the value that σ binds variable x to 

• σ(c) = the value of the constant c.  E.g., σ(2) =  2 .  (Note σ is irrelevant here.) 

• σ(e₁ + e₂) = σ(e₁) plus σ(e₂) [and similar for –, *, etc.] 

• σ(e₁ < e₂) = T iff σ(e₁) is less than σ(e₂) [similar for ≤, =, etc]. 
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• σ(e₁ ∧ e₂) = T iff σ(e₁) and σ(e₂) are both = T [similar for ∨, etc]. 

• σ(if B then e₁ else e₂ fi) = σ(e₁) if σ(B) = T.  It = σ(e₂) if σ(B) = F. 

• We'll put off the σ(b[e]) case, the value of the array indexing expression b[e], for just a bit 
until we look at the value of an array variable. 

• Example 13: Let σ = {x = 1}, let τ = σ ∪ {y = 1}, and let e ≡ (x = if y > 0 then 17 else y fi). 

• To calculate e, first we look up τ(x) and get  1 .  (Since τ extends σ with a binding for y, 
τ behaves like σ except on y.) 

• Now we need τ( if y > 0 then 17 else y fi ). 

• τ(y > 0) means ”Is τ(y) greater than zero?”  Since τ(y) =  1 , the answer is T. 

• τ(y > 0) = T, so τ( if y > 0 then 17 else y fi ) = τ(17).  I.e., since the test evaluates to T, the 
value of the conditional is the value of 17. 

• τ(17) = 17, of course. 

• So τ( if y > 0 then 17 else y fi ) = 17.  

• For the overall expression, we're comparing τ(x) and τ( if y > 0 then 17 else y fi ) for 
equality.  I.e., we test  1  = 17 and we get F. 

• So τ(e) = F. 

• The empty state: Since a state is a set of bindings, the empty set ∅ is a state (the empty state).  
It’s proper for any expression or predicate that doesn’t include variables.  E.g., In state ∅, the 
expression 2+2 evaluates to four.  (In fact, since we don’t care about bindings for variables that 
don’t appear in an expression, we can say that in any state σ, 2+2 evaluates to 4. 

• Example 14: Let σ = ∅ (the empty state) then 

• σ(2+2 = 4) = σ(2+2) equals σ(4) = … =  4  equals  4  = T. 

• With operators, you have to distinguish the syntactic symbol from the semantic symbol.  So 
σ(v+w) = σ(v)  +  σ(w) is correct: The second plus is the semantic meaning of the syntactic 
symbol +.  You could also write σ(v+w) = σ(v) plus σ(w); here, plus has a semantic meaning.  
(If the language under discussion includes an infix binary plus operator, then σ(v plus w) would 
be legal.) 

G. Arrays and Their Values 

• Compare the usual way we write states on the blackboard.   Below, the left state is σ = {x = 1, 
y = F} = {(x, 1), (y, F)}.  The right one, τ, defines an array variable b and an integer x. 
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• We'll take the value of an array to be a function from index values to stored values, so τ(b[0]) = 

3, τ(b[1]) = 5, and τ(b[2]) = 9.  We could write τ = {b[0] = 3, b[1] = 5, b[2] = 9, x = 5} = {(b[0], 3), 
(b[1], 5), (b[2], 9), (x, 5)}, but a more convenient notation would be nice. 

• Notation: Let β be the function with β(0) = 3, β(1) = 5, β(2) = 9, then we can say τ = {b = β, x = 5} = 
{(b, β), (x, 5)}.  (I'm using a greek letter β because the function is semantic, taking index values to 
memory values.). Since a function is a set of ordered pairs, we can also write β = {(0, 3), (1, 5), (2, 
9)}. Since β is actually a sequence, let's allow ourselves to abbreviate this to β = (3, 5, 9).  (Note 
this last notation looks like the graphical picture of τ.) 

• We we have a number of ways to express τ, all valid.  Going from shortest to longest we have 

• τ = {b = β, x = 5} where β = (3, 5, 9)      A sequence 

• τ = {b[0] = 3, b[1] = 5, b[2] = 9, x = 5}      A set of individual bindings 

• τ = {b = β, x = 5} where β = {(0, 3), (1, 5), (2, 9)}   A set of ordered pairs  

• τ = {b = β, x = 5} where β(0) = 3, β(1) = 5, β(2) = 9  A list of individual bindings 

H. Value of An Array Indexing Expression 

• Going back to the definition of the value of an expression in a state, here's the array case: 

• σ(b[e]) = β(α) where β = σ(b) and α = σ(e).  The variable b is an array name, so σ(b) = a function 
we're calling β.  We call β on the value of the index expression e, hence α = σ(e), and the value 
β(α) is the meaning of b[e]. 

• You can also write σ(b[e]) = (σ(b))(σ(e)) if you don't want to define α and β.  Function application 
is left-associative, so σ(b)(σ(e)) = (σ(b))(σ(e)).  I.e., σ(b) is a function we're applying to σ(e). 

• So another way to write the definition is σ(b[e]) = σ(b)(σ(e)) = β(α) where β = σ(b) and α = σ(e). 

• With our earlier example then, σ(b[x-4]) = σ(b)(σ(x-4)) = β (σ(x) minus four) = β(5 minus four) = 
β(1) = 5, where β is as described earlier, β = (3, 5, 9).  

• Example 15: Let σ = {x = 1, b = α} where α = (2, 0, 4).  Then 

• σ(x) = 1 

• σ(x+1) =  σ(x) + σ(1) = 1+1 = 2 

• σ(b) = α 

• σ(b[x+1]) = (σ(b))(σ(x+1)) = α(2) = 4 

• If we don't want to write out the intermediate steps first, we could write 

• σ(b[x+1]) = (σ(b))( σ(x+1) ) = α(σ(x)+1) = α(1+1) = α(2) = 4. 

• Example 16: Let σ = {x = 1, b = α} where α = (2, 0, 4), then 

• σ(b[x+1]- 2) = σ(b[x+1]) –  σ(2) = (σ(b))(σ(x+1)) – 2  
= (σ(b))(σ(x)+ 1)) – 2 
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= α(1+1) – 2 
= α(2)–2 = 4 – 2 = 2.
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