
CS 536: Science of Programming	 Mon 2023-01-09, 18:47	 Class 2

  Propositional and Predicate Logic

  CS 536: Science of Programming, Fall 2022

ver Tue 2023-01-10, 14:35

A. Why

• Reviewing/overviewing logic is necessary because we’ll be using it in the course.

• We’ll be using predicates to write specifications for programs.

• Predicates and programs have meaning relative to states.

B. Outcomes

At the end of this class, you should

• Be able to prove simple logical equivalences of propositions from a basic set of rules.

• Know the syntax for predicates (including primitive tests and the quantifiers ∀ and ∃).

• Understand how states for predicates differ from states for propositions.

• Understand how ⊨ works for non-quantified predicates (for quantified ones we'll need state
updates, which we'll see next time).

C. In Case You Missed The First Class

• The course webpages are at http://cs.iit.edu/~cs536/. Read it carefully for policies and refer to it
often to download class notes and homework assignments. Check myIIT→Blackboard for class
videos.

D. Formal Proofs of Truth

• For propositions, in addition to semantic truth based on truth tables, there is also a notion of
provable truth based on syntactic manipulation of propositions. E.g., “if p∧q is provable then
q∧p is provable” or “q∧p follows from p∧q ”.

• Notation: if ⊢ p∧q then ⊢ q∧p . The ⊢ symbol is a “turnstile” (compare to ⊨ for semantic truth)
and it's pronounced “can prove” or something similar.

• Definition. Given a set of proof rules, two propositions are provably equivalent if each
follows from the other according to those rules. E.g., p∧q and q∧p are provably equivalent.

Propositional Logic Rules

• You don't need to memorize these rules by name, but you should be able to give the name of a
rule. For example, “(p→q)∧ (p→ r) ⇒ (p→ r) is __________”. (Answer: transitivity)

• The rules use the ⇔ symbol to indicate that each side can be used to prove the other: lhs⇔rhs
means that if you can prove the lhs, then you can prove the rhs and vice versa.

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20231

http://cs.iit.edu/~cs536/

CS 536: Science of Programming	 Mon 2023-01-09, 18:47	 Class 2

• Using ⊢ , we can write this as ⊢ lhs⇔rhs if and only if both ⊢ lhs implies ⊢ rhs and ⊢ rhs implies
⊢ lhs.

• Logical implication vs logical equivalence: Analogously to how (p↔q)⇔T lets us know
p⇔q , if we know (p→q)⇔T then we say that p⇒q (p logically implies q). Within the basic 1

proof rules below, ⇒ appears in the transitivity rule, and it's critical there: (p→q)∧ (q→ r)
implies (p→ r) but (p→ r) doesn't imply (p→q)∧ (q→ r) .

• The set of rules below isn't unique — there are other sets of rules that are equivalent, in the
sense of what you can prove using them.

Substitution: Given p , q , and r , let r ′ be the result of substituting a q for one or more occurrences
of p inside r . If p⇔q then r⇔ r ′ . Example (of substitution): Using (p→q)⇔ (¬ p∨q) for r , p for
p, and ¬ ¬ p for q , by substitution, we know (p→¬ ¬ p)⇔ (¬ p∨¬ ¬ p) .

E. Sample Proofs

• Proofs in predicate logic give step-by-step reasoning for why we think the truth of one
proposition is related to another.

• Here is a proof of ¬ (p→q)⇔ (p∧¬ q) (also known as “negation of → ”).

¬ (p→q)  
⇔ ¬ (¬ p∨q) 	 	 Defn →  
⇔ ¬ ¬ p∧¬ q 	 	 DeMorgan’s Law 
⇔ p∧¬ q 	 	 	 Double negation

 Unfortunately, we're running out of word phrases, so “logically implies” in English can mean→or ⇒ . But 1

usually you can figure it out from the context (or just write the symbol, which isn't ambiguous).

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20232

Commutativity	 p∨q ⇔ q∨p

	 p∧q⇔q∧p 	 (p↔q)⇔ (q↔p)

Associativity	 	 (p∨q)∨ r⇔p∨ (q∨ r)

	 (p∧q)∧ r⇔p∧ (q∧ r)

Distributivity/Factoring	

	 (p∨q)∧ r⇔ (p∧ r)∨ (q∧ r)

	 (p∧q)∨ r⇔ (p∨ r)∧ (q∨ r)

Transitivity [Note: ⇒ , not ⇔ here]

	 (p→q)∧ (q→ r) ⇒ (p→ r)

	 (p↔q)∧ (q↔ r)⇒ (p↔ r)

Identity: 	 	 	 p∧T⇔p and p∨F⇔p

Idempotentcy:		 p∨p⇔p a n d p∧p⇔p  

Domination:	 	 p∨T⇔T and p∧F⇔F

Absurdity:		 	 (F→p)⇔T

Contradiction:		 p∧¬ p⇔F

Excluded middle:	 p∨¬ p⇔T

Double negation: 	 ¬ ¬ p⇔p

DeMorgan’s Laws:

	 ¬ (p∧q)⇔ (¬ p∨¬ q)

	 ¬ (p∨q)⇔ (¬ p∧¬ q)

Definition of→ 	 (p→q)⇔ (¬ p∨q)

Definition of ↔ 	 (p↔q)⇔ (p→q)∧ (q→p)

Negation of Comparisons (in predicate logic)

	 ¬ (e₁≤ e₂)⇔ e₁> e₂ (similar for < , > , ≥ , = , ≠)

CS 536: Science of Programming	 Mon 2023-01-09, 18:47	 Class 2

• The proof above can be read top-down or bottom-up.

• Top-down: if ¬ (p→q) is provable, then (p∧¬ q) is provable, using the indicated rule.

• Bottom-up: if (p∧¬ q) is provable, then ¬ (p→q) is provable, using the indicated rule.

• If you reverse a lhs ⇔ rhs proof, you get an equivalent rhs ⇔ lhs proof

• So this proof of p∧¬ q⇔¬ (p→q) is also negation of ¬.

¬ (p→q)  
⇔ ¬ (¬ p∨q) 	 	 Defn →  
⇔ ¬ ¬ p∧¬ q 	 	 DeMorgan’s Law 
p∧¬ q 	 	 	 Double negation

• For another sample proof, here is ((r→ s)∧ r)→ s⇔T . Its name, “modus ponens” is Latin, but
observations of it were known to the ancient Greeks.

(r→ s)∧ r→ s  
⇔ ¬ ((r→ s)∧ r)∨ s 	 Defn of →  
⇔ (¬ (r→ s)∨¬ r)∨ s 	 DeMorgan’s Law 
⇔ ((r∧¬ s)∨¬ r)∨ s 	 Negation of→ [see above] 
⇔ ((r ∨ ¬ r)∧ (¬ s∨¬ r))∨ s 	 Distribute∨over ∧ 
⇔ (T∧ (¬ s∨¬ r))∨ s 	 Excluded middle 
⇔ (¬ s∨¬ r)∨ s 		 Identity 
⇔ T∨¬ r 	 	 	 Excluded middle (see below) 
⇔ T 		 	 	 Domination

• In contrast, a proof of lhs ⇒ rhs can only be read correctly from the top down.

Avoid Unpleasant Levels of Detail

• In the proof above, if we’re being picky with details, then the use of excluded middle to go from
(¬ s∨¬ r)∨ s to T∨¬ r is

(¬ s∨¬ r)∨ s  
⇔ ¬ s∨ (¬ r∨ s) 		 Associativity of ∨ 
⇔ ¬ s∨ (s∨¬ r) 		 Commutativity of ∨ 
⇔ (¬ s∨ s)∨¬ r 		 Associativity of ∨ 
⇔ T∨¬ r 	 	 	 Excluded middle

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20233

CS 536: Science of Programming	 Mon 2023-01-09, 18:47	 Class 2

• And if we’re being even pickier, we should go from (¬ s∨ s)∨¬ r to (s∨¬ s)∨¬ s , since the rule
for excluded middle says “p∨¬ p⇔T  ”, not “¬ p∨p⇔T  ”. To avoid this level of detail, let's agree
that associativity and commutativity can be used without mentioning them specifically.

• Notation: In propositional logic proofs (and later, predicate logic proofs), we can omit uses of
associativity and commutativity rules and treat them as being implicit. (It's still okay to spell
them out, of course.)

F. Derived Rules

• If p↔q is a tautology (i.e., (p↔q)⇔T), then we can use p⇔q as a derived rule. E.g., to prove
modus ponens, we showed (r→ s)∧ r→ s⇔T . Here’s an example of using modus ponens. (For
r we substitute p∧q ; for s we substitute r .)

((p∧q)→ r)∧ (p∧q)→ r 	 Modus ponens 
⇔ T 		 	 	

• Here we see p∧q→p is a tautology, often called “(left) and-elimination”. (There's also “right
and-elimination, which is similar.)

p∧q→p 	  
⇔ ¬ (p∧q)∨p 	 	 Defn →  
⇔ (¬ p∨¬ q)∨p 	 DeMorgan’s Law 
⇔ T∨¬ q 		 	 Excluded middle 
⇔ T 		 	 	 Domination

• Some other common derived rules: [you don’t have to memorize these]. Note that or-
introduction uses ⇒ , since although p implies p∨q, you can have p∨q true but with p false.
Similarly or-elimination uses ⇒ because you can have r true but p ∨ q false.

• contraposition:	 	 (p→q)⇔ (¬ q→¬ p)

• and-introduction:	 p→ (q→ r)⇔p∧q→ r

• or-introduction:		 p ⇒ p∨q

• or-elimination:	 	 (p∨q)∧ (p→ r)∧ (q→ r) ⇒ r

• not-introduction:	 (p→F)⇔¬ p

G. Predicate Logic

• In propositional logic, we assert truths about boolean values; in predicate logic, we assert truths
about values from one or more “domains of discourse” like the integers.

• We extend propositional logic with domains (sets of values), plus variables whose values range
over these domains, and operations on values (e.g. addition). E.g., for the integers we add the
set ℤ, operations +, –, *, /, % (mod), and relations =, ≠, <, >, ≤, and ≥. We’ll also add arrays of
integers and array indexing, as in b [0] .

• A predicate is a logical assertion that describes some property of values.

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20234

CS 536: Science of Programming	 Mon 2023-01-09, 18:47	 Class 2

• To describe properties involving values, we add basic relations on values (e.g., less-than). We
also have rules over these relations, like x * 0 = 0 being a rule of arithmetic.

States for Predicates; Satisfaction and Validity of Predicates (Omitting
quantifiers)

• We'll see quantifiers in a bit, but in the meantime, we can still look at the satisfaction relation
for predicates.

• States with bindings for Domain variables. With propositions, for states, we've been writing
sets of bindings like { p = T, q = F } , where proposition variables are bound to boolean values . 2

With predicates, we can also have bindings like x = 0 , which bind a domain variable to a domain
value. E.g., { p = T, q = F , x = 0 } is a state now. We might have to give the value a name like α if
we don't know it precisely, for example { p = T, q = F , x =α } . [I'll generally use Greek letters for
semantic values.]

• States as functions: Technically, a state is a function from variables (i.e., symbols) to values
(proposition variables to boolean values, domain variables to domain values).

• Notation: σ (x) is the value of the state function σ on variable x . (I.e., it's the value α where
the binding x =α appears in σ).

• Notation: σ (e) is the value of the expression e given that its variables take their values from σ .
Eg., if σ = { x = 1 , y = 3 } , then σ (x) = 1 , σ (y) = 3 , and (picking a random expression),
σ (x + y * y) = 1 0 . We'll define the σ (expression) idea more formally later, but for now your
intuition should be fine.

• Notation: p , q , r, etc. can stand for propositions or predicates. Propositions are also predicates,
so technically we don't need to say “propositions or …”, but its good to emphasize the
distinction.

• Satisfaction of Unquantified Predicates. State σ satisfies predicate p , written σ ⊨ p is
defined as follows.

• σ ⊨ p (a proposition variable) if σ (p) = T .

• σ ⊨ e₁= e₂ holds if the values σ (e₁) and σ (e₂) are equal. Tests <, ≤, >, ≥, and ≠ are similar.

• σ ⊨ ¬ p holds if σ ⊭ p holds.

• σ ⊨ p∧q holds if σ ⊨ p and σ ⊨ q both hold.

• σ ⊨ p∨q holds if σ ⊨ p or σ ⊨ q or both hold.

• σ ⊨ p→q holds if σ ⊨ ¬ p∨q holds, or equivalently if σ ⊨ ¬ p or σ ⊨ q or both hold.

• σ ⊨ p↔q holds if σ ⊨ (p→q)∧ (q→p) holds.

• Some points about this definition. First, it seems weird — all we're doing is substituting English
words like “and” for logic symbols like “∧”. And that's true. All this means is that the
proposition connectives behave as you expect them to if you were to write out things in English.

 Remember, { p = T, q = F } is just more-readable shorthand for { (p , T) , (q , F) } .2

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20235

CS 536: Science of Programming	 Mon 2023-01-09, 18:47	 Class 2

Second, the last two rules (for implication and biconditional) don't break down the p and q into
separate parts, they substitute some larger predicate for p→q and p↔q . This is because these
operations can be described using other connectives.

H. Well-Formed and Proper States

• We have seen well-formedness and properness for states for propositional expressions. States
for predicates follow the same concepts, the only difference being the kinds of values that
variables map to: In addition to boolean values, there are also values from whatever domain
our predicates range over (such as ℤ for integers).

• Examples: { x = 1 , y = 1 } is well-formed but { x = 1 , y = x } and { x = 1 , y = x * 1 } are ill-formed,
since they map y to an identifier and an expression respectively. { x = 1 , x = 2 } is ill-formed
because it's not a function (no unique value for x).

• Examples: { b = 3 } is proper for b + 2 but not proper for b [2] (assuming b [2] is an array
lookup). It's also improper for b + x * 0 because it is missing a binding for x (even though the
value of x is irrelevant).

• And recall that being well-formed is an intrinsic property of a state; being proper is a
relationship between a state and expression or proposition or predicate. Also, when we say
“every state” or “no state”, we only look at states proper for the context.

• Examples: We can say “σ (x + 0) = σ (x) in every state” because it's satisfied in every proper
state (includes at least a mapping of x to an integer). Ill-formed states like { x = y, y = 5 } or
improper states like { y = 4 } are ignored.

• One more point: A state might be proper but that doesn't preclude runtime errors.

• Examples: States { x = 8 , y = 2 } and { x = 8 , y = 0 } are both proper for expression x / y , but
evaluating the expression gets a runtime error when y is zero.

I. Quantifiers: Syntax

• When a predicate includes a variable, we have to ask for what values of the variable we think
the predicate might be true: Some current value? Every value? Some value?

• We use quantifiers to specify all values, some value, and exactly one value.

Universal Quantification

• A universally quantified predicate (or just “universal” for short) has the form (∀x∈S . p)
where S is a set and p (the body of the universal) is a predicate involving x . E.g., every integer
greater than 1 is less than its own square: (∀x∈ℤ . x > 1→x < x ²) .
3

• Often we leave out the set if it is understood. E.g., (∀x . x > 1→x < x ²) .

 The standard definition of the natural numbers ℕ={0, 1, 2, …}. Avoid any source that says 0 ∉ ℕ.3

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20236

CS 536: Science of Programming	 Mon 2023-01-09, 18:47	 Class 2

Existential Quantification

• An existentially quantified predicate (or just “existential” for short) has the form (∃x∈S . p)
where S is a set and p (the body of the existential) is a predicate involving x . E.g., there is a
nonzero integer that equals its own square: (∃x∈ℤ . x ≠ 0∧x = x²) .

• Usually the set is understood to be ℤ and we leave it out. E.g., (∃x . x ≠ 0∧x = x²) .

Syntactic Equality of Quantified Predicates

• For syntactic equality, which variable you quantify over will make a difference for us, so we'll
treat: (∀x . x > x - 1) ≢ (∀y. y > y - 1) . But they'll be logically equivalent: (∀x . x > x - 1) ⇔
(∀y. y > y - 1) .

Bounded Quantifiers

• With bounded quantifiers, we abbreviate a quantifier with a condition in the body by moving
the condition to the quantifier. We'll take a predicate with bounded quantifier to be ≡ the one
without.

• Example 1: (∀x > 1 . x < x ²) ≡ (∀x . x > 1→x < x ²) . (“For every x > 1 , x < x ² ”.)

• Example 2: (∃x   ≠   0 . x = x ²) . ≡ (∃x . x ≠ 0 ∧ x = x ²) . (“There's some nonzero x such that x = x ³ ”.)

• Definition: A bounded quantifier takes the form Q p . q as an ≡ abbreviation for Q x  op r
(where Q is ∀ and op is→or Q is ∃ and op is ∧). More specifically,

• Definition: ∀p . q means ∀x . p→q where x appears in p and x is understood to be the variable
we are quantifying over.

• Definition: ∃p . q means ∃x . p∧q where z appears in p and x is understood to be the variable
we are quantifying over. (Note: it's p∧q here; compare with p→q for bounded universals.)

• It's important to expand bounded ∀  and ∃ to the correct connectives. For example, take

• ∃x∈ℤ . x > 1 ∧ x = x ² 	 	 which is false

• ∃x∈ℤ . x > 1→x = x ² 	 	 which is true, e.g. when x = -1.

Parentheses for Quantified Predicates

• We'll treat ∀ and ∃ as having low precedence. (Note: Some people use high precedence). So the

body of a quantified predicate is as long as possible.

• Example 3. ∀x  ∈  ℤ . x > 1→x < x ² means (∀x∈ℤ . ((x > 1)→ (x < x ²)) .

• Example 4: ∀x∈ℤ .∃y∈ℤ . y ≤ x ² means (∀x∈ℤ . (∃y∈ℤ . (y ≤ x ²))) .

• Notation: Q means ∀ or ∃  .

• If we have (… Q x   …) where the two parentheses shown match, then the body can’t extend past
the right parenthesis, and we get (… Q x . (…)).

• Example 5: (∃y∈ℤ . y > 0∧x > y)→x ≥ 1 ≡ ((∃y  ∈  ℤ . ((y > 0)∧ (x > y)))→ (x ≥ 1))

• For full parenthesizations, we add parentheses around basic tests, but we still omit them around
variables and constants. Let's also omit them around array indexes, so we'll write
(b [x + 1] > y) , not (b [(x + 1)] > y) .

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20237

CS 536: Science of Programming	 Mon 2023-01-09, 18:47	 Class 2

• Example 6: x > 0 ∧ y ≤ 0 expands to ((x > 0)∧ (y ≤ 0)) .

J. Quantifiers: Semantics

DeMorgan’s Laws For Quantified Predicates

• For quantified predicates, there are two more DeMorgan’s Laws:

• (¬∀x . p) ⇔ (∃x   . ¬ p) and (¬∃x . p) ⇔ (∀x . ¬ p)

• With bounded quantifiers, because of how → , ¬, and∧are related,

• (¬∀p . q) ⇔ (∃p   . ¬ q) . I.e., (¬∀x . p→q) ⇔ (∃x . ¬ (p→q)) ⇔ (∃x . p∧¬ q) ⇔ (∃p   . ¬ q) .

• (¬∃p . q) ⇔ (∀p . ¬ q) . I.e., (¬∃x . p∧q) ⇔ (∀x . ¬ (p∧q))  
⇔ (∀x . ¬ p∨¬ q) ⇔ (∀x . p→¬ q) ⇔ (∀p . ¬ q) .

• Example 7: ¬(∀x . x > 0)⇔(∃x . ¬ (x > 0)) ⇔ (∃x . x ≤ 0)

• Example 8: ¬(∀x > 0 . x² =x)⇔(∃x > 0 . x² ≠ x)

• Example 9: ¬(∃x . x ≤ 0  ∧ x > 0) ⇔ (∀x.¬ (x ≤ 0  ∧ x > 0)) ⇔ (∀x . x > 0  ∨ x ≤ 0) .

Proofs of Quantified Predicates

• Formal systems for proving predicates are pretty complicated; rather than study one of them,
let’s rely on an informal idea of how to prove universally and existentially quantified
predicates.

• In general, to prove ∀x . p , you prove p but without imposing any restrictions on x . If you need
to restrict x , then this needs to be part of the body of the quantified predicate.

• Example 10: To prove ∀x∈ℤ . x ≠ 0 x ≤ x ² , we can say “Let x be an integer. Assume that x isn't
zero. In that case, x ≤ x ².”

• To prove ∃x∈S . p , you name a witness value for x and prove p holds if x has that value.

• Example 11: To prove ∃x∈ℤ . x ≠ 0 ∧ x ≥ x ² , the only value that works as a witness is 1. More
generally, there may be multiple witness values that work; we just need to name one.

• If a predicate includes unquantified variables, then for it to be a tautology, it has to hold for all
possible values of those quantified variables. It’s a contradiction if it fails for all values, and it’s
a contingency if it holds for some values but not some others. (I.e., unquantified variables are
“implicitly universally quantified”.)

• Example 12: x > 0→∃y. y ² < x is a tautology because ∀x . (x > 0→∃y. y ² < x) holds.

• Example 13: x > 0→y ² < x is a contingency because it holds for some x and y (like x = 2 and
y x = 1) but fails for others (like x = y = 1).

• Example 14: ∃y   .   (y < 0 ∧ y > x ²) is a contradiction because it fails for every value of x.

K. Predicate Functions

• Often, we’ll give names to predicates and parameterize them. In programming languages, these
predicate functions are written as functions that yield a boolean result.

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20238

CS 536: Science of Programming	 Mon 2023-01-09, 18:47	 Class 2

• Example 15: we might define even (x) ≡ (x % 2) = 0 , where % is the remainder operator. E.g.,
Even (3) ≡ (3 % 2) = 0 ⇔ 1 = 0 ⇔ F.

• In a programming language, the body of a predicate function can be a general program — one
that uses loops and decisions. We want our predicates to be simpler than that: We’re going to
use predicates to augment our programs with specifications, and it won’t help if debugging a
predicate function body is exactly as hard as debugging a general program.

• So we’ll restrict ourselves to predicate functions that take one or more parameter variables and
evaluate a predicate on those variables. Example: p (x) ≡ x > y ∧ x < z .

• The body of the predicate function is (surprise) a predicate that evaluates to true or false, not an
expression that yields a number.

• Function: sqrt (x) ≡ (in pseudocode) r where r = 0 if x ≤ 0 and where r * r = x if x ≥ 0 .

• Predicate function: isSqrt (x , r) ≡ (x ≤ 0∧ r = 0) ∨ r * r = x .

• The body of a predicate function can use the parameter variables and the built-in relations for
our datatypes (for integers, <, ≤, etc.) along with the propositional connectives (∧, ∨, etc.)

• Example 16: Let’s define IsZero (b ,   m) to be true if the first m elements of b are all zero. To
help, let’s assume size (b) gives the number of elements in b.

• Rewriting, IsZero (b , m) means that b [0] , b [1] , ..., b [m - 1] all equal 0.

• It might be tempting to write IsZero (b , m) ≡ b [0] = 0 ∧ b [1] = 0 ∧ . . . ∧ b [m - 1]   = 0

• But the right hand side is not a predicate; a predicate needs a fixed number of conjuncts being
and’ed together.

• To write this as a predicate, we look for a pattern in our informal description: “b [0] , b [1] , ...,
b [m - 1] all = 0 ” is equivalent to “b [i] = 0 for (every) i = 0 , 1 , …, m - 1 ”. The implied “every” i tells
us we need a universal quantifier ∀ .

• So we can get IsZero (b , m) ≡ ∀ i . 0 ≤ i < m→b [i] = 0 . With bounded quantifiers, we can write
IsZero (b , m) ≡ 0 ≤ i < m . b [i] = 0 .

• Another way to look at a description and find an equivalent predicate is to imagine writing a
loop to calculate whether the property is true or false.

• E.g., with “b[0], b[1], ..., b[m-1] all = 0 ” we might imagine a loop

for i = 0 to m-1 
	 if b[i] ≠ 0 then return false 
return true

• The “for i = 0 to m - 1 ” tells us we need to search for i in the range 0 ≤ i < m .

• The loop returns true only if all the b [i] pass the = 0 test; this tells us we need ∀ i .

The general translation for a universal is ∀ loop var . ((var in search range)→ (test on var)). For
this example, the search range is 0 ≤ i < m and the test on i is b [i] = 0 . This gives us
∀ i . 0 ≤ i < m→b [i] = 0 .

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 20239

CS 536: Science of Programming	 Mon 2023-01-09, 18:47	 Class 2

• We need a ∃ search if our loop needs to return true as soon as it finds a b [i] that passes the test.
E.g., if the property had been “At least one of b [0] , b [1] , …, b [m - 1] = 0 ”, we might imagine a
loop

for i = 0 to m-1 
	 if b[i] = 0 then return true 
return false

• For an existential we translate the loop to ∃ loop var . ((var in search range) ∧ (test on var)).
For this example, we get ∃ i . 0 ≤ i < m∧b [i] = 0 .

• Example 17: Define SortedUp (b , m , n) so that it is true when array b is sorted ≤ on the
segment m . . n . As an example, if b [0 . . 3] is [1 , 3 , 5 , 2] , then SortedUp (b , 0 , 2) is true because
1 ≤ 3 and 3 ≤ 5 but SortedUp (b , 0 , 3) is false because we don’t have (1 ≤ 3 and 3 ≤ 5 and 5 ≤ 2).

• Another way to describe SortedUp (b , m , n) is that each element in the list b [m] , b [m + 1] ,
…, b [n - 2] , b [n - 1] is ≤ the element to its right.

• Or expanding further, b [m] ≤ b [m + 1] , b [m + 1] ≤ b [m + 2] , …, b [n - 1] ≤ b [n] . We can
generalize this to b [i] ≤ b [i + 1] for i = m , m + 1 , m + 2 , …, n - 1 . To get a formal predicate, we
need a ∀ over i :

• SortedUp (b , m , n) ≡ ∀ i . m ≤ i < n→b [i] ≤ b [i + 1] . We can hoist the parts of this that don’t
depend on the quantified variable i :

• SortedUp (b , m , n) ≡∀m ≤ i < n . b [i] ≤ b [i + 1] .

• If we want to make sure that the indexes are legal, instead of  m ≤ i < n we can make sure
0 ≤ m < n < s i z e (b) and write  0 ≤ m ≤ i < n < size (b)

• Note: Different generalizations of a property can lead us to different predicates.

• If we generalize

b [m] ≤ b [m + 1] , b [m + 1] ≤ b [m + 2] , …, and b [n - 1] ≤ b [n]

to b [m + j] ≤ b [m + j + 1] for j = 0 , 1 , … , n - 1 - m

 we get ∀0 ≤ j < n - m . b [m + j] ≤ b [m + j + 1] (and 0 ≤ m ≤ n < size(b)).

• Example 18: Let’s find a definition for Extends (b , b′) so that it’s true if b′ is an extension of b .
I.e., b [0] = b′ [0] , b [1] = b′ [1] , … for all elements of b .

• Note b′ can be the same length as b or can be longer.

• E.g., if b is [1 , 6 , 2] and b′ is [1 , 6 , 2 , 8] , then Extends (b , b′) is true and Extends (b′ , b) is
false.

• Here’s one solution: Extends (b , b′) ≡ size (b) ≤ size (b′)∧∀0 ≤ k < size(b) . b [k] = b′ [k] .

CS Dept., Illinois Institute of Technology	 - -	 © J. Sasaki 202310

